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Abstract

We address a challenging unsupervised domain adapta-
tion problem with imbalanced cross-domain data. For stan-
dard unsupervised domain adaptation, one typically obtains
labeled data in the source domain and only observes unla-
beled data in the target domain. However, most existing
works do not consider the scenarios in which either the la-
bel numbers across domains are different, or the data in the
source and/or target domains might be collected from mul-
tiple datasets. To address the aforementioned settings of im-
balanced cross-domain data, we propose Closest Common
Space Learning (CCSL) for associating such data with the
capability of preserving label and structural information
within and across domains. Experiments on multiple cross-
domain visual classification tasks confirm that our method
performs favorably against state-of-the-art approaches, es-
pecially when imbalanced cross-domain data are presented.

1. Introduction

For pattern recognition problems, one typically trains the
classifiers using pre-collected training data, aiming at rec-
ognizing test instances which are not seen during training.
This implies that training and test data exhibit similar data
or feature distributions. However, in real-world applica-
tions, training and test data might be collected by differ-
ent users, using distinct sensors, at dissimilar scenarios, or
during separate time periods. Such data are considered to
be present in different domains, and the difference between
them (or the mismatch between their data distributions) is
thus not negligible.

Domain adaptation addresses the tasks in which training
and test data are collected from source and target domains,
respectively. Its goal is to eliminate domain differences for

relating cross-domain data. Depending on the availability
of labeled data in the target domain during training, one
can generally divide existing techniques into two categories:
semi-supervised and unsupervised domain adaptation.

For semi-supervised domain adaptation, either a small
number of target-domain labeled data or cross-domain data
pairs can be observed during training [21]. For exam-
ple, Jiang and Zhai [15] apply instance reweighting tech-
niques for adapting classifiers learned from source to tar-
get domains. By utilizing the correspondence information
across source and target domains, Huang and Wang [12]
advance dictionary learning to derive a common feature
space, which can be applied for the tasks of cross-domain
classification and synthesis. As noted in [23], adaptation
problems with significant domain differences or distribu-
tion mismatches (e.g., pose-invariant face recognition [23]
or image-to-text classification [28]) generally require semi-
supervised settings for achieving satisfactory performance.

For unsupervised domain adaptation, one can collect la-
beled data in the source domain, while only unlabeled data
to be recognized can be observed in the target domain dur-
ing training (no cross-domain instance pair is available ei-
ther). Since there is no label information available in the
target domain, how to transfer such information from the
source domain becomes a challenging task. Based on Max-
imum Mean Discrepancy (MMD) [9], recent approaches
choose to eliminate the domain difference by matching
cross-domain data distributions [30, 24, 20, 17]. As dis-
cussed in Section 2, the basic idea of such methods is to de-
rive a common feature space, in which the marginal and/or
conditional distributions of cross-domain can be matched.

However, existing approaches for unsupervised domain
adaptation typically assume that the label numbers of the
source and target domains are the same (e.g., [20, 18, 17]).
They also expect that the data of each class presented in the
source or target domains exhibit similar data distributions.
In practice, the number of categories in the source domain is
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Source Domain(s) Target Domain Closest Common Space 

(a)� (b)� (c)�

Data of class 1           Data of class 2 
Data of class 3 

Unlabeled data Projected target-domain 
data with assigned labels 

Figure 1: Overview of our approach: (a) Source and target-domain data, (b) exploiting label and latent-domain information
within and across domains, and (c) the resulting space for adaptation and classification. Note that different shapes correspond
to different domains/datasets, while the colors denote the object categories.

often larger than that in the target domain. Moreover, both
source and target-domain data might be collected from mul-
tiple datasets. In this paper, we refer to the aforementioned
scenarios as the presence of imbalanced cross-domain data.

While some researchers advocate instance selection or
latent domain discovery [6, 7, 27] to handle problems with
problems with mixed source-domain data, they cannot be
easily applied for solving domain adaptation tasks in which
the label numbers do not match across domains. In our
work, we also propose an MMD-based algorithm of Closest
Common Space Learning (CCSL). The major advantage of
our CCSL is its ability in dealing with imbalanced cross-
domain data for unsupervised domain adaptation. We will
show that, by exploiting label and structural information
within and across domains, latent source domains can be
identified for adaptation and recognition purposes.

The contributions of this paper are summarized below:

• We propose a novel unsupervised domain adapta-
tion algorithm of Closest Common Space Learning
(CCSL), which jointly solves instance reweighting and
subspace learning to learn the latent sub-domains for
adaptation. (Section 3)

• Our CCSL exploits both label and structural infor-
mation for data within and across domains. This is
achieved by relating latent source-target domain pairs,
with the ability to disregard irrelevant source domain
instances during adaptation. (Section 3)

• In addition to achieving satisfactory performance on
benchmark cross-domain classification datasets, our
method is able to perform favorably against recent un-
supervised domain adaptation approaches on problems
with imbalanced cross-domain data. (Section 4)

2. Related Works

In this section, we briefly review recent works on unsu-
pervised domain adaptation. Generally, one can divide ex-
isting approaches into three categories: instance reweight-
ing [13, 25], feature space matching [20, 8, 5, 17, 6], and
latent domain discovery [11, 7]. Viewing the importance or
contribution of each source-domain instance different dur-
ing adaptation, instance reweighting suppresses the differ-
ence between source and target domain data by minimiz-
ing the MMD [9] or the Kullback-Leibler distances [25].
Classification-based methods like [3] apply selected source-
domain classifiers to recognize the matched target-domain
instances. Nevertheless, reweighting the source-domain
data might be not sufficient for adapting cross-domain data,
if the domain difference is not simply a domain shift.

Feature space matching is among the popular techniques
for unsupervised domain adaptation. Such strategies aim at
discovering a common feature space which allows match-
ing of data distributions across domains. For example, Pan
et al. [20] proposed Transfer Component Analysis (TCA)
to project cross-domain data into low dimensional embed-
dings for matching their marginal distributions. Long et
al. developed [17] Joint Distribution Adaptation (JDA),
which adapts both marginal and conditional data distribu-
tions when deriving the common feature space. Differ-
ent from MMD-based approaches, Gong et al. [8, 6] con-
structed a Riemannian manifold and defined Geodesic Flow
Kernel (GFK) for matching cross-domain data. Similarly,
Baktashmotlagh et al. [1, 2] applied manifold learning to
achieve the above goal by minimizing the Hellinger dis-
tance between cross-domain data distributions. Dictionary-
learning based approaches methods like [19, 29] can also
be considered in this category. With the same goal of as-
sociating cross-domain data, they adapt the source-domain
dictionary to the target domain by observing the data in that
domain accordingly.
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To deal with data collected from more than one domain,
latent domain discovery decomposes the observed source or
target-domain data into multiple sub-domains for improved
adaptation. For example, Hoffman et al. [11] chose to clus-
ter the source-domain data with constraints on their label
information. To minimize the MMD between the source-
domain data in different sub-domains, Gong et al. [7] pur-
sued their maximally distinctive distributions. Recently, Xu
et al. [27] utilized exemplar SVMs to identify multiple sub-
domains for source-domain data via low-rank approxima-
tion. However, once the sub-domains are determined, the
aforementioned works simply select the one closest to the
target domain for adaptation. Moreover, existing latent do-
main discovery approaches typically assume that the label
numbers are the same across domains, which would also
limit their practical uses.

3. Our Proposed Method
3.1. Problem Settings

We first define the problem formulation and introduce
the notations which will be used in this paper. Let the train-
ing data in the source domain as DS =

{(
xSi , y

S
i

)}NS

i=1
=

{XS ,yS}, where XS ∈ Rl×NS denotes NS l-dimensional
source-domain data, and each entry ySi in yS ∈ RNS in-
dicates the corresponding label of C categories. As for
the target domain, the unlabeled data are represented us-
ing the same type of features. Thus, we have DT ={(

xTj , y
T
j

)}NT

j=1
= {XT ,yT }, where XT ∈ Rl×NT is the

observed target-domain data, and yT ∈ RNT is the label
vector to be determined.

It is worth repeating that, for unsupervised domain adap-
tation with imbalanced cross-domain data, we not only deal
with possible mixed source or target domain data (i.e., in-
stances in XS or XT of the same class but collected from
different datasets). We also consider that the label number
C of the source domain might be larger than or equal to that
in the target domain.

3.2. Beyond Matching Cross-Domain Marginal and
Conditional Distributions

Recall that, to eliminate the domain differences, JDA
determines a feature transformation Φ (·), which projects
source and target domain data to a common subspace for
matching cross-domain marginal and conditional data dis-
tributions. In other words, the goal of JDA is to sat-
isfy PS(φ(XS)) ≈ PT (φ(XT )) and PS(φ(XS)|yS) ≈
PT (φ(XT )|yT ) by minimizing the following MMD dis-
tanceMφ:

Mφ (PS(XS ,yS),PT (XT ,yT ))

≈Mφ (PS(XS),PT (XT )) +Mφ (PS(XS |yS),PT (XT |yT )) .

Since only unlabeled data can be observed in the target do-
main, JDA applies source-domain classifiers to predict the
pseudo labels of the target-domain data, which allows the
matching of cross-domain conditional data distributions for
adaptation purposes.

Despite promising performance, JDA and most MMD-
based approaches regard each data domain as an atomic dis-
tribution. In practice, source or target-domain data can be
collected by different users using distinct sensors, and thus
there would exist latent sub-domains for the collected data.
Moreover, the number of categories in the source domain
might be larger than that in the target domain.

To address unsupervised domain adaptation with imbal-
anced cross-domain data, we propose a novel algorithm of
Closest Common Space Learning (CCSL). Instead of as-
suming that the data in each domain exhibit atomic distri-
butions, our CCSL considers a latent domain variable d for
exploiting both label and structural information within and
across domains during adaptation. Thus, our CCSL aims at
minimizing the following MMD distanceMφ,d (d denotes
domain-dependent MMD) :

Mφ,d (PS(XS ,yS),PT (XT ,yT ))

≈Mφ (PS(XS),PT (XT ))

+Mφ,d (PS(XS |yS),PT (XT |yT )) .

(1)

The first term in (1) denotes the matching of cross-domain
marginal distributions, and the second term takes both label
and latent-domain information for matching cross-domain
conditional distributions. That is, different from matching
cross-domain conditional distributions using class means
with pseudo labels, we propose to exploit both label and
latent structure similarities within and across domains for
adaptation. This is achieved by jointly solving the tasks
of instance reweighting and subspace learning in a unified
framework, as detailed in the following subsection.

3.3. Closest Common Space Learning

As noted in Section 3.2, we propose to exploit both label
and latent-domain information within and across domains
for matching cross-domain conditional distribution. More
specifically, we define the second term in (1) as:

Mφ,d (PS(XS |yS),PT (XT |yT ))

=
∑
i,j

mST
ij∑

k

mSS
ki

∑
l

mTT
lj

∥∥∥φ̂(xSi )− φ̂(xTj )
∥∥∥2 , (2)

where

M =

[
MSS MST

MTS MTT

]
∈ R(NS+NT )×(NS+NT )
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and

φ̂(xSi ) =

∑
l

mSS
li φ(xSl )∑
l

mSS
li

, φ̂(xTj ) =

∑
l

mTT
lj φ(xTl )∑
l

mTT
lj

.

In (2), the similarity matrix M ∈ R(NS+NT )×(NS+NT )

associates each within and cross-domain data pair. Each en-
try mST

ij in the cross-domain similarity matrix MST mea-
sures the label and latent-domain similarities for each cross-
domain data pair, while mSS

li and mTT
lj exploit the latent

structures for the associated data within source and target
domains, respectively (see Section 3.3.1 for the derivation
of M). As a result, minimizing (2) is equivalent to the
matching of cross-domain data distributions based on the
conditions of the observed labels and latent domains.

3.3.1 Observing label and latent-domain similarities

We now explain how we determine M in (2). Given la-
beled source-domain and unlabeled target-domain data, we
apply a set of linear discriminators wi, each is trained
by a source or target-domain instance of interest in the
resulting feature space (via φ). Thus, we have W =
[w1, ...,wNS

, ...wNS+NT
] ∈ Rk×(NS+NT ), where k indi-

cates the dimensions of our closest common space. To learn
each wi, we follow the strategies below:

• If wi is trained by a projected source-domain instance
φ(xi), we take a portion p (0 6 p 6 1) of the projected
data with the same label as xj as positive instances (se-
lected by nearest neighbors), while the remaining ones
with distinct labels will viewed as negative samples.

• If wi is trained by a projected target-domain instance
φ(xi), we follow JDA and apply source-domain SVMs
to predict its pseudo label ŷTi . The procedure of select-
ing positive and negative samples to train wi for xi is
the same as the case above.

Once wi for each instance is derived, we apply them to pre-
dict the output scores p for each instance xj , which is in
the same or different domain as xi is. Finally, this score
will be normalized to [0, 1] as the corresponding entry in
M using a sigmoid function σ (g) = 1/ (1 + e−g), where
g = wT

i φ(xj). Once the similarity matrices of MSS ,
MTT , and MST are determined, φ̂(xSi ) and φ̂(xTj ) can be
derived based on their definitions in (2).

It can be seen that, instead of measuring the difference
between cross-domain instance pairs, the use of φ̂(xSi ) and
φ̂(xTj ) in (2) allows us to take local structures of each pro-
jected source or target-domain instance into consideration,
while class labels are implicitly embedded in M.

It is worth noting that, while matching cross-domain
marginal distributions in (1) can be viewed as eliminating

the domain/dataset bias (as TCA does), matching cross-
domain data distributions based on the observed label and
sub-domain information (i.e., minimizing (2)) introduces
the CCSL the ability to handle imbalanced cross-domain
data during adaptation. In Section 4, we will verify the ef-
fectiveness of our CCSL for unsupervised domain adapta-
tion with both balanced and unbalanced cross-domain data.

3.3.2 CCSL as TCA or JDA

We note that, both TCA [20] and JDA [17] can be regarded
as special cases of our proposed CCSL. For TCA, neither
label nor latent domain information are considered when
matching cross-domain data distributions. Thus, disregard-
ing (2) would simplify our CCSL as TCA. On the other
hand, JDA views each cross-domain pair equally important,
if the target-domain instance of this data pair is predicted
as the same category as the corresponding source-domain
instance is. In other words, if we simply let mST

ij = 1 if
ySi = ŷTj without identifying latent domains for adaptation,
our propose formulation of (2) would turn into JDA.

3.4. Optimization

To solve the minimization of (1), we first rewrite (1) into
the following form:

Mφ,d (PS(XS ,yS),PT (XT ,yT )) = tr (KφL) , (3)

where Kφ ≡ φ (X)
>
φ (X) is the kernel matrix constructed

over cross-domain data. The matrix L in (3) is derived as:

L = v0v
>
0 +

∑
i,j

mijvijv
>
ij ,

where v0 =

[
e>NS

NS
,−

e>NT

NT

]>

vij =

[(
mSS
i

)>∥∥mSS
i

∥∥
1

,−
(
mTT
j

)>∥∥mTT
j

∥∥
1

]>
.

Note that eN is a N dimensional vector of ones. mSS
i and

mTT
j represent the i and jth column vectors of MSS and

MTT , respectively.
As pointed out in [20], it is computationally expen-

sive to solve the optimization problem of (3). There-
fore, following [20, 17], we utilize the Empirical Ker-
nel Mapping [22] and predefine a kernel matrix K =
(KK−1/2)(K−1/2K). Next, we determine projections Ã
and A (both of size (NS + NT ) × k) for deriving a lower
k dimensional space in terms of K. This is achieved by
having Kφ = (KK−1/2Ã)(Ã>K−1/2K) = KAA>K,
where A = K−1/2Ã, where Ã is to transform the corre-
sponding feature vectors to a lower k-dimensional space.
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Algorithm 1 CCSL: Closest Common Space Learning
Input: Data matrix K, source-domain label yS , dim. k, and α

1. Initialize Initialize: M←− eNe>
N

while not converged do
2. A←− solution of (4)
3. Data embedding Z = [ZS ,ZT ]←− A>K
4. Train classifier f ←− {ZS ,yS} and ŷT ←− f (ZT )
5. Train linear discriminators W
6. M←− σ

(
W>Z

)
end while

Output: Target-domain label ŷT

Finally, by rewriting Kφ in (3), we solve the following ob-
jective function for CCSL:

min
A

tr
(
A>KLK>A

)
+ α‖A‖2F

s.t. A>KHK>A = I,
(4)

where α controls the regularization of A, and H = I −
eNe>N/N is the centering matrix which preserves data vari-
ance after the projection.

By applying Λ = diag (λ1, · · · , λk) ∈ Rk×k as the La-
grange multiplier, solving (4) is equivalent to minimizing
the following function:

L = tr
(
A>

(
KLK> + αI

)
A
)

(5)

+ tr
((

I−A>KHK>A
)
Λ
)
.

By setting ∂L/∂A = 0, the above problem turns into a
generalized eigen-decomposition task. In other words, we
calculate the k smallest eigenvectors of the following prob-
lem for determining the optimal A:(

KLK> + αI
)
A = KHK>AΛ.

As summarized in Algorithm 1, we apply the technique
of iterative optimization to calculate the projection A, linear
discriminators w, and similarity matrix M for CCSL. Once
the closest common space is derived, one can perform clas-
sification using projected cross-domain data accordingly.

4. Experiments
4.1. Datasets and Settings

4.1.1 Cross-domain datasets for visual classification

In our experiments, we evaluate the recognition perfor-
mance of our proposed method on several cross-domain vi-
sual classification tasks. We first consider two handwritten
digit datasets of MNIST [16] and USPS [14] (denoted as M
and U, respectively). The former contains a training set of
60, 000 images of 10 digits, and 10, 000 images are avail-
able for testing. The resolution of each image is of size

USPS

Amazon DSLR Webcam

MNIST

Caltech-256

Figure 2: Example images of different datasets for cross-
domain visual classification.

28 × 28 pixels. As for USPS, there are 7291 and 2007 im-
ages available for training and testing, respectively. Each
image in this dataset is of size 16× 16 pixels.

We also consider cross-domain object recognition, us-
ing the datasets of Caltech-256 (C) [10] and Office [21]
datasets. The former consists of real-world object images of
256 categories with at least 80 instances per category, while
the latter contains 31 object categories from three different
domains, i.e., Amazon (A), DSLR (D), and webcam (W).
As suggested by [6, 17], 10 overlapping categories across
the above four domains are selected for experiments. Ex-
ample images of the above datasets are shown in Figure 2.

For fair comparisons, we follow the setting of [20] and
randomly sample 2000 and 1800 images from MNIST and
USPS (scaled to the same 16 × 16 pixels), respectively.
And, we use pixel intensities are the associated image fea-
tures. As for cross-domain object recognition, DeCAF6

features [4] with 4096 dimensions are adopted, since the
use of such deep-learning based features have shown very
promising results for visual classification [4].

4.1.2 Settings and parameters

To compare our CCSL with existing unsupervised domain
adaptation approaches, we consider the methods of Transfer
Component Analysis (TCA) [20], Joint Distribution Adap-
tation (JDA) [17], and Transfer Joint Matching (TJM) [18]
in our experiments. We also apply standard SVM trained
by source-domain data, which indicates direct recognition
without adaptation (denoted as SVM). Although the recent
approach of [7] is able to handle mixed source-domain data,
its focus is to identify the best subset of the source-domain
data, followed by using GFK [8, 6] for performing adapta-
tion. Moreover, the label numbers are assumed to be the
same across domains in [7].

It is worth noting that, since no labeled data can be ob-
served in the target domain, performing cross-validation
for parameter selection is not applicable. Thus, we sim-
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Table 1: Accuracy (%) for cross-domain hand written digit
and object classification with balanced cross-domain data.
Note that CCSL performs comparably as JDA and TJM do
(* indicates cross-domain object recognition only).

S → T SVM TCA JDA TJM CCSL

M → U 44.28 52.33 51.78 60.83 53.78
U → M 39.30 46.90 57.80 47.50 58.10

C → A 91.54 90.92 90.92 89.77 93.32
D → A 87.06 88.62 90.28 89.46 90.92
W → A 75.78 80.27 87.02 86.12 89.98
A → C 85.13 82.37 86.33 79.43 87.18
D → C 79.07 79.52 83.88 78.90 84.06
W → C 72.84 74.71 83.64 75.78 82.90
A → D 85.99 87.26 88.54 82.17 87.26
C → D 89.17 89.81 90.36 85.99 87.90
W → D 99.36 100.00 100.00 100.00 96.18
A → W 76.95 74.58 83.78 75.93 83.05
C → W 80.00 78.98 85.08 78.64 82.37
D → W 98.64 99.32 97.98 98.98 96.27

Average* 85.13 85.53 88.98 85.10 88.45

ply choose linear SVMs for all approaches (i.e., linear
SVMs are trained using projected source-domain data for
all MMD-based approaches). For data embedding in TCA,
JDA, and CCSL, we apply linear kernels for constructing
the kernel matrix as suggested by [17, 20]. As for the re-
maining parameters, we set the regularization parameter α
in (3) as 0.1 and 1 for cross-domain digit and object recog-
nition, respectively. To fix the reduced dimensions for all
MMD-based approaches for comparisons, we have k = 15
and k = 100 for the above two tasks.

4.2. Evaluation

4.2.1 Classification with balanced cross-domain data

For cross-domain handwritten digit recognition, two classi-
fication tasks need to be addressed, i.e., M→ U and U→ M
(S → T indicates adapting data from S to T domains). As
for cross-domain object recognition, we have a total of 12
cross-domain pairs to be evaluated.

Table 1 lists the recognition results of all methods on the
above cross-domain tests. Since all the cross-domain pairs
are balanced, i.e., the label and domain numbers across
source and target domains are the same, our CCSL pro-
duced comparable performance as JDA did. Since TCA and
TJM did not utilize any label information during adaptation,
degraded performances were obtained.

From Table 1, we see that our CCSL is favorable for
target domains with larger sizes (e.g., |A| = 958 and
|C| = 1123). This is due to the fact that our CCSL is
able to identify proper local data structures for adaptation.
Nevertheless, the following experiments using imbalanced

Table 2: Accuracy (%) for cross-domain object recogni-
tion with imbalanced label numbers (the best performance
is highlighted in bold). Note that the label numbers are 10
and 5 for source and target domain data, respectively.

S → T5 SVM TCA JDA TJM CCSL

C → A5 90.88 90.55 90.20 86.93 93.32
D → A5 85.96 87.90 80.42 83.24 95.04
W → A5 74.10 79.90 76.92 78.91 91.61
A → C5 83.62 80.84 77.49 69.63 91.88
D → C5 77.17 78.45 78.24 65.00 89.00
W → C5 74.09 73.32 75.04 72.63 83.22
A → D5 79.66 80.95 73.69 85.35 86.55
C → D5 90.66 87.69 83.05 87.09 85.27
W → D5 99.24 100.00 99.70 100.00 99.13
A → W5 75.12 73.06 71.34 73.45 85.01
C → W5 80.85 71.11 68.85 78.09 84.10
D → W5 98.38 99.59 98.16 98.81 96.65

Average 84.14 83.61 81.09 81.59 90.07

4 5 6 7 8 9
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Figure 3: Average results over different target-domain label
numbers C for cross-domain object recognition. Note that
the source-domain label number is fixed as 10.

cross-domain data will further verify the effectiveness and
robustness of our method.

4.2.2 Classification with imbalanced label numbers

For the experiments with imbalanced cross-domain data,
we first consider the scenario of imbalanced label numbers
across domains. More specifically, we consider the task
of cross-domain object recognition, in which the source-
domain label number is larger than that in the target domain.

Among the 10 overlapping object categories for Caltech-
256 and Office, we randomly select C = 4 ∼ 9 as the label
numbers in the target domain. And, all labeled data of all
10 categories are applied as the source-domain data. Due
to space limit, we only present the classification results of
C = 5 for all domain pairs in Table 2. From this table,
we see that TCA, JDA, and TJM were not able to produce
satisfactory results, while improved performance was still
obtained by our CCSL. The degraded performance of exist-
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Table 3: Accuracy (%) for cross-domain object recognition
with mixed-domain data. Note that the best performance
for each mixed domain pair is highlighted in bold.

S→ T SVM TCA JDA TJM LM CCSL

C+D+W→ A 91.65 91.34 91.34 89.98 91.75 93.75
A+D+W→ C 85.66 83.17 86.02 80.50 87.00 87.98

D+W→ A+C 80.29 80.98 88.66 84.31 86.35 89.18
C+W→ A+D 93.16 92.96 93.26 91.77 93.45 93.86
C+D→ A+W 93.44 92.64 92.55 91.40 93.62 93.62
A+W→ C+D 88.44 87.84 89.04 85.62 88.83 89.38
A+D→ C+W 89.20 87.57 89.67 86.09 89.77 89.98
A+C→ D+W 87.78 88.75 91.69 91.69 91.69 91.69

Average 89.99 89.75 91.58 89.73 90.31 92.15

ing MMD-based approaches is due to their assumption of
balanced label numbers across source and target domains.

In addition to Table 2, Figure 3 further compares the av-
erage performances (over all 12 domain pairs) of different
methods using different label numbers C with 10 random
trials. From Figure 3, we see that our CCSL performed fa-
vorably against existing MMD-based methods, especially
when C became smaller. This suggests that the advantage
of our CCSL would become clearer if highly imbalanced
label numbers are expected to be present across domains.

4.2.3 Classification with mixed-domain data

Finally, we consider cross-domain object recognition using
mixed-domain data. Table 3 lists and compares the perfor-
mances of different approaches, including LM [6]. The first
two rows in Table 3 represent the scenarios of mixed source-
domain data, with unlabeled data to be recognized collected
from a single target domain. As for the remaining rows in
Table 3, both labeled and unlabeled data are collected from
multiple domains, and thus multiple latent domains are ex-
pected for both source and target domains.

From Table 3, we observe that improved recognition re-
sults were obtained by our CCSL. It can also be seen that,
the difference between our CCSL and other recent/baseline
approaches was not as significant as those presented in the
previous subsection. This implies that, for practical unsu-
pervised domain adaptation task, solving imbalanced label
numbers across domains is a more challenging task than that
with mixed-domain data. Nevertheless, training data (and
their labels) collected in real-world scenarios are typically
noisy and imbalanced across domains. As verified above,
a robust unsupervised domain adaptation with the ability to
handle imbalanced cross-domain data would be preferable.

4.3. Remarks

4.3.1 Convergence analysis and parameter sensitivity

We first provide remarks on the convergence issue for our
proposed algorithm. For both cross-domain digit and ob-
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Figure 4: Convergence analysis (accuracy (%) vs. number
of iterations) on (a) balanced domain pair of A→ C and (b)
imbalanced domain pair of A→ C5.
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Figure 5: Parameter sensitivity. We show the recognition
accuracy (%) over (a) α and (b) p on selected domain pairs.

ject recognition, we observe that the optimization of CCSL
always converged within 5 iterations for both balanced and
imbalanced settings (as shown in Figures 4a and b). We also
observe that, when dealing with imbalanced cross-domain
data, the convergence of existing MMD-based methods
like JDA and TJM does not necessarily correspond to
non-decreasing performance improvements. Such trends
were not observed for the experiments with balanced cross-
domain data. This further verifies our advantages in identi-
fying sub-domains for improved adaption.

Figures 5a and b further verify the sensitivity of α in (4)
and p in Section 3.3.1. In our experiments, we fix p = 0.5
and set α = 0.1 and 1 for cross-domain digit and object
recognition, respectively. From Figures 5a and b, we see
that performance would not be sensitive to the parameters
around our choices.

4.3.2 Visualization of adapting imbalanced cross-
domain data

In Sections 4.2, we provide experimental results which
quantitatively verify the effectiveness of our approach for
cross-domain visual classification. To qualitatively support
the use of our CCSL for unsupervised domain adaptation
(especially for imbalanced cross-domain data), we now dis-
cuss the resulting cross-domain data similarity and visualize
the data embedding for the adapted data using t-distributed
stochastic neighbor embedding (t-SNE) [26].

Figure 6 shows the cross-domain similarity and data em-
bedding analysis for the imbalanced domain pair of A →
C5. To plot the cross-domain similarity, we construct the
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Figure 6: Analysis of cross-domain similarity and data embedding for the imbalanced domain pair of A → C5. For cross-
domain similarity, we show the affinity matrices of cross-domain data derived by (a) JDA and (b) CCSL. For data embedding,
we present the 2D visualization of t-SNE for projected cross-domain data derived by (c) JDA and (d) CCSL. In (c) and (d),
instances in different colors denote data of different object categories.

affinity matrix, in which each entry denotes the inner prod-
uct of the associated cross-domain data pair. Once the affin-
ity matrix is obtained, a threshold of 0.8 is applied to bi-
narize this matrix for visualization purposes. Comparing
Figures 6(a) and (b), we see a large number of irrelevant
entries were nonzero in the affinity matrix of JDA, while
the dominant (non-zero) ones in our affinity matrix mainly
corresponded to the object categories to be transferred.

Figure 6(c) and (d) illustrate the 2D visualization of t-
SNE for adapted cross-domain data (i.e., those projected
into the common spaces derived by JDA or CCSL). From
these two figures, it is clear that CCSL was able to preserve
the label and structural information for cross-domain data
with the same class. As for JDA, the separation between
projected data of different classes was not sufficient. From
the quantitative experiments presented in Sections 4.2, to-
gether with the qualitative and visual comparisons provided
in this subsection, the effectiveness and robustness of our
proposed method can be successfully verified.

5. Conclusion

In this paper, we presented Closest Common Space
Learning (CCSL) for unsupervised domain adaptation. In
particular, our CCSL is designed to handle mixed-domain
data or imbalanced label numbers across domains dur-
ing adaptation. Solving our proposed algorithm can be
viewed as jointly optimizing the tasks of instance reweight-
ing and subspace learning, which exploits label and sub-
domain information for data within and across domains.
In addition to providing the optimization details for de-
riving CCSL solutions, we also relate CCSL with popu-
lar MMD-based approaches of TCA and JDA. This shows
that our CCSL is a robust unsupervised domain adaptation
approach for both scenarios of balanced and imbalanced

cross-domain data. Finally, we conducted experiments on
multiple cross-domain visual classification problems. The
empirical results confirmed that our CCSL performs favor-
ably against state-of-the-art unsupervised domain adapta-
tion approaches, especially when imbalanced cross-domain
data are presented.
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