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Abstract—In this paper, we address the problem of
unsupervised domain transfer learning in which no labels are
available in the target domain. We use a transformation matrix to
transfer both the source and target data to a common subspace,
where each target sample can be represented by a combination
of source samples such that the samples from different domains
can be well interlaced. In this way, the discrepancy of the source
and target domains is reduced. By imposing joint low-rank
and sparse constraints on the reconstruction coefficient matrix,
the global and local structures of data can be preserved.
To enlarge the margins between different classes as much as
possible and provide more freedom to diminish the discrepancy,
a flexible linear classifier (projection) is obtained by learning a
non-negative label relaxation matrix that allows the strict binary
label matrix to relax into a slack variable matrix. Our method
can avoid a potentially negative transfer by using a sparse
matrix to model the noise and, thus, is more robust to different
types of noise. We formulate our problem as a constrained
low-rankness and sparsity minimization problem and solve it by
the inexact augmented Lagrange multiplier method. Extensive
experiments on various visual domain adaptation tasks show
the superiority of the proposed method over the state-of-the art
methods. The MATLAB code of our method will be publicly
available at http:/www.yongxu.org/lunwen.html.

Index Terms—Source domain, target domain, low-rank and
sparse constraints, knowledge transfer, subspace learning.

I. INTRODUCTION
ENERALLY classification methods first learn a classi-
fication model from training samples, and then apply
it to classify test samples. The obtained classification model
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Fig. 1. Nine images of three subjects from different domains. As can be
seen, the visual appearance of the images of each subject varies severely.

works well when the training samples and test samples have
a similar distribution [1]. However, in real-world applications,
it is not possible to guarantee that the training samples always
have the same distribution as the test samples owning to
various factors such as different visual resolutions and illumi-
nations. When they have different distributions, the obtained
model usually fails. For example, Fig.1 shows the discrep-
ancy among some images of three subjects from different
domains, in which the images of each subject have different
distributions. When the images in the first column are used
to train a classification model, the obtained model cannot
accurately classify the images in the second and third columns.
A straightforward solution to address this problem is to collect
sufficient labeled data that well characterize the distribution
of the test data, and then use them to retrain the model.
However, collecting and labeling sufficient data are very labor-
intensive and tedious. In this case, we need to “borrow” the
labeled yet relevant data from other data sets to enhance the
classification performance. A available technique to match
the above procedure is the well-known transfer learning
which aims to transfer the knowledge learnt from a source
domain to a target domain by exploiting relatedness of
them [2]-[4].

Transfer learning makes use of prior knowledge in other
related domains when dealing with new tasks in the given
domain. In transfer learning, the training data and test data
are respectively from two types of domains: 1) the source
domain and 2) the target domain. The data in these two
domains generally share the same task but follow different
distributions [5]-[9]. In most cases, there is only one target
domain, while either single or multiple source domains may
exist [9]. According to whether or not the label information of
the data in the target domain is available, transfer learning can
be categorized into two kinds: supervised and unsupervised
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transfer learning. In supervised transfer learning, there are
usually limited labeled data in the target domain, whereas
in unsupervised transfer learning there may be large-scale
unlabeled data in the target domain. In this paper, we focus
on unsupervised transfer learning since it usually occurs in
real-world applications. In order to address the problem of
different distributions between the source data and target data,
researchers in the field of transfer learning have made a lot
of efforts. These methods proposed by researchers can be
classified into two categories [2]: (1) methods of changing
the representation of the data; (2) methods of modifying the
trained classifier. Representative works of the first category
can be found in [3] and [10]-[13]. The common drawbacks in
previous methods of changing the representation of the data
are as follows. First, it is difficult to capture the intrinsic
structures such as the global and local structures of data
owing to the different distributions. Second, the data including
the noisy data are treated equally, which is disadvantageous
for obtaining robust methods. Finally, most of this kind of
methods only focus on how to change the representation of
the data, but neglect the fact that one can better address the
problem by integrating the classifier design and the method of
changing data representation as a task. This may cause that the
selected classifier is not optimal. Such three drawbacks will
lead to an unsatisfactory performance of transfer learning. For
the method of modifying the trained classifier, the usual way
is to adjust model parameters so that the classifier can adapt to
the target domain. In this kind of methods, the data are fixed
but decision boundaries are allowed to change [14]-[17].

In this paper, to overcome the drawbacks of the method
of changing the representation of the data, we propose a
novel transfer subspace learning method which integrates the
method of changing data representation and classifier design.
Specifically, the source data and target data are transformed
into a common subspace in which each target datum can be
linearly reconstructed by the data from the source domain.
We impose joint low-rank and sparse constraints on the
reconstruction matrix so that the global and local structures of
data can be preserved. The linear reconstruction is commonly
used in manifold learning and sparse representation [18], [19]
to preserve some desired properties. In our proposed method,
the design of low-rank and sparse constraints also ensures
that the data from different domains can be well interlaced.
This is helpful to significantly reduce the disparity of the
domain distributions. Further, the sparse constraint can make
relevant samples (may be from the same class) from different
domains more interlace than irrelevant samples, which is
useful to promote the classification performance. We learn
a flexible linear classifier (projection) by relaxing the strict
binary label matrix into a slack variable matrix, which brings
the following two advantages for our model: 1) it can enlarge
the margins between different classes as much as possible
and 2) it provides more freedom to minimize the divergence
between the distributions of the source and target domains.
We also consider the negative effect of noise by using a
sparse matrix to model the noise so that the noise information
is filtered [20]. The proposed method is illustrated in Fig.2.
The variables in Fig.2 are defined in Table 1.

DSLR  WEBCAM
Q“ = A
Original Feature Space P
X,

Pl X L —
Common Subspace
P'X, X z + E =~ P'X,

Fig. 2. Framework of the proposed method. Source data X are the bookcase
images from the DSLR domain whereas target data X; are also bookcase
images from the WEBCAM domain. Our method tries to seek a transformation
matrix P that satisfies PTX; = PTX,Z, where Z is the reconstruction matrix.
Please kindly note that, in the practical model, we impose the low-rank and
sparse constraints on matrix Z so that it has a sparse block-diagonal structure.
Some elements in this figure are similar to those in [2].

TABLE I
SOME DEFINITIONS OF VARIABLES

m Dimensionality of the original feature space

d Dimensionality of the common subspace
Xs Source domain data

Xy Target domain data

Ng Number of samples in the source domain
n¢ Number of samples in the target domain
P Transformation matrix

Z Low-rank reconstruction matrix

E Noise matrix

Y Binary label matrix

c Number of classes

II. RELATED WORKS

Since the relevant literature is quite extensive, our survey
focuses on the key concepts and important transfer learning
algorithms.

Two comprehensive surveys of transfer learning can be
found in [8] and [9]. As pointed out in [8] and [9], iterative
modification of the classifier is a basic way to realize transfer
learning. For example, Bruzzone et al. iteratively deleted the
source domain samples by adjusting the discriminant function
step by step to adopt to the target domain and added the target
domain samples with estimated labels till the final classifier
is determined based on the target domain samples [21].
Chen et al proposed a progressive transductive support vector
machine model to iteratively label and modify the unlabeled
target domain samples to achieve a big margin [22]. Xue et al.
exploited the common part of support or knowledge to share
part of model parameters or priors between both domains
which is helpful to make the source domain model to adapt
to the target domain [23]. These methods all use an iterative
strategy to gradually transfer the knowledge of the source to
target domain. However, the success of these methods severely
depends on the quality of the model obtained by subsequent
iterations.

In real-world applications, it is almost impossible to
guarantee that the source domain and target domain have
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common parameters or priors. Thus, to exploit the common-
ality between the source and target domains seems to be
a feasible and effective idea, which can well eliminate the
disparity between domains. A good way to achieve this goal
is to transfer both domains into a common subspace or to
alter the representation of data of both domains so that both
domains are in agreement in the common subspace (or the
distributions of both domains are approximately identical).
In this way, the model trained by the labeled source domain
is adaptive to the target domain.

Let us turn to the introduction of representative subspace
learning methods, which are closely related with our method.
During past decades, the subspace learning method has been
widely used for classification, dimensionality reduction and
visual data analysis. Subspace learning methods attempt to find
a subspace in which the desired data property is preserved.
For example, locality preserving projection (LPP) [24],
neighborhood preserving embedding (NPE) [25], and
isometric projection (ISOP) [26] are used to preserve the
intrinsic geometry structure of samples. However, these
methods do not exploit the label information to improve
the discriminant ability. To this end, Yang et al. proposed
the margin fisher analysis (MFA) method to simultaneously
preserve both the intrinsic geometry and discriminant
structure of the samples [27]. Some similar methods, such as
locality fisher discriminant analysis (LFDA) [28], and local
discriminant embedding (LDE) [29] were also proposed.
Recently, proposed low-rank representation based subspace
learning methods use the low-rank representation of data to
preserve the structure of data. For example, Wright et al [30]
proposed robust principal analysis (RPCA) method which
aims to recovery a low-rank matrix from the corrupted matrix.
Similar methods are also proposed to conduct the subspace
segmentation via low-rank representation [31]-[33]. Compared
to conventional subspace recovery methods that assume a
specific noise such Gaussian noise, low-rank representation
based methods can effectively handle noises with large
magnitudes. Moreover, the low-rank representation can more
effectively capture the structure information of data [2].

More and more researchers are being devoted to transfer
subspace learning. Si et al [13] proposed a transfer subspace
learning framework, in which some subspace learning methods
are applied to minimize the Bregman divergence between
the distributions of both domains. Pan et al [34] proposed a
transfer subspace learning method to obtain a latent common
subspace by using a transform that can reduce the discrepancy
between the margin distributions of the source domain and
target domain. Gopalan et al obtained a common intermediate
feature representation by projecting the data onto a series of
subspaces sampled from the Grassmann manifold [11]. The
common subspace was obtained via a low-rank representation
method, which attempts to minimize the discrepancy between
the source data and target data so that the data in the source
domain can be linearly represented by the data in the target
domain [2], [3], [35], [36]. Though these works are super-
ficially somewhat similar to our work, they are indeed very
different in the following aspects. First, all of these methods do
not consider to captures the local structure of data whereas our
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method can do so. Thus, our method can not only accurately
align the source and target domains by using the low-rank
constraint but also capture the local structure of data by using
the sparse constraint. Second, our method learns a specific
large margin linear classifier by relaxing the strict binary
label matrix into a slack variable matrix. The advantages of
such relaxation are as follows: (1) it can enlarge the margins
between different classes as much as possible; (2) it pro-
vides more freedom to obtain a proper transformation matrix.
In other words, it can provide more freedom to minimize the
divergence between the distributions of both domains. Finally,
in our method classifier learning and transfer learning are
integrated into a single optimization framework to guarantee
an optimal solution.

III. PROPOSED METHOD
A. Notation

Let X; € W™ and X, € RN"™ be the source and
target data, respectively, where m is the dimensionality of data
in both domains. ngy and n; are respectively numbers of the
samples from the source and target domains. Let P € R"*¢
and Z € N> be respectively the transformation matrix and
reconstruction matrix, where d is the dimensionality of the
common subspace. Define 0;(Z) as the i-th singular value
of Z, and let |Z|, = 3, 0i1(Z) and |Z; = ¥ ;|Z;]
denote the nuclear norm and ¢; norm of matrix Z, respectively.
Denote the binary label matrix by ¥ = [y, ..., yu] € R",
where ¢ is the number of classes. Y is defined as follows: for
each sample x;, y; € R is its label. If x; is from the k-th class
(k=1,2,---,c), then only the k-th entry of y; is one and all
the other entries of y; are zero. Let E € """ be the noise
matrix. The definitions of all variables are shown in Table 1.

B. Problem Formulation

Transfer subspace learning aims to find a transformation
matrix that transforms the source and target data into a
common subspace in which the distributions of the source and
target data are approximately identical. Our method assumes
that the target data can be linearly represented by the source
data in the common subspace. In other words, the target data
can be well reconstructed by the source data in the common
subspace. This problem can be formulated as

PTx, =PTx,z (1)
(1) can be further written as

min | PTX, — PTX,Z][; @

If the data in both domains lie in a single subspace, (2) can
effectively perform knowledge transfer. However, real-world
data may span multiple subspaces, so in this case the sole use
of (2) is not very advantageous for knowledge transfer [2].
Moreover, (2) cannot exploit the structure information of data.
To this end, we assume that the knowledge can be accurately
propagated from both domains to a common subspace, and
then the divergence between the distributions of both domains
can be minimized so that each sample in the target domain can
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be well reconstructed by its neighbors in the source domain.
Such assumption has the following underlying rationale: if the
data in both domains are transformed into a common subspace
where the distributions of both domains are identical, then the
samples in both domains of the same task may lie in the same
manifold. In other words, each sample in either domain of the
same task can be approximately represented by a combination
of its neighbors. To achieve this purpose, the reconstruction
coefficient matrix Z should have a block-wise structure. Thus,
we use the low-rank constraint to enforce Z to have such
structure. Thus, (2) can be reformulated as

r}r)li?rank(Z) S.t. PTX, = PTXSZ. 3)

(3) is beneficial to obtain consistent representation of
X; and X; so that the source and target data are well
aligned. Since the rank minimization problem is non-convex,
the problem in (3) is NP-hard [30]—-[32]. If the rank of Z is
not too large [33], problem (3) is equivalent to

rgi? 1Zll, st PTX, = PTX,Z 4)

where ||- ||« is the nuclear norm of a matrix. Besides (3) and (4)
take the relatedness of both domains into serious account, we
can further constrain the reconstruction coefficient matrix to
be sparse by using (5). This sparse constraint is helpful to
preserve the local structure of data such that each target sample
can be well reconstructed by a few samples from the source
domain.

rgi? 1ZIl, +alZll; st PTX, =PTX,Z 35)

In order to alleviate the influence of noise, we introduce
matrix E to model the noise and impose sparse constraint
on E and change (5) to

i V4 V4 E
Jmin_(1Z]. +alZll + AIEN;
st. PTX, = PTX,Z+ E (6)

As a result, the objective function of our method is defined
as follows.
1
i —p(P,Y, X Z Z E
Juin. S(P.Y. Xo) +ZI +al ZIy + BIEN,
st. PTX, = P"X,Z+ E (7)

where ¢ (P, Y, Xy) is a discriminant subspace learning func-
tion. Based on (7), we can transform data of both domains
into a discriminant subspace in which the transform matrix,
low-rank and sparse constraints can lead to a compatible
representation of data of both domains. Thus, the samples
from both domains can be well interlaced, so as to reduce
discrepancy of the source and target domains.

As for the design of ¢ (P, Y, X;), we define it to be a regres-
sion method for classification. Conventional linear regression
method assumes that training samples can be exactly trans-
formed into strict binary label matrix, namely

2
H(P,Y, X)) = |IPTX; — Y[ + AIPlp ®)

However, the above assumption is too rigid [37], [38].
The main problem is that transformation matrix P has little

freedom when X is transformed into the strict binary labels.
We expect to design a flexible P which not only can enlarge
the margins between different classes as much as possible but
also can minimize the divergence between the distributions of
both domains as much as possible. Inspired by [37], we relax
the strict binary label matrix into a slack variable matrix by
introducing a non-negative label relaxation matrix M, which
provides more freedom for P.

The following example shows how to relax the strict binary
label matrix into a slack variable matrix. Let xi, xp, x3 be
three training samples that are respectively from the second,
first and third class. Their corresponding label matrix is
010
100
001
columns of Y respectively stand for the labels of the first,
second and third samples). It is easy to see that the dis-
tance between any two samples from different classes is /2
when they are projected into their label space. For example,
the distance between the first and second samples is set
to /(O —1)2+ (1 —0)2+(0—0)2 = /2. Such definition
of label matrix is not best. Different samples which have
different characteristic should be differently treated. To this
end, we introduce a non-negative label relaxation matrix M
and combine it with Y to form a slack variable matrix Y°.
That is,

defined as Y = (The first, second and third

—myp  l4+mp  —mi3
Yo=|14+my —mp -m3 |,
—m3| —m3 14m33

mij >0 (@, j=1,2,3).

It can be seen that the distance between the first and second
samples is set to

V(=mi1 =1 =m)? + (1 + miz + m2)? + (—my3 + ma3)?
> 2

when they are projected into the relaxation label space. This
shows that the use of the non-negative label relaxation matrix
allows margins between different classes to be enlarged as
much as possible. Moreover, such relaxation can enable P to
have more freedom for better reconstruction. To obtain Y°,
we introduce a luxury matrix B and define Y° =Y 4+ B O M,
where © is a Hadamad product operator of matrices and B is

L[+ ity =1
defined as B;; = {_1, if Y; =0
we obtain the following ultimate objective function for our

method.

. By substituting ¥ with Y°,

. 1
pmin SG(P.Y.X) +IZ0, +allZ) o+ AIEN,

st. PTX, = PTX,Z+ E,
2
=P X, ~ Y +BOMIp, M>0 (9

where Y is the label matrix of the source domain samples.
Using this function, we are able to simultaneously obtain the
common subspace and classifier. It should be noted that the
dimensionality of the common subspace is ¢ (d = c¢).
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C. Solution to Our Method

Optimization problem (9) is not convex. When solving it
we need to iteratively update each variable by fixing the other
variables. We can convert (9) into

L SIPTX = (4 BO M+ 171

+ allZally + BIEIL

st. PTX, = PTX,Z+ E,

=2, Zr=2Z, M>0 (10)

We solve problem (10) by minimizing the following
augmented Lagrange multiplier (ALM) function L

1 2
L= 5||PTXS — Y +Bo M)+ 12,

+allZally + BIEIL

+(Y1, PTX, = PTX,Z — E)+ (Y2, Z — Z})
2

+ (13,2 = Z2) + SIP"X, = PTX,Z ~ El;

+5 (12 =zl + 12 - 217 an

where Y1, Y, and Y3 are Lagrange multipliers and ¢ > 0
is a penalty parameter. The above problem can be solved by
inexact ALM (IALM) algorithm [30]-[33]. TALM algorithm is
an iterative method that solves for each variable in a coordinate
descent manner. The main steps of solving (11) are as follows.
All steps have closed form solutions.

Step 1 (Update P): P can be updated by solving optimiza-
tion problem (12).

P = argmfi)n%HPTXs — (Y +BoOM)|>

H H T T Y, 2
+=||P X, — P X;Z—E+ —

2 ulp

It is clear that the closed form solution of (12) is P* =

(XSXST —i—,uGng)fl (XSGIT—}—,uGng), where G| = Y +

BOM,Gy,=X;,—X;Z and G3 = E — % In order to obtain

numerically more stable solution, in this paper we obtain P*

using

12)

—1
Pt = (XSX;F + uGLGT + /11) (XSGT + ﬂG2G§) (13)

where 4 is a small positive constant.
Step 2 (Update Z): Z is updated by solving optimization
problem (14)
. Y1 2
Z* = argmin |PTX, — PTX,Z — E+ —||
z M F2

Y, 2 Y3
+IZ-Z1+—=Il +1Z—-2Zo+ |l (14)
uoF 2F
The closed form solution of (14) is
-1
A (,uXSTPPTXS + 2/11) (Gs +Gg— X;rPG4) (15)

where G4 = PTX,—E—i—%, Gs = Zl—% and Gg = 22—%.

Step 3 (Update Z;): To update Z1 should solve problem (16)
2

(16)

Y.
Z; = argmin || Z, I, + ﬁHZ— 2+ 2
Z 2 u

F
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The closed form solution of (16) is

Y.
o (o)

where #,(X) = US;(Z)VT is a thresholding oper-
ator with respect to a singular value 4; S;(X;;) =
sign(X;;) max(0, | X;; — 4|) is the soft-thresholding operator;
X = UZXVT is the singular value decomposition of X.

Step 4 (Update Z5): Z» is updated by solving optimization
problem (18)

a7)

2

. . © Y3
ZQZargn%maHZzlll—i-— Z—Zz-f-; (18)
2

2

F

According to the shrinkage operator [31], the above problem
has the following closed form solution
Y
Z3 = shrink (Z + 2, g)
uop
Step 5 (Update E): E is updated by solving optimization
problem (20).

19)

Y 2
E* = argmin B||E|l, + ﬁH PTX, - PTX,Z — E+ %
E 2 HlF
(20)
The solution of (20) is
Y
E* = shrink (PTX, —PTx,z 4+ L, ﬁ) 1)
Ty

In (19) and (21), shrink(x, a) = sign max(|x| — a, 0).
Step 6 (Update M): M is updated by solving the following
problem
1
M* = argmin 2| PTX, = (¥ + B O miy @

Let PTX, —Y = R. Considering the (i, j)-th entry M;; of M,
we have the following formulation

r}r&in (Rij — BijMij)z S.t. Mij >0 23)
ij
The optimal solution of M;; is

Mij = max(Rij Bij, 0) (24)

Therefore, the optimal solution of M can also be rewritten as

M = max(R ® B, 0) (25)

Step 7: Multipliers Y1, Y», and Y3 and iteration step-size p
(p > 1) are updated by using (26),

Yi =Y+ u(PTX, — PTX,Z — E)
Vo=Yr+u(Z -2y

Yi=Ys+ u(Z - 2»)

p = min(pu, Umax)

(26)

In summary, the process of solving (9) is summarized in
Algorithm 1.
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Algorithm 1 Solving Problem (9) by IALM
Input: X, X;, Y, B, a and §;

Initialization: M = 1; Z7 = Z, = Zy =
Yi=Yo=Y;=0;

fmax = 107; p=0.1; p=1.01; e = 1077;
While not converged do

. Fix other variables and update P by solving (13)
. Fix other variables and update Z by solving (15)
. Fix other variables and update Z; by solving (17)
. Fix other variables and update Z5 by solving (19)
. Fix other variables and update £ by solving (21)
. Fix other variables and update M by solving (25)
. Update the multipliers and parameters by (27)

7. Check the convergence conditions
|PTX, — P"X,Z-E||, < e
|Z — Zaf| , <€

End while

Output: P, Z, E

AN N AW =

\Z -2, < e

D. Computational Complexity and
Convergence of the Algorithm

The major computational burden of our algorithm
lies in Steps 1, 2 and 3 presented in Algorithm 1
because they contain matrix inversions and singular value
decomposition (SVD). In Steps 1 and 2, the matrix
inversions are operated for m x m and ng X ng matrices,
respectively. In Step 3, the SVD is operated on ng X n;
matrix. Specifically, in Step 1, the computational complexity
is O (m*(n; +ny) +m® +mnic +mngc). In step 2, the
complexity is @) (mn,c + ngeny + ngme + nf + mznf)
In Step 3, the computational complexity is O (n}). For
simplicity of presentation, we assume that m > max(ng, n;).
Thus, the main computational complexity of Algorithm 1 is
O (z (m*(ns +ny) +m® +n3 +n?)) where ¢ is the number
of iterations.

The convergence of IALM has been proved in [31].
However, in our method there are six variables: P, Z, Z1, Z»,
E, and M. Also, the objective function in (9) is not absolutely
smooth. These factors do not guarantee that our method is con-
vergent. Fortunately, the following three sufficient conditions
are provided for a good convergence property.

(1) Parameter u in step 7 in needed to be upper bounded.

(2) Dictionary A (in this paper, A is replaced by Xj) is of
full column rank.

(3) The optimal gap produced in each iteration step
monotonically decreases. In other words, the error

2

(27)
21,22

€& = H (Zi, Z1k, Zox) — arg Zmin L
F

monotonically decreases, where Zy, Z1; and Zy; respectively
denote the solutions of Z, Z; and Z, obtained at the
kth iteration.

The third condition is difficult to directly satisfy, but the
performance and convergence curves of our algorithm shown
in Sect IV provides evidences that it does hold.

E. Difference Between Our Method and Previous Works

1) Difference From LTSL [2]: The LTSL superficially
seems to be similar to our method. In LTSL and our method,
a unified transform is exploited to transform both source and
target domains into a common subspace. However, our method
is quite different from LTSL in the following three aspects:
(1) In LTSL, the local structure of data is not exploited to
well guarantee that each target sample is linearly reconstructed
by its few neighbors from the source domain. Our method
uses the sparse constraint to capture the local structure among
the source and target domains. In other words, LTSL loses
the individuality when being transformed to the common
space owing to the only use of the low-rank constraint.
But in our method, each sample in the source and target
domains can be transformed independently due to the sparse
constraint, which can preserve the diversity of different classes.
(2) LTSL does not specify a classifier to classify the target
data, whereas in our method, a label relaxed linear classifier
is learned. Thus, the classifier obtained by our method is
more suitable than that randomly selected in LTSL. (3) The
transformation matrix in our method has more freedom to
make the source domain and target domain closer enough
to each other owning to the label relaxation. In LTSL, only
the transformation matrix is used, which can pull the source
domain and target domain closer but not enough to each
other.

2) Difference From RDALR [3]: In RDALR, the source
domain data are strictly transformed to the target domain.
In practice this transformation is too rigid to guarantee that the
source domain and target domain closer enough to each other.
In contrast, by transforming both domains into a common
space, the disparity between these two domains can be dimin-
ished as soon as possible. Another disadvantage of RDALR
is that when the source domain data are transformed into the
target domain, the data of different subjects may overlap each
other so that they cannot be separated, but in our method,
a large margin classifier is learned in the common subspace.
In this way, our method can classify the target data well, which
is proven by the subsequent experiments.

3) Difference From Other Existing Works: Our method
shares the common idea with the existing works in using
common subspace [1], [13], [41]. However, our method is
different from them in the following aspects: (1) Our method
jointly learn the transfer and classifier, which can make the
obtained classifier match the transfer well. In other words, the
transformed data of both domains can be accurately classified
in the common subspace by the obtained classifier. (2) By
relaxing the label matrix into a slack variable matrix in the
common subspace, the transformation matrix can provide more
freedom to make the source domain and target domain closer
enough to each other and obtain a better classification model
for the target data. (3) The way of diminishing the discrepancy
between the source and target domains is different. Si er al [13]
and Geng et al [41] used the empirical maximum mean
discrepancy (MMD) to enforce the source domain and target
domain closer to each other. Kan et al [1] used two sparse
reconstructions to diminish the discrepancy. The low-rank and
sparse reconstructions used in our method are more flexible
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TABLE 1I
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE COIL 20 DATA SET

The classification accuracy by NN

The classification accuracy by SVM

Data set N+ T PCA [ GFK [ TSL | TCA | LTSL [ Our | SVM¥ | TSL | RDALR [ LTSL | Our
CI—C2 | 8361 | 84.72 | 72.50 | $8.06 | 8847 | 7560 | 88.61 | 8265 | 80.00 | 8060 | 7542 | 84.58
C2C1 | 8278 | 8403 | 74.17 | 87.92 | 8583 | 7222 | 89.17 | 8403 | 75.56 | 7875 | 72.22 | 84.17
Average | 83.19 | 84.38 | 7334 | 8799 | 87.15 | 73.96 | 8889 | 8334 | 7778 | 7972 | 73.52 | 84.38

than the single low-rank reconstruction [2] or single sparse
reconstruction [1].

FE. Classification

When problem (9) is solved we obtain transformation
matrix P. Then, we directly use P to obtain the transformation
results of the source and target data, respectively. Finally, we
apply 1-Nearest neighbor classifier (NN) or support vector
machine (SVM) to classify the transformation results of target
domain data. In other words, obtained transformation matrix P
is just used to generate features of source and target domains
data and classification is conducted by the conventional clas-
sifiers NN and SVM.

IV. EXPERIMENTS

In this section, we compared the proposed method
with the following seven related state-of-the art baseline
methods including Geodesic Flow Kernel (GFK) [10],
Transfer Component Analysis (TCA) [34], Transfer Subspace
Learning (TSL) [13], Low-rank Transfer subspace Learn-
ing (LDA) (LTSL) [2], Robust Visual Domain Adaptation with
Low-Rank Reconstruction (RDALR) [3], and Principle Com-
ponent Analysis (PCA). Specifically, TSL adopts Bregman
divergence instead of Maximum Mean Discrepancy (MMD) as
the distance for comparing distributions. Two classic classifiers
include 1-Nearest neighbor classification (NN) and Support
vector machine (SVM) are chosen as the baseline classifiers.
For SVM, all parameters, i.e., penalty term C, bandwith
of RBF kernel o, are selected by gird-search strategy. The
experiments are conducted on the COIL 20 [39], MSRC [40],
VOC 2007 [40], CMU PIE [39], Office [2], [10], [39], [40],
Caltech-256 [2], [39], [40] and Extended Yale B [2] data
sets. Please note that partial experimental results are quoted
from [39]. We also give the experimental results of baseline
classifiers of NN and SVM which are denoted by NN* and
SVM*, respectively.

A. Experiments on the COIL 20 Data Set

The COIL 20 data set contains 20 objects with 1440 images.
The images of each object were taken at pose interval of
5 (i.e., 72 poses per object). Each image has 32x32 pixels
and 256 gray levels per pixel. Fig 3 shows some images
from this data set. In this experiment, we partition the data
set into two subsets COIL 1 and COIL 2: COIL 1 contains
all images taken in the directions of [0°, 85°] U [180°, 265°]
(quadrants 1 and 3) [39] and thus the number of all images
is 720. COIL 2 contains all images taken in the directions
of [90°, 175°] U [270°, 355°] (quadrants 2 and 4) and thus

Fig. 3. Some images from the COIL 20 data set.

Fig. 4. Some images from the MSRC (left) and VOC2007 (right) data sets.

the number of all images is 720. In this way, we construct
two subsets with relatively different distributions. We use two
setting for constructing the source and target data: COIL 1
(source) vs COIL 2 (target) (C1— C2) and COIL 2 (source)
vs COIL I(target) (C2— C1). Table II shows the experimental
results of all compared methods. From Table II, we can see
that our method obtains the best classification accuracies.

B. Experiments on the MSRC and VOC 2007 Data Sets

The MSRC data set contains 4323 images labeled by
18 classes, which is provided by Microsoft Research
Cambridge. The VOC 2007 data set contains 5011 images
annotated with 20 concepts. Fig. 4 shows some images from
these two data sets. We can see that the two data sets share
6 semantic classes: aeroplane, bicycle, bird, car, cow, sheep.
We follow [40] to construct one data set MSRC vs VOC
(M—V) by selecting all 1269 images in MSRC to form the
source domain, and all 1530 images in VOC2007 to form
the target domain (MSRC vs VOC, M— V). Then we switch
the data set with another data set: VOC vs MSRC (V—>M).
All images are uniformly rescaled to 256 pixels in length, and
extract 128-dimensional dense SIFT (DSIFT) features using
the VLFeat open source package. Then K-means clustering is
used to obtain a 240-dimensional codebook. In this way, the
training and test data are constructed to share the same label
set and feature space. Table III shows the experimental results.
Our method obtains the good experimental results with the NN
classifier, especially the average classification accuracy is sig-
nificant higher than these of the other methods. However, the
experimental results are inferior to that of LTSL and RDALR
when we use the SVM classifier to perform classification.
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TABLE III
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE MSRC AND VOC 2007 DATA SETS

Data set The classification accuracy by NN The classification accuracy by SVM
NN¥* [ PCA | GFK [ TSL [ RDALR | LTSL | Our SVM* [ TSL | RDALR [ LTSL [ Our
M—V 28.63 | 28.82 | 28.76 | 30.92 28.95 26.27 | 34.51 | 37.12 | 32.35 37.45 38.04 | 38.04
VM 48.94 | 49.09 | 48.86 | 47.44 48.94 56.34 | 53.82 | 55.48 | 43.18 62.33 67.06 | 56.42
Average | 38.79 | 3895 | 38.81 | 39.18 38.94 41.31 | 44.16 | 46.30 | 37.77 49.89 52.55 | 47.23
TABLE IV
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE PIE DATA SET
Data set The classification accuracy by NN The classification accuracy by SVM
PCA | GFK | TSL | TCA | RDALR | LISL | Our | TSL | RDALR | LISL | Our
P1—P2 | 24.80 | 26.15 | 44.08 | 26.70 40.76 2296 | 65.87 | 33.76 32.04 20.14 | 65.44
P1—P3 | 25.18 | 27.27 | 47.49 | 27.08 41.79 20.65 | 64.09 | 30.64 32.54 13.30 | 62.87
P1—P4 | 29.26 | 31.15 | 62.78 | 31.06 59.63 31.81 | 82.03 | 46.68 41.66 20.01 | 81.29
P1—P5 | 16.30 | 17.59 | 36.15 | 18.08 29.35 12.07 | 54.90 | 25.18 22.79 11.15 | 54.23
P2—P1 | 2422 | 2524 | 46.28 | 26.14 41.81 18.25 | 45.04 | 30.10 27.82 18.13 | 45.59
P2—P3 | 45.53 | 47.37 | 57.60 | 47.98 51.47 16.05 | 53.49 | 34.44 42.52 16.18 | 52.70
P2—P4 | 53.35 | 5425 | 7143 | 54.73 64.73 45.15 | 7143 | 54.61 63.29 45.00 | 72.24
P2—P5 2543 | 27.08 | 35.66 | 28.06 33.70 17.52 | 47.97 | 21.88 25.80 17.34 | 48.41
P3—P1 | 2095 | 21.82 | 3694 | 21.91 34.69 22.36 | 52.49 | 38.66 25.15 20.53 | 53.30
P3—P2 | 4045 | 43.16 | 47.02 | 43.65 47.70 20.26 | 55.56 | 35.60 41.38 20.87 | 56.97
P3—P4 | 46.14 | 4641 | 59.45 | 47.67 56.23 57.34 | 77.50 | 58.67 56.59 57.40 | 75.94
P3—P5 | 25.31 | 26.78 | 3634 | 27.57 33.15 24.57 | 54.11 | 32.29 29.60 24.14 | 53.43
P4—P1 | 31.96 | 3424 | 63.66 | 33.82 55.64 51.20 | 81.54 | 59.15 48.11 52.79 | 79.71
P4—P2 | 60.96 | 62.92 | 72.68 | 64.52 67.83 70.10 | 85.39 | 72.38 73.36 70.72 | 87.23
P4—P3 | 72.18 | 73.35 | 83.52 | 74.08 75.86 72.00 | 82.23 | 75.61 76.41 70.83 | 81.13
P4—P5 | 35.11 | 37.38 | 44.79 | 3891 40.26 48.28 | 72.61 | 45.22 48.84 47.00 | 71.02
P5—P1 18.85 | 20.35 | 33.28 | 20.35 26.98 13.06 | 52.19 | 40.55 32.98 11.22 | 51.80
P5—P2 | 23.39 | 24.62 | 34.13 | 24.98 29.90 21.61 | 4941 | 32.84 30.51 21.06 | 50.09
P5—P3 27.21 28.49 | 36.58 | 28.86 29.90 17.03 5845 | 44.18 33.27 13.79 58.09
P5—P4 | 30.34 | 31.33 | 38.75 | 31.36 33.64 29.59 | 64.31 | 53.08 44.46 23.61 | 66.09
Average | 33.85 | 3535 | 49.43 | 35.88 44.75 31.59 | 63.53 | 43.28 41.46 29.76 | 63.38
S =SeiEay
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%%%g%ii‘g-{;%ﬁ Fig. 6. Images from domain adaptation benchmark data sets Office and
LS vl =L Caltech-256.
(b)

Fig. 5. Two subsets from the PIE data set. (a) Subset C29 (PIES). (b) Subset
C27 (PIE4).

C. Experiments on the CMU PIE Data Set

The CMU PIE (PIE) data set contains 41368 face images
with the resolution of 32 x 32 pixels from 68 individuals.
These images have “pose”, “illumination”, and “expression”
changes. Fig. 5 shows two subsets from the PIE data set.
In this experiment, five subsets of PIE (each corresponding to a
distinct pose) are used to test different methods. Specifically,
five subsets, i.e., PIE1 (CO05, left pose), PIE2 (CO7, upward
pose), PIE3 (C09, downward pose), PIE4 (C27, front pose),
PIE 5 (C29, right pose) are constructed and the face images
in each subset are taken under different illumination and
expression conditions. By randomly selecting two different
subsets (poses) as the source domain and target domain
respectively, 20 cross-domain data sets, e.g., PIE1 (P1) vs
PIE2 (P2), PIE1 (P1) vs PIE3 (P3), PIE1 (P1) vs PIE4 (P4),
PIE1 (P1) vs PIES (P5), - - -, PIES (P5) vs PIE4 (P4) are con-
structed. In the way, each cross-domain follows significantly

different distributions. The experimental results are shown
in Table IV. Again, our method almost performs better than
the other methods.

D. Experiments on the Office, Caltech-256 Data Sets

Office is the visual domain adaptation benchmark data,
which includes common object categories from three different
domains, i.e., Amazon, DSLR, and Webcam. In this data
set, each domain contains 31 object categories, i.e., laptop,
keyboard, monitor, bike, etc, and the total number of images
is 4652. In the Amazon domain, each category has 90 images
on average while in the DSLR or the Webcam domain each
category has 30 images on average. Caltech-256 is a standard
data set for object recognition. The data set has 30607 images
and 256 categories. Fig. 6 shows some images from these four
subsets.

In this experiment, the public Office 4 Caltech data
sets released by Gong et al [10] are adopted. SURF fea-
tures are extracted and quantized into an 800-bin histogram
with codebooks computed with K-means on a subset of
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TABLE V
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE OFFICE AND CALTECH-256 DATA SETS

Data set The classification accuracy by NN The classification accuracy by SVM

) NN* [ PCA [ GFK [ TSL | TCA [ RDALR [ LTSL | Our SVM* [ TSL | RDALR [ LTSL [ Our
C—A 23770 | 36.95 | 41.02 | 44.47 | 37.89 38.20 2526 | 51.25 | 50.09 | 52.30 5251 24.11 | 53.34
C—W 25.76 | 32.54 | 40.68 | 34.24 | 26.78 38.64 19.32 | 38.64 | 43.05 | 4034 40.68 2293 | 45.76
C—D 2548 | 38.22 | 38.85 | 43.31 | 39.49 41.40 21.02 | 4713 | 47777 | 49.04 4522 14.58 | 50.96
A—C 26.00 | 34.73 | 40.25 | 37.58 | 34.73 37.76 16.92 | 43.37 | 4279 | 43.28 43.63 21.36 | 44.70
A—W 29.83 | 35.59 | 38.98 | 33.90 | 28.47 37.63 14.58 | 36.61 37.03 | 34.58 35.93 18.17 | 38.31
A—D 2548 | 27.39 | 36.31 | 26.11 | 34.39 33.12 21.02 | 38.85 | 37.22 | 38.85 36.94 22.29 | 39.49
W—C 19.86 | 26.36 | 30.72 | 29.83 | 26.36 29.30 34.64 | 29.83 | 29.47 | 31.43 28.05 34.64 | 30.28
W—A 2296 | 31.00 | 29.75 | 30.27 | 31.00 30.06 39.56 | 34.13 | 34.15 | 34.66 31.21 39.46 | 34.66
W—D 59.24 | 77.07 | 80.89 | 87.26 | 83.44 87.26 72.61 | 82.80 | 80.62 | 79.62 83.44 72.61 | 82.80
D—C 26.27 | 29.65 | 30.28 | 28.50 | 30.28 31.70 35.08 | 31.61 30.11 33.13 32.32 3535 | 30.72
D—A 28.50 | 32.05 | 32.05 | 27.56 | 30.90 32.15 39.67 | 33.19 | 32.05 | 3257 33.72 39.35 | 33.19
D—-W 63.39 | 7593 | 75.59 | 85.42 | 73.22 86.10 7492 | 77.29 | 7220 | 72.54 72.54 74.92 | 76.61
Average | 31.37 | 39.79 | 4295 | 42.37 | 39.75 43.61 3455 | 45.39 | 4470 | 45.20 44.68 3498 | 46.73

TABLE VI

CLASSIFICATION ACCURACIES (%) OF MULTIPLE SOURCE DOMAINS VS SINGLE TARGET DOMAIN ON THE OFFICE AND CALTECH-256 DATA SETS

Data set The classification accuracy by NN The classification accuracy by SVM
s NN* [ PCA [ GFK [ TSL [ RDALR [ LTSL [ Our SVM* [ TSL [ RDALR [ LTSL [ Our

A,C—=D 33.76 | 40.13 | 45.86 | 46.50 35.67 3439 | 49.05 50.78 53.50 24.84 43.31 47.13
A, C—W | 31.19 | 3797 | 39.32 | 33.56 28.47 2746 | 37.97 41.44 48.47 19.32 29.83 | 37.29
AD—C 28.50 | 37.22 | 39.89 | 41.67 36.33 21.73 | 45.24 44.09 44.26 17.28 22.89 | 45.68
AD—W | 49.15 | 55.25 | 66.78 | 54.24 66.78 26.78 | 62.71 57.03 56.95 17.29 2746 | 58.98
AW—C | 27.60 | 35.62 | 37.40 | 42.03 36.60 26.98 | 45.06 42.98 46.66 16.38 26.80 | 45.33
AW—D | 6433 | 73.25 | 81.53 | 63.06 71.07 41.40 | 74.52 70.98 71.34 20.38 3822 | 71.97
C,D—A 2432 | 3455 | 37.27 | 45.20 39.56 26.30 | 51.78 53.64 53.86 18.16 28.39 | 50.73
CD—W | 3492 | 48.14 | 65.76 | 50.85 60.34 29.83 | 59.32 59.03 60.68 22.37 30.17 | 59.32
CW—A | 2443 | 3570 | 39.25 | 45.20 41.02 30.06 | 50.63 51.59 54.70 15.76 30.90 | 52.19
CW—D | 47.13 | 66.24 | 7898 | 52.23 73.89 38.22 | 67.52 67.94 66.24 18.47 40.13 | 69.43
DW—A | 29.23 | 35.80 | 38.10 | 34.24 32.99 37.89 | 36.43 31.33 37.06 15.55 37.79 | 35.07
DW—C | 2547 | 28.58 | 3045 | 31.26 29.92 33.57 | 31.61 30.77 34.46 15.23 33.57 | 31.52
Average 3497 | 44.04 | 50.05 | 45.00 46.55 31.22 | 50.99 50.19 52.35 18.42 3246 | 50.39

images from Amazon. Then the histograms are standardized

by z-score. In sum, we have four domains: A (Amazon),

D (DSLR), W (Webcam) and C (Caltech-256). By randomly

selecting two different domains as the source domain and tar-

get domain respectively, we construct 12 cross-domain object

data sets, e.g., A > D, A - W, A —> C,---,C — W. The

experimental results are shown in Table V. Our method obtains

the best average classification accuracy. Fig. 7. Starting from the top, each row shows images from subsets 1, 2, 3,

To evaluate the classification performance of different meth-
ods, we conduct the experiments of multiple sources domains
vs single target domain on the Office and Caltech 256 data
sets. We randomly select two subsets as the source domain
and a single data set as the target domain. Thus, we also
construct 12 cross-domain object data sets, e.g., AC — D,
AC — W,..- ,DW — C. The experimental results are
shown in Table VI. Our method also obtains good classifi-
cation accuracies.

E. Experiments on the Extended YaleB Data Set

The extended Yale B database consists of 2,414 frontal
face samples of 38 persons under various illumina-
tion conditions and each image has the resolution of
32x32 pixels (http://www.cad.zju.edu.cn/home/dengcai/Data/
FaceData.html). Following [42], we divided the database
into five subsets (see Fig.7). Subset 1 contains 266 images
(seven images per subject) under normal lighting conditions.

4, and 5, respectively.

Subsets 2 and 3, each consisting of 12 images per subject,
characterize slight-to-moderate luminance variations, whereas
subset 4 (14 images per person) and subset 5 (19 images per
person) depict severe light variations. We briefly name these
subsets as Y1, Y2, - - -, Y5 respectively. By randomly selecting
two different subsets as the source domain and target domain
respectively, 20 cross-domain data sets, e.g., Y1 vs Y2, Y1
vs Y3, Y1 vs Y4, Y1 vs Y5, ---, Y5 vs Y4 are constructed.
In the way, each cross-domain follows significantly different
distributions. Since the Extended Yale B data set contains lots
of data subsets, we only use the NN classifier to perform
classification in order to reduce the computation cost. The
experimental results are shown in Table VII. Please note
that the “NN” in this table denotes that the NN classifier is
performed on the original data. It can be seen that our method
performs better than the other methods in the most cases.
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TABLE VII
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE EXTENDED YALE B DATA SET

[ Dataset | NN* | PCA | GFK | TSL | RDALR | LISL | Our |
YI—Y2 [ 9892 [ 9892 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
Y1-Y3 | 87.90 | 87.90 | 89.52 | 84.68 | 7554 | 9839 | 100.00
Y1-Y4 | 27.65 | 27.65 | 30.88 | 2281 | 13.82 | 31.80 | 74.89
Y1—Y5 | 1460 | 1460 | 1596 | 8.49 6.11 407 | 2428
Y2-Y1 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
Y2-Y3 | 9973 | 9973 | 9973 | 97.85 | 9032 | 9624 | 99.73
Y25Y4 | 7465 | 7465 | 7673 | 4747 | 2442 | 3387 | 78.80
Y2-Y5 | 3090 | 3090 | 3345 | 13.41 7.98 526 | 26.15
Y3—-Y1 | 99.08 | 99.08 | 98.62 | 100.00 | 80.18 | 100.00 | 100.00
Y3-Y2 | 9973 | 9973 | 100.00 | 100.00 | 92.74 | 100.00 | 100.00
Y3-Y4 | 9631 | 96.54 | 97.00 | 8341 | 8410 | 87.79 | 95.62
Y3-Y5 | 5857 | 5857 | 6027 | 41.09 | 2564 | 21.05 | 47.88
Y4—Y1 | 8249 | 8249 | 8249 | 9770 | 783 | 99.54 | 99.54
Y4—Y2 | 9355 | 9355 | 9435 | 9731 | 2608 | 100.00 | 99.73
Y4—Y3 | 93.55 | 9355 | 93.82 | 9892 | 8548 | 99.46 | 98.66
Y4—Y5 | 79.63 | 79.63 | 7997 | 84.55 | 64.86 | 5552 | 91.68
Y5—Y1 | 3687 | 3733 | 3733 | 3733 | 2258 | 94.01 | 49.77
Y5—Y2 | 4624 | 4624 | 5000 | 41.67 | 833 | 8844 | 54.03
Y5—Y3 | 6532 | 6532 | 68.82 | 5538 | 2796 | 9382 | 73.12
Y5—Y4 | 8848 | 8848 | 8871 | 78.80 | 8340 | 9470 | 95.62
Average | 73.71 | 7374 | 7488 | 6954 | 5137 | 7520 | 80.47
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Some statistics of classification performance of different methods on all 68 cross domains data sets (a, b)
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Office and Caltech-256 data sets (c, d). Please note that the results in Table VIII are not considered in this figure.

FE. Discussion

In this section, we first discuss six methods that are con-
ducted to perform classification on 68 cross domains data sets
(The discussions of the experimental results with the NN and
SVM classifiers are similar. For the sake of discussion, we
discuss only the experimental results with the NN classifier.).
Then, some conclusions are given. We assume that for each
method the classification accuracies on various cross domain
data sets can be clustered around some central value, thus we
evaluate the classification performance of each method by the
digital features of the distribution of their accuracies.

The results of digital features are visualized in Fig. 8 for
better interpretation. The box-and-whisker plots of accura-
cies performed on all 68 cross domain data sets is show
in Fig. 8 (a). For each method, the median value of the
classification accuracies is marked by a horizon bar in the box,
and the box in the box-and-whisker plot contains the middle
half of the accuracies. As shown in Fig. 8 (a), our method
outperforms the other methods with statistical significance.
The median classification accuracy of our method on all data
sets is about 57%, and the improvement of accuracy is 11%
in comparison with the second best method TSL. The mean
classification accuracy and standard deviations are illustrated

in Fig. 8 (b). We can see that the mean classification accuracy
of our method on all data sets is 63%, and the improvement
of accuracy is 9% compared the second best method TSL.
Moreover, The standard deviation of the accuracies of our
method is 23%, which is less than the other methods by 1%
at least, which indicates that our method is more stable than
the other methods.

The box-and-whisker plots and mean classification
accuracies on all cross domain data sets using Office and
Caltech-256 databses (both of single and double source
domains) are respectively shown in Fig. 8 (c¢) and (d),
respectively. We can see that for each method the mean
classification accuracy in double source domains scenario is
higher than that in single source domain. The improvements
of mean classification accuracies of GFK and RDALR are
more remarkable and the mean classification accuracy of
GFK is less than that of our method.

Based on these statistical information and the experimental
results in all the tables, we have the following conclusions:

(1) For the face recognition application, it can be seen
from both Tables IV and VII that our method outperforms
traditional subspace learning method PCA and some transfer
learning methods, i.e., GFK, TSL, TCA RDALR and LTAL
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in most cases. We also note that RDALR method perform
worse than the other methods. The reasons are twofold.
First, in RDALR, the source domain data are strictly
transformed to the target domain which can provide less
flexibility than that in some subspaces. In practice, RDALR
cannot find a good alignment of these two data sets since
the data of different subjects may be overlap each other
when they are transformed into the target domain. In this
way, the classification performance of RDALR is worse
(see Table VII). Second, although RDALR can transform the
data into a low-dimensional space by using some subspace
learning methods, the two independent steps of RDALR
cannot guarantee a good alignment. Although LTSL uses the
low-rank constraint to ensure a good alignment, the local
structure of data may be lost and thus the local reconstruction
may be not guaranteed. In contrast, in our method the use of
the low-rank and sparse constraints not only can ensure a good
alignment but also can effectively preserve the local structure
of data which makes related samples interlace well. Thus, our
method almost performs better than LTSL in our experiments.

Generally, performance of an algorithm is data set depen-
dent. Experiment results in Table III show that the classifica-
tion results obtained using SVM are usually better than those
obtained using NN. This indicates that for these two data sets
the transformation results (obtained features) are more suitable
for SVM than NN on these two data sets. This is verified by
the fact that the average classification accuracy of SVM is
higher than that of NN.

(2) On standard domain adaptation benchmark data sets
(Office, Caltech-256) and object image data set (COIL 20),
our method also obtains good classification results. We note
that the mean classification accuracy of GFK is similar to that
of our method on the double source domains setting. Two key
factors may contribute to the good classification performance
for GFK: 1) the domain shift between these two domains can
be well modeled by using the kernel that integrates all the
subspaces along the flow. 2) the label is integrated into the
source domain by using a discriminative subspace. However,
in the single source domain settings (including Office,
Caltech-256 and COIL20 data sets), the classification perfor-
mance of GFK is more worse than that of LTSL. This is partly
because there are less samples in the source domain so that
the less discriminative information is exploited which makes
it very difficult to accurately classify the samples in the target
domain.

We also note that on the experiments of multiple source
domains vs single target domain (see Table VI), our method
underperforms the comparisons in many cases. This is partly
because when we use multiple source domains, there is
more dissimilarity between the source and target domains.
To enlarge the margins between different classes as much as
possible, our method is easy to excessively fit the labels of the
transformation results of the source domain data due to the use
of slack variables. In this way, the source and target domains
cannot be interlaced well due to excessively pursuing large
margins. Thus, although we obtain large margins between dif-
ferent classes for the transformation results of source domain
data, the obtained classifier cannot accurately classify the
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Fig. 10. Visualization of obtained reconstruction coefficient matrices Z in
different experiments.

transformation results of target domain data due to the large
divergence between them. In other words, the training samples
and testing samples cannot be matched well in this case.

(3) Our method performs better than all the compared
methods in terms of average classification accuracy, which
indicates that our method is more general than the other
methods.

G. Verification

In this section, three experiments will be designed to com-
pare the proposed method with its three variants. To save the
limited space, only the NN classifier is selected to perform
classification on the Office, Caltech-256 data sets in these
experiments.

The goal of the first two experiments is to evaluate whether
the joint low-rank and sparse representation really boost the
classification performance. To achieve this goal, the first exper-
iment is designed for testing only the sparse representation and
the second experiment is designed for testing only the low-rank
representation. Specifically, the objective function of the first
experiment is as follows

min
P,Z,E
st. PTX, = PTX,Z+E,

1
§¢(P, Y, Xs) +alZlly + BIEN

2
p=IIP"X;—(Y+BOM|F, M>=0 (28)
The objective function of the second experiment is
1
in —¢(P,Y, X zZ E
PlflzlflE 245( Y, X)) + 1 Z1« + BIEI,
st. PTX, = PTX,Z + E,
2
p=IP"X;—(Y+BOM|r, M>=0 (29)
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TABLE VIII

CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS
ON THE OFFICE, CALTECH-256 DATA SETS

Dataset [ Sparse | Low-rank | No-slack | Our |

C—A 51.16 51.25 49.16 51.25
C—W 37.63 36.95 38.58 38.64
C—D 47.13 45.86 45.86 47.13
A—C 43.19 43.37 42.39 43.37
A—-W 35.93 34.58 36.27 36.61
A—D 38.85 38.22 38.85 38.85
W—=C 29.30 29.39 29.30 29.83
W—A 34.13 34.03 34.13 34.13
W—=D 82.17 82.17 80.25 82.80
D—C 31.52 31.08 31.61 31.61
D—A 33.40 33.46 32.67 33.19
D—-W 77.17 76.61 75.93 77.29

The goal of the third experiment is to evaluate whether
the slack variables really work better than the standard linear
regression. Therefore, in this experiment we use the linear
regression to replace the slack variables. The objective func-
tion of the third experiment is

min
P,Z,E

2
st. PTIX, = PTX,Z+ E.¢ = |PTX, — Y|

1
§¢(P, Y, Xs) + 1 ZIl« + el ZIly + BIEN,
(30)

The experiment results are shown in Table VIII in which
“Sparse” corresponds to the first experiment, “Low-rank”
corresponds to the second experiment and “No slack”
corresponds to the third experiment. Fig. 9 gives the
corresponding mean of the classification accuracies. It can
be seen that our method performs the best. This indicates
that 1) joint low-rank and sparse representation can boost
the classification accuracy; 2) the use of slack variables can
improve the classification accuracy.

Fig. 10 gives the visualization of learned matrices Z in
different experiments. It is obvious that matrices Z learned
by the first and second experiments are sparse and low-rank,
respectively. Matrix Z learned by our method is low-rank
and sparse which means that although we use two auxiliary
variables Z; and Z, in our method, the algorithm eventually
satisfies constraints Z; = Z and Z, = Z after convergence.
This is consistent with the motivation of our method. In other
words, we eventually obtain a low-rank and sparse reconstruc-
tion coefficient matrix by imposing joint low-rank and sparse
constraints, which further confirms the effectiveness of our
optimization algorithm.

=
53
o

0 20 80 20 80 100

40 60 40 60
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Convergence (red line) and classification classification accuracy (%) (blue line) curves on the selected four cross domains data sets.

H. Convergence and Parameter Sensitivity Analysis

We empirically show the convergence property and parame-
ter sensitivity of our method by running our method with the
NN classifier on 4 data sets, including MSRC vs VOC, PIE1
vs PIE3, Amazon vs Webcam, and the subset 1 vs subset 5
(Extended Yale B).

1) Convergence: We run our method on these data sets
for 100 steps of iterations, and plot the convergence curves
of objective function values and classification accuracies with
respect to the number of iterations in Fig. 11.

Generally speaking, the objective function value decreases
as the number of iterations increases. On the data sets Subset]
vs SubsetS (Extended Yale B), the objective value has a
violent vibration. This phenomenon can be interpreted as
the consequence of the inexact solution of (12), i.e., the
exact solution is permutated a little in our method by adding
a Tikhonov regularization A/ to the inverse of the matrix
X XST—i— u GQGE. In fact, when A is larger the vibration is more
violent. But eventually, the objective value decreases steadily
as the iteration goes on. This indicates that our method has a
good convergence property.

The curves of classification accuracies of our method on
four data sets make up of two slightly different types. The
curves of classification accuracies on face image data sets,
such as PIE1 vs PIE3 and Subsetl vs Subset5 (Extended
Yale B), go up steadily as the number of iterations increases,
and finally reach an stabilization. However, the curves of
classification accuracies on object image data sets, such as
MSRC vs VOC and Amazon vs Webcam, go up dramatically
during the first few steps of the iteration, and then vibrate
about a high level. This remarkable difference is due to the
fact that on object image data sets the transfer learning task
is more challenging than the tasks on face image database
since the the face images in source and target domains share
more similarity. Thus, the transfer learning task is more
stable in face image data sets. However, the classification
accuracies finally reach a summit, which also confirms that
the convergence property of our method is good from another
respect.

2) Parameter Sensitivity: There are two parameters
o and f in our objective function. Both of them control
{1-regularization terms. Theoretically, a large value of a or
f can make soft-thresholding more important in our method,
but we will show that both o and S have slight effects on
the classification performance of our method as long as their
values are within a feasible range.
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To demonstrate the effects of these parameters, we
evaluate different combinations of these values selected
from a reasonable discrete set S {le73,5¢73, 172,
5¢72,0.1,0.5,1, 5, 10} on four cross domains data sets. The
classification accuracies of each combination of parameter val-
ues are shown in Fig. 12. It can be seen that the classification
accuracies are roughly consistent over a wide range of values
of the parameters. Especially, on the object image data sets
MSRC vs VOC and Amazon vs Webcam the variation ranges
of classification accuracy are more smaller, i.e., 4% and 1%
on the Amazon vs Webcam and MSRC vs VOC, respectively.
This means that the classification performance of our method
is very robust to different settings provided the parameters are
set in a feasible range. Thus, it is a easy job to select a suitable
parameter combination for our method.

V. CONCLUSION

In this paper, we propose a novel transfer subspace learning
method. We cast the transfer subspace learning problem as a
sparse and low-rank minimization problem and solve it by
the classical augmented Lagrangian method. The low-rank
and sparse constraints are used to connect the source and
target domains in the common subspace in which the disparity
between these two domains is greatly reduced. The effects
of low-rank and sparse constraints are two-fold. First, the
low-rank constraint can guarantee that the knowledge can be
transferred when the data in these two domains are aligned.
Second, the sparse constraint can ensure a reconstruction of
neighborhood to neighborhood, which is useful to exploit the
local structure of data in these two domains. The label relaxed
linear regression classifier learned by relaxing the strict binary
label matrix into a slack variable matrix can provide more
freedom to fit labels of training samples and to minimize the
divergence between the distributions of both domains as much
as possible. The computational complexity and convergence
of our method are carefully analyzed. Extensive experimental
results show that our method outperforms some state-of-art
methods in most of scenarios. In the future, we will extend
our method to semi-supervised scenarios.
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