

WISE-Integrator: An Automatic Integrator of Web
Search Interfaces for E-Commerce

Hai He, Weiyi Meng

Dept. of Computer Science
SUNY at Binghamton

Binghamton, NY 13902
{haihe,meng}@cs.binghamton.edu

Clement Yu

Dept. of Computer Science
Univ. of Illinois at Chicago

Chicago, IL 60607
yu@cs.uic.edu

Zonghuan Wu

Center for Adv. Compu. Studies
Univ. of Louisiana at Lafayette

Lafayette, LA 70504
zwu@cacs.louisiana.edu

Abstract

More and more databases are becoming Web
accessible through form-based search interfaces,
and many of these sources are E-commerce sites.
Providing a unified access to multiple E-
commerce search engines selling similar products
is of great importance in allowing users to search
and compare products from multiple sites with
ease. One key task for providing such a capability
is to integrate the Web interfaces of these E-
commerce search engines so that user queries can
be submitted against the integrated interface.
Currently, integrating such search interfaces is
carried out either manually or semi-automatically,
which is inefficient and difficult to maintain. In
this paper, we present WISE-Integrator - a tool
that performs automatic integration of Web
Interfaces of Search Engines. WISE-Integrator
employs sophisticated techniques to identify
matching attributes from different search
interfaces for integration. It also resolves domain
differences of matching attributes. Our
experimental results based on 20 and 50 interfaces
in two different domains indicate that WISE-
Integrator can achieve high attribute matching
accuracy and can produce high-quality integrated
search interfaces without human interactions.

1. Introduction
More and more databases are becoming Web accessible
through form-based search interfaces. Among these web

sources, E-commerce search engines (ESEs) account for a
large proportion. It is of great importance to provide a
unified access to multiple ESEs selling similar products
because this would allow users to search and compare
products from multiple sites with ease. In this paper, we
call a system that supports unified access to multiple
ESEs as an E-commerce metasearch engine (EMSE for
short). Currently, there are a number of EMSEs on the
Internet, such as www.addall.com, www.mysimon.com,
www.cnet.com, and www.dealtime.com. However, their
techniques are not publicly available. To the best of our
knowledge, most existing EMSEs are built manually or
semi-automatically. Furthermore, as ESEs operate
autonomously, changes/upgrades to them may affect the
operation of the EMSE. As a result, maintaining the
operation of an EMSE is a costly long-term effort.

Our E-Metabase project aims to automate the process
of building large-scale EMSEs so as to significantly
reduce the cost of building and maintaining EMSEs. This
project consists of a number of components. First, a
special crawler is used to crawl the Web and identify
ESEs from the fetched Web pages. Second, the found
ESEs are clustered into different groups such that ESEs in
the same group sell the same type of products (i.e., in the
same domain). Third, the interfaces of the ESEs in the
same group are integrated into a unified interface that
becomes the interface of the EMSE for this group. Fourth,
a global query submitted to the EMSE is mapped to
queries for the underlying ESEs. Fifth, a component that
is responsible for connecting to each ESE is built so that a
query can be passed to and results can be returned back
from each ESE. Sixth, information of every product
returned by each ESE needs to be correctly extracted from
the returned result pages by an information extraction
program. Finally, the extracted results from different
ESEs need to be filtered according to the global query and
then combined into a single list for presentation to the
user based on some desired features, say price. WISE-
Integrator is designed to automate the interface
integration step. In this paper, we present our techniques
used to build WISE-Integrator. WISE-Integrator is
applied to each group of ESEs to produce an integrated

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

interface for this group of ESEs. Without loss of
generality, in this paper, we assume that all ESEs under
consideration are in the same product domain. (Our
techniques for clustering ESEs can be found in [PMH03])

This paper has the following contributions. First, we
provide a comprehensive solution to the interface
integration problem. Interface integration includes schema
integration, attribute value merging, format integration
and layout generation of global attributes in the global
(integrated) interface. In contrast, related existing works
deal with only schema integration (see Section 2). Second,
we propose an automated solution for interface
integration using only general (i.e., domain-independent)
knowledge. Most existing works employ manual or semi-
automatic techniques. One of the key issues in interface
integration is to identify matching attributes from
different interfaces and we propose a clustering and
weight-based two-step method to tackle this problem.
Furthermore, this method also solves a rarely addressed
issue, i.e., finding appropriate names for attributes in the
global interface automatically. Our experimental results
based on 20 and 50 interfaces in two different domains
indicate that WISE-Integrator can achieve high attribute
matching accuracy and can produce high-quality
integrated search interfaces without human interactions.

The rest of this paper is organized as follows. Section
2 briefly reviews previous research works related to our
work. Section 3 discusses interface representation used by
WISE-Integrator. In Section 4, we present our method for
matching attributes. In Section 5, we discuss merging
attribute domains. In Section 6, we discuss global
interface construction. Experimental results are reported
in Section 7. Section 8 concludes the paper.

2. Related work
A thorough survey of approaches for automatic schema
matching can be found in [RB01]. [GKD97] predefines
the mapping rules for each attribute and assembles these
rules into a knowledge base for interpretation when a
query is handled. [LRO96] uses a world view to represent
all sources but it does not discuss how to construct the
world view automatically. [DEW96] predefines each
domain description that includes information about
product attributes, and then uses some heuristics and
mapping functions for the fields of each search interface
but it does not provide much detail about user interface.
[BBB01, BCV01] use Description Logics, Common
Thesaurus and clustering techniques for semantic schema
integration. WordNet [WDNT] is also used to identify
semantic relationships between schema terms. This is a
semi-automatic approach as the integration process still
involves human interaction. Furthermore, the approach
used for matching attributes is mainly based on name
affinity and structure affinity, and only a few metadata
(such as key, foreign key) of schemas are used. [LC00]
uses neural network techniques and focuses on utilizing

both schema level and data contents level metadata to
automatically identify matching attributes. Our approach
has adopted some ideas from [LC00] but there are
significant differences (see Section 4.3 for more
comparison with [LC00]). [MBR01] investigates
algorithms for generic schema matching. It combines a
number of past techniques, such as linguistic-based
matching and some metadata of schemas. It proposes
structure-matching algorithms for hierarchy schemas (tree
structures) in which a structural similarity is computed
between each pair of schema elements. However, how a
global schema is obtained is not discussed. [DDH01] uses
and extends machine-learning techniques to semi-
automatically find mappings between source schemas and
the mediated schema. This approach needs human users
to manually construct the semantic mappings between a
small set of data sources (training) and the mediated
schema. [HC03] uses a statistical approach for schema
integration of query interfaces of the deep web. It argues
that as the Web sources proliferate the aggregate schema
vocabulary of sources in the same domain tends to
stabilize at a relatively small size, and that underlying
these sources, there exists a unified hidden schema model.
Then it uses statistical probability and goes through three
steps (hypothesis modeling, generation and selection) to
obtain the hidden schema model. It uses only attribute
names for statistics, and it does not apply other schema
information such as domain type, default value and
attribute values which, we find, based on our experiments,
to be very effective in interface integration. It is not clear
how semantic relationships between names (such as
synonymy and hypernymy) are obtained in this work. In
addition, it discusses only schema integration, but not
attribute merging and global interface generation.
[MGR02] uses the idea of IP packet flooding to flood the
similarity of elements. It converts each schema into a
directed labeled graph. On the basis of the graph model, a
part of the similarity of two elements propagates to their
respective neighbors. The similarity flooding algorithm
terminates after a fix point is reached and some filters are
used to get a subset of the result mapping. No linguistic
name matching is done beyond utilizing a simple string
matcher to compare common prefixes and suffixes of
literals. This approach is not suitable for search interfaces
because name matching plays an important role in the
integration of search interfaces. [DR02] discusses
combining different matching algorithms in a flexible
way and supports different ways to combine match results.
In [DR02], schemas are represented as rooted directed
acyclic graphs. It maintains a matcher library for simple
matchers such as approximate string matcher, synonym
matcher, data type matcher and hybrid matchers (e.g.
name matcher and structural matchers). It uses data type
but not other schema and domain information to help find
matches.

The main difference between our work and existing
works is that we aim to perform comprehensive interface

integration automatically while others perform only
schema integration, employing mostly manual or semi-
automatic techniques. There are basically no published
work, to the best of our knowledge, on automatic attribute
value merging, format integration and layout generation.
Furthermore, compared with other approaches for Web
sources integration, we utilize a richer set of schema and
domain information to find matching attributes and we
utilize the information differently (see Section 4).

3. Interface representation
A search interface for E-commerce is usually presented
through an HTML form in a Web page [HTL4]. It may
contain elements such as text box, radio button, check box
and selection list, and each element usually has a label
(descriptive text) associated with it. Users fill out the form
and then submit the filled form as a query through the
browser to the remote server. The server then returns to
users the results that satisfy the query conditions. In
general, much useful information is embedded in the
HTML source file of each local interface and such
information needs to be extracted for interface integration.
In this paper, we do not discuss how to extract the needed
information (some related work can be found in [RGM01,
DEW96], and our work on this will be reported in another
paper). Instead, we focus on what information should be
used to represent each search interface for the purpose of
interface integration.

Each local ESE interface can be conceptually viewed
as a partial export relational schema of the underlying
product database. In our interface representation, each
label is considered as the name of an attribute of the
underlying products. Each attribute has one or more
associated elements. Each element has a format which is
the input format of the element. There are generally four
types of formats: text box, radio button, check box and
selection list. Each element also has a domain that
defines the set of values that can be used to instantiate the
element when forming a query. Text box allows users to
input whatever value they want and thus the
corresponding domain can be considered to be infinite. A
selection list provides a finite number of pre-determined
values for users to select while a check box and radio
button have one associated value. These three formats
thus have a finite domain. Often multiple check boxes or
multiple radio buttons are used together to accomplish the
same function as a selection list. In addition, each element
or a group of elements may have its or their default value,
which is used to help forming a query when a user does
not make a different selection. For each attribute, there is
a type for its values. Six value types are considered and
they are date, time, currency, number, char and id. The id
type indicates that the attribute is used for identification
purpose (e.g., product number, order number). The type
information can be obtained through analyzing attribute
name (containing date, time, price etc.) and the pattern or

format of attribute values (that are viewable on the
interface). For example, $300 for currency and 3:00PM
for time. When the value type is difficult to determine, a
default value type, i.e., char, is used. Whenever possible,
the scale/unit of the attribute values is also extracted. For
example, all values with US$ are considered to have the
same unit but US$ and CAN$ have different units even
though they are both of currency value type. Finally, each
attribute has its layout position in the interface. The
position value is determined by the layout order of
attributes in an interface. More important attributes are
usually arranged ahead of less important ones.

In addition to the label of an attribute, each element of
the attribute may have its own label. For example, in
Figure 1, attribute “publication year” has two text box
elements with their own labels “after” and “before”,
respectively. Such label helps define the semantic
meaning of the element.

When an attribute has multiple elements, these
elements are related in some way. We identify the
following four relationship types among related elements
based on our observations.
� Range type: It refers to the situation where two or

more elements are used to specify the range
semantics for an attribute. For example, in Figure 1,
the “price range” has two related elements indicating
the minimum and the maximum values allowed.

� Part type: It refers to the part-of relationship. For
example, in Figure 1, “author” has two elements
“first name” and “last name” and each of them is part
of “author”. Range type is a special case of part type.

� Group type: Multiple check boxes/radio buttons are
sometimes used together to form a single semantic
concept (attribute). In this case, the labels associated
with the check boxes/radio buttons are values of the
attribute. In Figure 1, attribute “Platform” has a group
of check boxes.

� Constraint type: An element can be used as a
constraint for another element. For example, for a
text input box, a check box may be used to specify
whether or not the input is case sensitive. In this case,
the check box is meaningless without being related to
the text input box.

Figure 1: Examples of element relationship type

To summarize, in our approach, each attribute A is
represented as A = (N, P, DT, DF, VT, SU, ES, R), where
N is the name (label) of A, P is the layout position of A,
DT is the domain type of A, DF is the default value of A
(possibly null and there is at most one default value for
each group of check boxes and radio buttons),VT is the
value type of A, SU is the scale/unit of A, ES is the set of
elements associated with A and R is the relationship type
between the elements in ES. For example, for attribute
“Price Range” in Figure 1, its ES contains two text box
elements labeled “between US$” and “and US$”, and
their relationship type is “range type”. If ES contains only
one element, then R is null. Each element E in ES is itself
represented as a quadruplet E(L, F, V, DV), where L is its
label (possibly empty), F is the format, V is the set of
values (for finite domain type of elements only), and DV
is the default value of the element (possibly null).

4. Matching attributes
In this section, we present our method for matching
attributes from multiple local interfaces.

4.1 Semantic relationships

Semantic relationships between concepts or objects are
very important in the database schema integration and
Web source integration. In our approach, we identify the
following three semantic relationships between terms
(attribute names or element’s values): Synonymy,
Hypernymy/Hyponymy and Meronymy [M95, WDNT,
BCV01, BBB01]. Given a term, we use WordNet [M95,
WDNT] to get its synonyms, hypernyms and meronyms,
if applicable.
� Synonymy. Term T1 is a synonym of term T2, denoted

by S(T1,T2), if T1 is in the synonym-set of T2.
� Hypernymy/Hyponymy. Term T1 is a hypernymy of

term T2, denoted by H(T1,T2), if T1 is more generic
than T2. For example, H(tree, maple) and H(format,
hardcover).

� Meronymy. Term T1 is a meronym of term T2,
denoted by M(T1,T2), if T1 is a part of T2. For example,
M(first name, name) and M(last name, name).

However, hypernymy and meronymy terms that can
be found from WordNet are very limited. In WISE-
Integrator, we also identify hypernymy and meronymy
relationships of two terms using the information in the
interface representations. For example, suppose we have
two interfaces, one has a “hardcover” attribute and the
other has a “format” attribute that contains a value
“hardcover”. From this, we can identify the hypernymy
between the two attributes: H(format, hardcover). For
meronymy, we use the part relationship of elements. For
example, if a search interface contains an “author”
attribute that has two parts: “first name” and “last name”,
we can say M(first name, author) and M(last name,
author). Other interfaces that contain “first name” or “last
name” without “author” can use the relationship to match.

4.2 Normalization

Before integration, attribute names and element values are
normalized as follows to reduce mismatches.
� Convert each name or value string to lower case

equivalents.
� Remove all content in parentheses, including

parentheses.
� Replace all characters that are not alphanumeric with

a space character.
� Tokenize each string using space, replace

abbreviation and acronym (if any) [MBR01] and use
WordNet to get the base form of each token.

� Remove stop words when a name or a value consists
of multiple words.

4.3 Merging attributes

Merging attributes has two tasks: one is to find the
matching attributes from search interfaces to be integrated,
and the other is to determine what global attribute name
should be used for each group of matching attributes. To
the best of our knowledge, no in-depth discussion of the
second task has been reported in the literature.

The SEMINT approach in [LC00] utilizes and extends
the metadata characteristics in [LNE89] to determine
matching attributes. SEMINT introduces three levels of
metadata that can be used: attribute names (the dictionary
level), field specification (the schema level, e.g., data type
and primary key) and attribute values and patterns (data
content level). SEMINT just focuses on using the
metadata at the schema level and data content level to
determine attribute correspondences. It describes 20
characteristics at the two levels, such as data length, data
type, nullable, primary key, default scale, minimum,
maximum, average and so on. We adopt the basic idea of
the SEMINT approach for the attribute-matching task in
the sense we also use metadata characteristics in multiple
levels. Our approach differs from the SEMINT approach
in four aspects. First, the set of characteristics used is
different. For example, primary key information and
maximum value are readily available in a database
context but they are not available for interface integration.
On the other hand, information such as element format
applies to only interface integration. Second, we utilize all
three levels of metadata instead of just two. Third, we
classify matches based on different metadata into positive
matches and predictive matches (see below). Fourth,
SEMINT uses neural network techniques but we don’t.
Furthermore, the SEMINT approach does not address the
second task of merging attributes.

As mentioned above, in our approach, we use the three
levels of metadata to determine matching attributes. At
the dictionary level, we explore six possible matches on
attribute names: exact match, approximate string match
[WM92], vector space similarity match [FB92] (see
section 4.3.2), synonymy match, hypernymy match and
meronymy match. At the schema level, scale, value type,

domain type, default value and Boolean property are used.
At the data content level, we focus on comparing values
in the elements.

In our approach, we classify the different matches into
two types: positive matches and predictive matches.
positive matches include exact name match, semantic
(synonymy, hypernymy and meronymy) matches and
value-based match. For value-based match, we employ
exact match, approximate string match, synonymy match
and hypernymy match to compare values. When enough
values from the two attributes are matched (a threshold is
used), value-based match is recognized as succeeded.
When one of the positive matches occurs during our
integration process, the corresponding attributes are
recognized as matched. Predictive matches consist of
approximate name match, vector space similarity match
of names, and matches based on scale, domain type, value
type, default value, Boolean property and value pattern.
Predictive matches must be sufficiently strong (based on a
weight threshold) for two attributes to be recognized as
matched.

Our approach for accomplishing the two tasks of
merging attributes is described in the next two subsections.

4.3.1 Clustering (positive match)

This is to group attributes into clusters based on the
positive matches between attributes. This step considers
all interfaces. There are three steps for the clustering:

� Group attributes into clusters based on the exact
match of attribute names in all interfaces of the same
domain. Thus, after this step, all attributes in the
same cluster have the same attribute name. For each
distinct attribute name, the number of interfaces
having the attribute is counted. Values of all
attributes in each cluster, if any, are unioned.

� Merge the clusters produced in the first step based on
the matching of values in each cluster and the
semantic (synonymy, hypernymy and meronymy)
matches of attribute names. New clusters are
generated in this step.

� Determine the representative attribute name of each
cluster produced in the second step. This attribute
name is a candidate to be the global attribute name to
which other attributes in the cluster are mapped.

To determine the representative attribute name of each
cluster, generally we employ the majority rule. In other
words, the attribute name that appears in most interfaces
in a cluster would be chosen as the representative attribute
name of the cluster. However, we also consider the
semantic relationships among attribute names in the
cluster. For example, if a cluster contains four different
attribute names: “format”, “binding type” “hardcover”
and “paperback”, we do not choose “hardcover” or
“paperback” as the representative name of the cluster
even if they appear in more interfaces. The reason is that

“hardcover” or “paperback” is a kind of “format” or
“binding type”. Therefore, during the clustering we build
hypernymy hierarchy trees for attribute names in the
cluster. We then choose the representative attribute name
among the roots using the majority rule. For the previous
example, we just need to compare the number of
occurrences between “format” and “binding type”.
 In our approach, the clustering step does preliminary
attribute matching and representative attribute
identification. The step just collects the knowledge about
what attributes should be matched based on the positive
information. No intermediate integrated interface is yet
constructed after this step. There are several reasons to
perform clustering. First, count the number of interfaces
an attribute name appears in; this information is important
for determining the global attribute names. Second,
determine the representative attribute name of one cluster
in advance. Third, make sure that attributes that should be
matched (based on positive matches) are matched
together. This can simplify the comparisons in the weight-
based match step and avoid mismatches. Our experiments
indicate that this two-step approach is effective.

4.3.2 Weight-based match (predictive match)

This step is to utilize the knowledge obtained in the first
step and the predictive matches to construct the integrated
interface and finalize the global attribute names.

Initially, there is no intermediate integrated interface.
In this case, given a local interface, our approach takes an
attribute in it and looks up the representative attribute
name of the cluster in which the attribute appears. Then
the representative attribute name is added to the
intermediate interface (it is empty initially) as the global
attribute name. These two operations are repeated until all
attributes in the local interface are handled. The global
attribute names may be adjusted later.

 Once the first intermediate interface is generated,
weight-based match begins to work. First, we present the
definition of weight-based match as follows:
 Definition: Given an integrated intermediate
interface I ={AI

1 , AI
2 , AI

3 ,…, AI
n } and a local interface

L={ AL
1 , AL

2 , AL
3 ,…, AL

m
 }, where AI

i is an attribute of I,
AL

j is an attribute of L, the mapped attribute in I for an
attribute AL

j is the one with the highest weight:
,,...,,...,, ,),(),(kin1n, k1iwAAWAAW I

k
L
j

I
i

L
j ≠==>>

where W(L
jA , I

iA) is the weight of attributes L
jA and

I
iA , w is the weight threshold.
In our approach, the weight-based match computes the

matching weight between two attributes and then predicts
whether the two attributes are matched based on the
weight. The weight between attributes L

jA and I
iA can

be computed based on the following metrics (predictive
matches):

1. Approximate string match
Compare the two attribute names to find out if the
edit-distance between the two strings is within the
allowed threshold. We use an approximate string-
match algorithm [WM92] to find the match. If the
edit-distance is within the allowed threshold T, assign
a positive weight Wam; otherwise Wam is 0.

2. Vector space similarity
The vector space similarity is the similarity between
two text strings based on the Vector Space Model
[FB92]. The approach is also used in [Coh98]. We
tokenize each string and get the term frequency of
each term in each string. The weight of this metric is
the Cosine similarity of two strings.

∑∑

∑

==

=

⋅

⋅
=

m

j

m

j

j
jj

wv

wv
wv

jj

,Wvss

1

2

1

2

m

1

)()(
)(

where m is the number of unique terms in the two
strings, wj is the term frequency of the jth term in
attribute string w and vj is the term frequency of the
jth term in attribute string v.

3. Compatible domain
We consider four domain types: finite, infinite, hybrid
and range. The domain type of an attribute is derived
from its associated element(s). If the element(s) of
the attribute has the range semantics, the domain type
of the attribute is range. Hybrid is the combination of
finite and infinite. If an attribute domain is hybrid,
users can either select from a list of pre-compiled
values or fill in a new value. In our approach, the
hybrid type is only limited to the intermediate
interface and the global interface. Hybrid is
compatible with finite and infinite; the same types are
compatible. If two attributes have compatible domain
types, assign a weight Wcd; otherwise Wcd is 0. In
addition, we observed that range type is used much
less often than finite and infinite types. Thus, if two
attributes have range domain type, we double Wcd.

4. Value type match
As mentioned in Section 3, we consider six value
types: date, time, currency, number, char and id. If
two attributes have the same value type, assign a
weight Wvtm; otherwise Wvtm is 0

5. Scale/unit match
Consider two attributes that have the same value type.
If they also have the same scale or unit, assign a
weight Wcs; otherwise (i.e., if they have different
value types or different scales/units), Wcs is 0. For
example, if two attributes are both of currency type
and their values are in US$, then Wcs is assigned to
the overall match of the two attributes.

6. Default value
In a search interface, some elements may have their
default values. In some cases, an element may have

no associated label, but it has a default value which is
important for the element to find a matching attribute.
In addition, if an attribute is in a cluster, then its
default value is considered as one of the default
values of the cluster. So when we check default
values of two attributes we check default values of
the two attributes themselves as well as their clusters.
If two attributes have the same default value, assign a
weight Wdv; otherwise Wdv is 0;

7. Boolean property
If an attribute has just a single check box, this check
box is usually used to mark a yes-or-no selection.
Such an attribute is considered to have a Boolean
property. If both attributes have the Boolean property,
assign a weight Wbp; otherwise Wbp is 0.

8. Value pattern
We apply value pattern only to the numeric attributes.
We compute the average of all numeric values in
each attribute. If the two averages are close, assign a
weight Wvp; otherwise Wvp is 0.

The weight between attributes L
jA and I

iA is the sum
of the above eight metric weights (the values of these
weights are determined experimentally, see Section 7.2.2):
 W(L

jA , I
iA) = Wam + Wvss + Wcd + Wvtm + Wcs

+ Wdv +Wbp+ Wvp
Given the intermediate interface and an attribute L

jA
in a local interface, the approach first looks up the
attribute thesaurus to see if the attribute is already mapped
to a global attribute in the intermediate interface. The
attribute thesaurus is established incrementally during the
weight-based matching process. If it has been mapped, the
attribute L

jA would directly be mapped to the global
attribute name. If it has not, the representative attribute
name would be found using the name of attribute L

jA .
Then recheck the attribute thesaurus using the
representative attribute name to see if the representative
attribute name is mapped to a global attribute. If the
mapping is found, L

jA is mapped to the global attribute;

otherwise compute the weights between L
jA and all

attributes in the intermediate interface. After these
weights are computed, the attribute with the highest
weight is selected. If this weight is greater than the
threshold w, the selected attribute is considered as the
matching attribute of the attribute L

jA ; otherwise, we
assume that no matching attribute is found. In the former
case, we have to determine the global attribute name
between the two attributes. In our approach, the attribute
name that appears in more local interfaces would be
selected. If applicable, the corresponding entry in the
attribute mapping table (which keeps mappings between

each global attribute and its corresponding local attributes)
is changed and so is the thesaurus. In the latter case, the
attribute L

jA is added as a new attribute to the
intermediate interface and a new entry for the attribute is
added in the attribute mapping table.

4.3.3 Maintenance of integrated interface

After a global interface is generated, it is likely that new
local interfaces need to be added to or some existing local
interfaces need to be removed from the global interface
from time to time. This requires maintaining the global
interface. For adding new local interfaces, the first step of
clustering needs to be performed on the new local
interfaces, followed by the second step of clustering to
cluster the output of the first step to the existing clusters.
The representative attribute name may need to be updated
based on the current and previous statistical and semantic
knowledge. Then, the weight-based match is performed.
For removing some local interfaces from the global
interface, we remove the attribute names and their
corresponding values from the clusters and the related
mapping information from the attribute mapping table. In
both cases, the count indicating the number of interfaces
containing an attribute needs to be updated accordingly,
and if applicable, the global attribute name of the global
interface may also need to be changed.

5. Merging attribute domains
When a local attribute is mapped to a global attribute in
the intermediate interface, we must determine the global
attribute domain after the mapping. This includes the
following two aspects:
1) The global domain type. As mentioned previously,

four domain types are supported in our approach and
they are finite, infinite, hybrid and range. A
compatible domain type between the two attributes
should be used.

2) The attribute values. Need to merge the values that
represent the same concept and provide a set of
values for the global attribute.

To deal with these two issues, differences between the
two domains should be identified and resolved, including
format difference, semantic conflict, scale difference,
range difference and constraint difference. Here we need
to take a closer look at the range difference. In Figure 3,
we can see that there are various range formats. Two
aspects need to be considered in resolving range conflict,
one is about range modifiers such as “from”, “to”, “less
than”, “under” and so on, and the other is about range
width. Figure 3 shows that different range domains may
have different range modifiers and different range width.
The resolution of range conflicts is to generate a global
range domain that is compatible with the range domains
of the matching attributes (see details in section 5.3).

5.1 Determine global domain type

For a given local attribute L
jA and a matching global

attribute I
iA , we use the following rules to determine the

new domain type for I
iA :

1) finite + finite � finite
2) infinite + infinite � infinite
3) range + any type � range
4) (finite + infinite) or (hybrid + finite) or (hybrid +

infinite) � hybrid
The first rule can be explained as follows: if the local

attribute L
jA is finite and the global attribute I

iA is also

finite, then the new global domain type of I
iA is finite.

Other rules can be explained similarly.

5.2 Merging alphabetic domains

If a local attribute and its matching global attribute are
finite or hybrid and have alphabetic values, we should
consider how to merge their values and form a new value
set for the global attribute. In WISE-Integrator, this is
carried out in two phases. The first phase is in the
clustering step discussed in Section 4.3.1. In this phase,
attributes that have some values in common are grouped
into the same cluster. Furthermore, due to the matching
techniques employed (exact match, approximate string
match, synonymy match and hypernymy match), semantic
relationships between values are identified. In the second
phase, we use the knowledge of the relationships between
values to merge values and generate a global value set.

Phase 2 consists of the following steps. First, we
cluster all values into categories based on approximate
string match, vector space similarity match, synonymy
match and hypernymy match. Thus, all values that are
similar, synonymy or hypernymy are clustered into the
same category. Next, we solve the following two
problems: (1) Which value should be chosen as the global
value if multiple similar and synonym values are in the
same category? (2) How to provide values to users if the
values in the same category have hypernymy relationships?
For the first problem, we can keep a counter for each
value and use the majority rule to choose the most
popular value. As to the second problem, we need to
make a tradeoff between choosing generic concepts and
choosing specific concepts as the choice would have
different effects on query cost and interface friendliness.
The cost of evaluating a global query includes the cost of
invoking local ESEs to submit sub-queries, the cost of
processing sub-queries at local ESEs, result transmission
cost and post-processing cost (e.g., result extraction and
merging). If we choose only generic concepts as global
values and do not use specific concepts, a query against
the global interface may need to be mapped to multiple
values (corresponding to specific concepts) in some local

interfaces, leading to multiple invocations to the local
search engines. On the other hand, if we keep only
specific concepts and ignore generic concepts, users who
want to query generic concepts (i.e., have broader
coverage) may have to submit multiple queries using
specific concepts, resulting in less user-friendly interface.
Our approach is to provide a concept hierarchy of values
to users, including generic and specific concepts. This
remedies the problems of the previous two options and
gives the users more flexibility to form their queries.
Value clustering may produce multiple categories and a
value hierarchy is created for each category. Each
hierarchy is limited to at most three levels to make it
easier to use.

After these two phases, the mappings between global
values and local values are established.

 Example 1: Consider two Web bookstore interfaces,
one has an attribute “subjects” with values “Network”,
“Databases”, “Programming Languages” and so on and
the other has a corresponding attribute “subject” with
values “TCP/IP”, “Wireless network”, “Oracle”, “Sybase”,
“Sql server”, “C”, “C++”, “Java”, “Pascal” and so on.
After clustering the values, some semantic hierarchies
between the values from the two interfaces can be
identified. There are three possible ways to generate the
global domain values for “subject”. One is to use only
generic concept values, i.e., values from the first interface,
namely “Network”, “Databases”, “Programming
Languages” etc. In this case, suppose a user wants to find
information about Oracle. Since “Oracle” is not available,
the user has to select “Databases” on the global interface
and submit the query. This global query would have to be
mapped to three sub-queries for the second interface,
namely “Oracle”, “Sybase”, and “Sql server”. Obviously,
searching based on “Sybase” and “Sql server” wastes the
resources at the second site and returns more useless
results to the user. The second option is to use only the
values with more specific concepts, i.e., the values from
the second interface. In this case, a user who wants to find
information about database (not of any specific type)
needs to submit three queries respectively using “Oracle”,

“Sybase” and “Sql server”. This is inconvenient to the
user. Our approach will organize related values into a
hierarchy (see the box on the right side in Figure 2). In
this case, if the user selects “Databases”, then the meta-
search engine will generate three sub-queries for the
second site on behalf of the user. On the other hand, if any
of the three sub-concepts of “Databases” is selected, only
that concept will be used for the second site but
“Databases” will be used for the first site. This solution
remedies the problems of the first two solutions.

We should point out that not every category of values
can form a hierarchy. In that case, we just provide a list of
values.

5.3 Merging numeric domains

To merge numeric domains, we need to perform the
following tasks:

1) Resolve scale difference. We assume the
identification of the scale/unit of a numeric attribute
has already been done by the interface extractor. In
our approach, we build a scale relationship dictionary
in advance for some popular scales. The system can
look up the dictionary to find out how to map one
scale to another scale. The numeric values in those
attributes are transformed to the same global scale
during value merging.

2) Understand the semantic differences involved.
3) Generate a global domain with query cost taken into

consideration.

We identify two types of numeric domains: range
numeric domain and non-range numeric domain. Non-
range numeric domain attributes may come from the
numeric attributes that are either finite or infinite. If the
domains of the matching local attributes are non-range
numeric, we just union all values of these attributes for
the global attribute.

For the rest of this subsection, we focus on range
numeric domain. For the range numeric domain, three
types of formats can be identified as shown in Figure 3.

1) One selection list. The range type consists of only
one selection list, for example, the first four selection
lists in Figure 3.

2) One selection list and one text box. The range domain
is like the “publication date” in Figure 3, which has
two elements, one is a selection list for range
modifier and the other is a text box for numeric value.

3) Two textboxes or two selection lists. The type consists
of two elements and each of them may be a textbox or
a selection list. The examples are “price range”,
“publication year” in Figure 3.

From Figure 3, we can see that numeric values are
mostly combined with other semantic words. To help the
system understand such formats, we need to let the system
know the meaning of the range modifiers such as “less

Figure 2: Example of merging domain values

Network
--TCP/IP
--Wireless network
Databases
--Oracle
--Sybase
--Sql server
Programming-
Languages
--C
--C++
--Java
--Pascal
…

Network
Databases
Programming -
Languages
…

TCP/IP
Wireless-
network
Oracle
Sybase
Sql server
C
C++
Java
Pascal
…

Subjects

Subject

than”, ”from”, “to” and “over”. For this purpose, we build
a semantic dictionary that keeps all possible range
modifiers for numeric domains. In addition to these range
modifiers, we also save the meaning of other terms related
to numeric values. For example, in Figure 3, we can see
that “baby” and “teen” are in “reader age”. We have to
specify the real meanings of these words to help the
system know what they are. We can say that “baby”
represents “under 3 years”, “teen” is “13-18 years” and
“adult” is “over 18 years”. Then, we design a special
extractor that can extract the range modifiers and the
numeric values, and use the semantic meanings in that
dictionary to build a semantic range table that can be
understood by the system. The semantic range table keeps
multiple ranges corresponding to the original ranges in the
element(s). This table can be used in query mapping and
submission.

Suppose we handle the element that has “less than”

range modifiers in Figure 3. From this element, we can
obtain numeric values: 5, 10, 15, 20, 25 and 50 by
extraction. We can also get the semantic words: “all price
ranges” and “less than”. With the information, we can
build a range semantic table as shown in Table 2. The
internal values are the values in the HTML text that
correspond to the values of the element.

So far we have solved the first two problems of
merging range numeric domains. The last thing we need
to do is to generate a global range format that is
compatible with the local domain formats of the matching
attributes. And the global range format should consider
query efficiency as much as possible. Intuitively, a larger
range condition in the global interface would lead to more
invocations to some local sites, causing more local server
processing effort, more data transmission and more post-
processing effort. Therefore, we aim to reduce the range
width of each range condition in the global interface. To

this end, we keep a list for the matching numeric
attributes. Every time when a numeric attribute is mapped
or added to the intermediate interface, the numeric values
that are previously extracted from the numeric attribute
are added to the list (scale conflicts are resolved before
this step). When all attributes are matched, the list is
sorted in ascending order of the values. The ranges are
generated using every two consecutive numeric values in
the list. For the minimum and the maximum values,
“under” and “over” range modifiers are used, respectively.

Range modifiers Meaning

Less than <
Over >

Under <
Greater than >

From* >=
To* <=

Between* >=
And* <=
After >

Before <
… …
All All range
Any All range

 Example 2: Suppose in Figure 3 two attributes with
“from” and “less than” range modifiers are matched, then
the list of values kept for the two matching attributes is: 5,
10, 15, 20, 25, 30, 40 and 50. The global range format is
shown in Figure 4. From Figure 4, we see that one global
range condition is translated to only one appropriate local
range condition. For example, “from $10 to $15” in the
global range format is respectively mapped to “from $10
to $20” and “less than $15” in the local range formats.
Thus multiple query invocations to local interfaces are
avoided and other costs including post-processing time
are also reduced.

Lo Hi Internal value
0 5 ‘lessthan5’
0 10 ‘lessthan10’
0 15 ‘lessthan15’
0 20 ‘lessthan20’
0 25 ‘lessthan25’
0 50 ‘lessthan50’
0 ∞ ‘allrange’

Table 1: Range modifiers
 dictionary
* modifiers to be used in
pairs

Table 2: A range element
 semantic table

Figure 4: Example of a global range domain

Less than $5
Less than $10
Less than $15
Less than $20
Less than $25
Less than $50

Local range

Under $10
From $10 to $20
From $20 to $30
From $30 to $40
From $40 to $50
Over $50

Local range
Under $5
From $5 to $10
From $10 to $15
From $15 to $20
Form $20 to $25
From $25 to $30
From $30 to $40
From $40 to $50
Over $50

Global range

Figure 3: Examples of different range formats

6. Generating global interface
WISE-Integrator uses the results of both the attribute
matching and the attribute domain merging to generate
the global interface and show the interface in HTML
format. It also has to decide which attribute should appear
in the global interface and the layout of all the attributes.

6.1 Attribute position

Each attribute has its layout position in a given local
interface. These layout positions reflect the importance of
the attributes as perceived by local interface designers and
their users, and they may influence users’ behaviors of
selecting attributes to use. To be user-friendly, we
aggregate local importance of each attribute and arrange
more important attributes ahead of less important ones. In
WISE-Integrator, the global layout position of a global
attribute is computed as follows.

∑
=

=
m

j
A j

iPA iP
1

)()(

where)(AiP denotes the position value of the i-th global
attribute Ai, m is the number of local interfaces to be
integrated,)(A j

iP is the layout position of the local

attribute in the j-th local interface that is mapped to
Ai;)(A j

iP is assigned the total number of global attributes

when no matching local attribute exists in the j-th local
interface. All global attributes are laid out in increasing
order of their position values. Clearly, using this method,
attributes that appear in high positions (the first position is
the highest) in many local interfaces are likely to appear
in high positions in the global interface.

6.2 Attribute selection

When a large number of local interfaces are integrated,
the global interface may have too many attributes to be
user-friendly. While some key attributes about the
underlying products appear in most or all local interfaces,
some less important attributes appear in only a small
number of local interfaces. One way to remedy this
problem is to trim some less important attributes from the
global interface. We use the global position of each global
attribute to trim off less important attributes, i.e., those
that have large global position values. A user-adjustable
threshold can be used to control this.

7. Implementation and experimental results

7.1 Implementation

WISE-Integrator is developed using JDK1.4 and is
operational. WordNet1.6 is embedded into the system
through APIs based on C. The GUI of the system is
shown in Figure 5. The system can read the interface
description of each Web site and then display the
interface description visually in a tree structure. From the

tree view, users can see all information on each search
interface. The global interface and the attribute matching
information are shown after the integration is finished.
Through the GUI, users can remove or add any interface
at any time on the fly. And the new global interface is
generated without starting from scratch. In addition, a
user can choose any parameter value to trim attributes
from the global interface.

To see a demo of WISE-Integrator, go to the Web site:
http://www.cs.binghamton.edu/~haihe/projects/wise.html.

7.2 Experiments

7.2.1 Evaluation criteria

Three qualitative criteria for measuring the quality of a
global conceptual schema in the context of database
schema integration are proposed in [BLN86] and they are
Completeness and Correctness, Minimality and
Understandability. We rephrase these criteria and propose
the following principles to guide the evaluation of search
interface integration.
Correctness. Attributes that should be matched are
correctly matched; attribute domains for the matching
attributes are correctly merged and constructed.
Completeness. If a result can be retrieved directly
through a local interface, then the result can also be
retrieved through the global interface.
Efficiency. Global interface construction should consider
query cost. While query cost is usually considered at the
query evaluation time, a bad global interface may cause a
high query cost despite of good query evaluation
algorithms. For example, supporting only very wide range
conditions in the global interface may cause too many
local queries to be submitted to a local engine and too
useless results to be transmitted to the metasearch engine.
Friendliness. A global interface should be simple and
easy to understand and use by users. As an example, it is
better to provide users a list of values for an attribute

Figure 5: WISE-Integrator interface

when these values are available for the attribute rather
than let users fill out without any knowledge. As another
example, frequently used attributes should be arranged
ahead of less frequently used ones.

Efficiency and friendliness of the global schema are
taken into consideration by WISE-Integrator (see Sections
5 and 6). In the next subsection, we report our
experimental results for completeness and correctness for
matching attributes.

7.2.2 Experimental results

To perform the experiments, we collected the search
interfaces of 50 book Web stores and 20 electronics Web
sites, and then constructed the interface representation for
each search interface by hand (Tools for automatic
construction of ESE interface representation is under
development and will be reported in another paper).

Correctness requires that attributes that should be
matched across all search interfaces be matched and that
attributes that should not be matched not be matched. It
also requires that the attributes in the global interface be
semantically unique. To help measure the correctness of
attribute matching, the global attribute name and
semantics are used as a reference to measure how well
local attributes are matched to the global attribute. If there
exist multiple global attributes that are semantically the
same in the global interface, the global attribute with
more local attributes matched is considered as the only
real global attribute while others should be matched to it.
There exist three cases for attribute matching:
1) Attributes are correctly matched to a unique global

attribute.
2) Attributes are incorrectly matched to a global

attribute.
3) Attributes are correctly matched to a global attribute,

but they should belong to another matched group that
has more matching attributes.

Our evaluation metric is called Attribute Matching
Accuracy (ama), which defines what percentage of all
attributes is correctly matched.

∑

∑

=

== n

i
i

n

i
i

a

m
ama

1

1

where n is the number of all local interfaces used for
integration, mi is the number of correctly matched
attributes in the i-th interface (case 1), ai is the number of
all attributes in the i-th interface.

Completeness requires that all contents and
capabilities of each local interface be preserved in the
global interface. As we mentioned above, three cases exist
for attribute matching. Among these three cases, case 2
would reduce the completeness because some attributes
are mismatched to a global attribute; using such global
attributes may lead to incorrect results from some local
search engines. For case 3, although the uniqueness
requirement is not satisfied, using these global attributes
can still retrieve results from the matching local interfaces.
Therefore, case 3 matches do not affect completeness.

We define the Attribute Matching Completeness (amc)
measure as follows:

()

∑

∑

=

=

−
= n

i
i

n

i
ii

a

ra
amc

1

1

where ri is the number of mismatched attributes in the i-th
interface (case 2).

We performed 5 rounds of experiments on book
interfaces. In the first round, 10 interfaces were randomly
selected and a global interface was generated for them. In
each subsequent round, 10 additional interfaces were
randomly selected and added to previously selected
interfaces. Then a global interface was generated from all
selected interfaces from scratch. Then we manually
checked how well the attributes are matched. We also
performed 2 rounds of experiments using interfaces of
electronics sites. The experimental results are shown in
Table 3. We can see that, on the average, the overall
correctness and completeness of our approach for the two
domains are 95.25% and 97.91%, respectively. In
addition, the results are remarkable stable (with all
correctness and completeness values within a narrow
range) despite the differences in the number of interfaces
used and the product types.
 In all experiments, the weights for the seven metrics
in section 4.3.2 (the other metric, similarity match, has no
fixed weight) are: Wam=0.5, Wcs=0.2, Wcd=0.1,
Wvtm=0.4, Wdv=0.6, Wbp=0.1 and Wvp=0 (value pattern
match is not used in our experiments) and the weight

Domain The number of
Interfaces

Total
Attributes

Case 1 Case 2 Case 3 ama(%) amc(%)

10 (1st round) 79 76 0 3 96.20 100
 20 (2nd round) 159 150 2 7 94.34 98.74
30 (3rd round) 210 201 2 7 95.71 99.05
40 (4th round) 259 250 1 8 96.53 99.61

Book

50 (5th round) 313 302 3 8 96.49 99.04
10 (1st round) 68 63 5 0 92.65 92.65 Electronics
20 (2nd round) 135 128 5 2 94.81 96.30

Average 95.25 97.91

Table 3: Attribute matching correctness and completeness

threshold w is 0.63. These values are obtained from the
experiments using the book interfaces and they are
applied to the electronics interfaces without changes. As
the interfaces for books are very different from those for
electronics, the experimental results indicate that the
above parameter/threshold values are robust.

8. Conclusions
In this paper, we provided a comprehensive solution to
the problem of automatically integrating the interfaces of
E-commerce search engines. The problem is significantly
different from schema integration for traditional database
applications. Here we need to deal with not only schema
integration, but also attribute value integration, format
integration and layout integration. In this paper, we
described our techniques used to build WISE-Integrator.
With appropriate interface representation of local
interfaces, WISE-Integrator automatically integrates them
into a global interface using only domain (application)
independent knowledge. Our two-step approach based on
positive matches and predictive matches for merging
attributes was shown to be very effective by our
experiments. We believe that the proposed approach can
also be applied to other domains of E-commerce or ones
beyond E-commerce such as digital library and some
professional databases on the Internet.

While good results were obtained using our method,
there is room for improvement. One possibility is to use
the Open Directory Hierarchy to find more hypernymy
relationships. One possible way to reduce the case 3
problem in Section 7.2.2 is to allow an attribute in a local
interface to match more than one attribute in the
intermediate interface in Section 4.3.2. We will
investigate these possibilities in the near future.

Acknowledgements

This work is supported in part by the following grants
from National Science Foundation: IIS-0208574, IIS-
0208434, EIA-9911099 and ARO-2-5-30267. We thank
Mr. Leonid Boitsov for providing us his agrep algorithm
implementation (itman.narod.ru/english/aboutnotser.html).

References
[BLN86] C. Batini, M. Lenzerini, S. Navathe. A
Comparative Analysis of Methodologies for Database
Schema Integration. ACM Computing Surveys,
18(4):323-364, December 1986.
[BBB01] I. Benetti, D. Beneventano, S. Bergamaschi, F.
Guerra and M. Vincini. SI-Designer: An Integration
Framework for E-Commerce. 17th IJCAI-01, Seattle.
[BCV01] S. Bergamaschi, S. Castano, M. Vincini, D.
Beneventano. Semantic Integration of Heterogeneous
Information Sources. Journal of Data and Knowledge
Engineering, 36(3):215-249, 2001.

[Coh98] W. Cohen. Integration of Heterogeneous
Databases Without Common Domains Using Queries
Based on Textual Similarity. ACM SIGMOD Conference,
Seattle, WA, 1998.
[DR02] H. Do, E. Rahm. COMA- A System for Flexible
Combination of Schema Matching Approaches. The 28th
VLDB conference, Hong Kong, 2002.
[DDH01] A. Doan, P. Domingos, A. Halevy. Reconciling
Schemas of Disparate Data Sources: A Machine-learning
Approach. ACM SIGMOD Conference, May 2001.
[DEW96] R. B.Doorenbos, O. Etzioni, and D. S.Weld. A
Scalable Comparision-Shopping Agent for the World
Wide Web. Techinical Report UW-CSE-96-01-03,
University of Washington, 1996.
[FB92] W. Frakes and R. Baeza-Yates. Information
Retrieval: Data Structures & Algorithms. Prentice Hall,
Englewood Cliffs, N.J. 1992.
[GKD97] M. Genesereth, A. Keller, O. Duschka.
Infomaster: An Information Integration System. ACM
SIGMOD Conference, May 1997
[HC03] B. He, K. Chang. Statistical Schema Integration
Across the Deep Web. ACM SIGMOD Conference, 2003.
[HTL4] HTML4: http://www.w3.org/TR/html4/.
[LNE89] J. Larson, S. Navathe, R. Elmasri. A Theory of
Attribute Equivalence in Databases with Application to
Schema Integration. IEEE Transactions on Software
Engineering, Vol.15, No.4, April 1989.
[LRO96] A. Levy, A. Rajaraman, J. J.Ordille. Querying
Heterogeneous Information Sources Using Source
Description. The 22nd VLDB Conference, India, 1996
[LC00] W. Li, and C. Clifton. SEMINT: A Tool for
Identifying Attribute Correspondences in Heterogeneous
Databases Using Neural Networks. Data & Knowledge
Engineering, 33: 49-84, 2000.
[MBR01] J. Madhavan, P. Bernstein, E. Rahm. Generic
Schema Matching with Cupid. VLDB Conference, 2001.
[MGR02] S. Melnik, H. Garcia-Molina, and E. Rahm.
Similarity Flooding: A Versatile Graph Matching
Algorithm and its Application to Schema Matching. IEEE
Conference on Data Engineering, San Jose, 2002.
[M95] A. Miller. WordNet: A Lexical Database for
English. Communications of the ACM, 38(11): 39-
41,1995.
[PMH03] Q. Peng, W. Meng, H. He, and C. Yu.
Clustering of E-Commerce Search Engines. Submitted for
publication, 2003.
[RGM01] S. Raghavan, H. Garcia-Molina. Crawling the
Hidden Web. The 27th VLDB Conference, 2001.
[RB01] E. Rahm, P. Bernstein. A Survey of Approaches
to Automatic Schema Matching. VLDB Journal, 10:334-
350, 2001.
[WDNT] WordNet: http://www.cogsci.princeton.edu
[WM92] S. Wu and U. Manber. Fast Text Searching
Allowing Errors. Communications of the ACM,
35(10):83-91, October 1992.

	The first rule can be explained as follows: if the local attribute � is finite and the global attribute �is also finite, then the new global domain type of � is finite. Other rules can be explained similarly.
	References

