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Abstract. In our recent work, we addressed the problem of detecting serializabil-
ity violations in a concurrent program using predictive analysis, where we used
a graph-based method to derive a predictive model from a given test execution.
The exploration of the predictive model to check alternate interleavings of events
in the execution was performed explicitly, based on stateless model checking us-
ing dynamic partial order reduction (DPOR). Although this was effective on some
benchmarks, the explicit enumeration was too expensive on other examples. This
motivated us to examine alternatives based on symbolic exploration using SMT
solvers. In this paper, we propose an SMT-based encoding for detecting serializabil-
ity violations in our predictive model. SMT-based encodings for detecting simpler
atomicity violations (with two threads and a single variable) have been used be-
fore, but to our knowledge, our work is the first to use them for serializability
violations with any number of threads and variables. We also describe details of
our DPOR-based explicit search and pruning, and present an experimental eval-
uation comparing the two search techniques. This provides some insight into the
characteristics of the instances when one of these is superior to the other. These
characteristics can then be used to predict the preferred technique for a given
instance.

1 Introduction
The atomicity of a set of operations is a desired correctness condition for concurrent pro-

grams. There exist many different notions of atomicity, useful in various contexts [23, 12,
4]. In this paper, we address conflict-serializability [23], a widely used notion. Informally,
an execution is conflict-serializable if it is equivalent, in some sense, to a serial execution
where the individual atomic regions are executed sequentially. In general, atomicity vio-
lations can be detected by observing a particular trace, called the monitoring problem [5,
28], or by exploring alternate interleavings of events in a given trace, called the predictive
analysis problem [6, 27, 29, 34, 38, 26, 7, 18].

The existing predictive analysis methods are broadly classified into two categories based
on their precision. Methods in the first category detect must-violations, i.e. the reported
violation must be a real violation [27, 38, 34]. Methods in the second category detect may-
violations, i.e. the reported violation may be a real violation [26, 7, 18]. Due to higher
precision, the methods in the first category are usually expensive. Therefore, effort is
needed to improve performance and scale better on long traces.

In our recent prior work on predictive analysis [29], we proposed a method in the first
category, where we used a graph-based technique to derive a predictive model called a
TAS (Trace Atomicity Segment) that is based on read-write and synchronization events
in the observed trace. The TAS is used to generate alternate interleavings, called Almost
View Preserving (AVP) interleavings, that are guaranteed to be feasible executions of
the concurrent program. Therefore, any serializability violations detected on AVP inter-
leavings are also guaranteed to be real violations. The basic idea is to consider alternate
interleavings where any thread is allowed to break its read-coupling, i.e. it reads from a
different write event than what was observed in the given trace, but to skip all subsequent
dependent events in this and other threads (since they can no longer be guaranteed to be
feasible). Essentially, AVP interleavings preserve the view in each thread upto some pre-
fix, and only the prefixes and broken read events are allowed to appear in a serializability
violation.



1.1 Motivating Example
To motivate the issue of feasible executions, consider a program execution shown in

Figure 1, with events numbered in the order of execution in the given trace. It has four
concurrent threads (T1 . . . T4) and four shared variables (x, y, z and t). The rectangular
boxes (in threads T2 and T4) denote pre-specified atomic blocks (e.g. using begin atomic
and end atomic labels in the trace). The inter-thread edges represent read-after-write
(RaW) orders. Suppose that event e9 in T1 is conditional on the value of z in e5, which
gets its value from e4. Note that the given trace is a serializable execution since the
events can be ordered as (e1, e4, e7),e2, e3, e5, e9,(e6, e8) without violating atomicity of
the blocks. In Figure 2, we show two other possible interleavings of the same events,
where the atomicity of the atomic block in thread T2 is violated.

Fig. 1: This is a serializable program execution trace.

Fig. 2: The interleaving (a) is unserializable and feasible. However, the interleaving (b) is
unserializable but not guaranteed to be feasible. (The broken arrow represents serializ-
ability violation path defined in Section 2.)

Although both interleavings shown in Figure 2 are unserializable, the violation in (a)
is real, while the violation in (b) may be bogus. Specifically, in execution (b), event e8
happens between e4 and e5, thereby assigning a different value to the shared variable z
in event e5 than in the original trace. Therefore, the value read by event e5 may not be
the same (we call this a broken-read), which may affect the occurrence of event e9 down
the line.
1.2 Overview and Contributions

In our prior work [29], we used an explicit state traversal technique based on Dynamic
Partial Order Reduction (DPOR) [9] to generate AVP interleavings from our predictive
model, and each interleaving was checked by looking for a cycle in the corresponding
D-serializable (DSR) graph [23, 28]. Although use of dynamic partial order reduction
ensures that no redundant interleavings (with respect to the conflict-based partial order)



are generated, the number of interleavings was still quite high for many benchmarks in
our experiments. This motivated us to examine symbolic search techniques, that avoid an
explicit enumeration of the AVP interleavings.

Note that symbolic encodings of interleavings in a concurrent program have been stud-
ied earlier [33, 34, 30, 31]. However, their focus is on read-write consistency constraints
to ensure feasible interleavings, and suitable interference abstractions and refinement to
weaken/strengthen these constraints for modular analysis. These encodings (capturing
a concurrent trace) can be utilized with a suitable encoding of any target property for
verification. In this paper, we use a similar encoding of read-write consistency (adapted
to our predictive model), and combine it with an encoding for checking serializability vio-
lations (for any number of variables, for any number of threads) based on cycle detection.
This general serializability property has not been addressed in any of the earlier symbolic
efforts, which handled only data races, deadlocks, and simple atomicity/serializability vi-
olations (involving a single variable and two threads). Indeed, our symbolic encoding of
serializability violations based on cycle detection can be potentially combined with other
SMT-based encodings of interleavings in a concurrent program.

In recent years, the advancements in SAT and SMT solvers [20, 22] have been lever-
aged in many areas of automated software verification, including symbolic exploration
for concurrent programs, e.g. symbolic partial order reduction [36], symbolic predictive
analysis [35, 34], datarace detection [25]. Therefore, it is natural to examine whether
SMT-based search can be useful in our method for predictive analysis. Although previous
methods have used SMT-based encodings for detecting simple serializability violations
involving two threads and a single variable [34], to the best of our knowledge, our method
proposed here is the first SMT-based technique for detecting general serializability vio-
lations involving any number of threads and variables. Our SMT-based encoding can be
potentially useful in other settings as well, e.g. bounded model checking [1, 10].

In this paper, we describe the DPOR-based search with additional pruning and heuris-
tics optimized for our predictive analysis setting (these details were not described in our
prior work [29], and also provide the context for comparison with SMT-based search). We
then describe our SMT-based search in detail. Our SMT-based encoding performs both
tasks: (a) symbolic exploration of AVP interleavings, and (b) detection of cycles in the
associated DSR graph.

We have implemented our SMT-based technique and compare it with our DPOR-based
technique on a suite of C/C++ and Java benchmark programs. The comparison reflects
the classic tradeoff between time and space, and our results show that these techniques
are complementary in the sense that neither outperforms the other on all benchmarks.
We then consider some features of our predictive model that indicate which technique is
likely to perform better (based on our current experiments). Specifically, we consider the
relative TAS size (how big is the TAS model, relative to the trace) and coupling between
threads (number of inter-thread edges, relative to number of all events) that seem to be
good predictors.

Contributions: To summarize, this work makes the following contributions.

– We describe details of a DPOR-based explicit technique for exploration of interleav-
ings, with additional pruning and heuristics optimized for finding serializability vio-
lations.

– We propose an SMT-based technique for detecting serializability violations using pre-
dictive analysis, suitable for modern SMT-solvers.

– We provide experimental results for the SMT-based technique, using two state-of-the-
art SMT-solvers – Yices [16] and Z3 [32].

– Finally, we present the comparative results between DPOR-based and SMT-based
techniques in our predictive analysis, and identify some characteristics of instances
that can be used to select between them.

The following section introduces the needed background on our predictive analysis
method [29]. Next, we will discuss the DPOR-based explicit exploration technique (Sec-
tion 3) and the SMT-based encoding for the symbolic technique (Section 4). We present
our experimental results in Section 5 and conclude in Section 6.



2 Preliminaries
In this section, we summarize the needed background on our prior work. We omit the

detailed formal discourse (available online in [29]), and describe the main aspects. We
consider a concurrent program consisting of a set of threads T1, . . . , Tk and a set of shared
variables. Let tid = {1, . . . , k} be the set of thread indices. The remaining aspects of
the program, including the control flow and the expression syntax, are intentionally left
unspecified for generality.

Program Trace Model: An execution trace ρ = e1, e2,. . . en is a sequence of events,
each of which is an instance of a visible operation (read/write accesses to shared variables
and synchronization operations are regarded as visible operations) during the execution
of the concurrent program. An event is represented as a 5-tuple (tid, eid, type, var, child),
where tid is the thread index, eid is the event index (that starts from 1 and increases
sequentially within a thread), type is the event type, var is either a shared variable (in
read/write operations) or a synchronization object, child is the child thread index (in
thread create/join). The event type is one of {read, write, fork, join, acquire, release,
wait, notify, notifyall, atomic begin, atomic end}.

An execution trace ρ provides a total order on the events appearing in ρ. We derive a
partial order by retaining only the set of must-happen-before constraints, which collec-
tively are sufficient to guarantee feasibility of the serializations of this partial order.

Partial Order Graph: Let G(V,E) be a partial order graph such that V (G) is the
set of vertices, each of which represents an event in the trace (we use vertices and events
interchangeably when the context is clear). A directed edge in E(G) (the set of edges) is
either a program order (PO), or a read-after-write (RaW), or a synchronization (Sync.)
edge. If there is a RaW edge from a to b in G, then the pair (a, b) is defined as a read-
couple. In a different interleaving, if b reads from a different event c, we say that the
read-couple for b in G is broken. We assign clock-vectors to each vertex in G, following
the idea of Lamport’s Logical Clock [19] in order to check the causality order between any
two events. An example of a partial order graph with 3 threads is shown in Figure 3. The
rectangular block in this figure represents an atomic block denoted by A. V (A) denotes
the vertices in A. The number inside each vertex is the eid. The vectors are shown in
square brackets next to the vertices. For convenience, we shall refer to vertex 1 in the 2nd

thread as vertex 2.1.

Fig. 3: The PO graph with vectors. Vertices
represent events from the trace. The dashed
and solid edges are PO and RaW/Sync.
edges respectively. Note that RaW edges can
both be inter- and intra-thread edges.

Fig. 4: The TAS in a partial order graph G,
with respect to the atomic block (shaded
rectangular region). The upper and lower
frontiers are given by {8,5,6} and {17,11,11},
respectively.

Almost View Preserving (AVP) Interleavings: Let G′ be a partial order graph
derived from ρ similar to G, except that it has only the program order and sync. edges.
Let t ∈ T , where T be the set of all interleavings consistent with G′. Let v be a read event



in t. For each read event v in t, if the read couple for v in ρ is broken in t, then all vertices
w, such that v must-happen-before w in G, are deleted from t resulting in t′. AV P (ρ) is
the set of all t′ s.t. t ∈ T .

Serializability Violation Path: It is well-known that there is a conflict-serializability
violation if there exists a cycle in the D-serializable (DSR) graph [23, 28]. In our setting,
for any alternate interleaving we conceptually construct a conflict graph GC (similar to a
DSR graph), where the vertices are the read/write events and edges represent conflicting
accesses and program order. There is an atomicity violation if we can find a path that
starts and terminates within the atomic block, and visits at least one vertex outside the
atomic block in GC .

Trace Atomicity Segment (TAS): For each atomic block A, we identify a TAS as a
subgraph ZA ⊆ G that is sufficient for the purpose of detecting all serializability violations
among AV P (ρ). Intuitively, the TAS captures all events that may happen in parallel with
events in A, until broken reads are encountered. Our overall technique derives a TAS for
each atomic block in the given trace. In effect, this considers a sliding window over the
trace, where each window looks at alternate interleavings among events that can happen
in parallel with an atomic block.

A frontier is a k-tuple, i.e. a vector, where the ith integer represents the eid of some
event in ith thread. A TAS is bounded by two frontiers: upper and lower, with respect to
G (see Figure 4). Events that must happen before the first event within A are above the
upper frontier. Analogously, events that must happen after the last event in A are below
the lower frontier. The subgraph of G between the upper frontier and the lower frontier is
called the TAS ZA. The usefulness of frontiers is that no vertex above the upper frontier
(below the lower frontier) may appear after (before) any vertex v ∈ VRW (A) ⊆ V (ZA) in
any interleaving in AV P (ρ) (where VRW (A) denotes the read-write vertices in the given
atomic block).

Example: Figure 4 shows an example of a TAS for the atomic region in a partial or-
der graph with three threads. The upper frontier is UFA={8,5,6}. The lower frontier
is LFA={17,11,11}. The subgraph in between the frontiers is the TAS ZA. Note that
VRW (A) ⊆ V (ZA). Although, the frontiers are simple vectors, they are represented as
cuts in Figure 4 as the frontiers demarcate the boundaries of the TAS. We have shown
that the TAS for a given atomic block is sufficient for detecting the existence of a seri-
alizability violation path among AV P (ρ), i.e. there exists no violation path that includes
vertices outside ZA. In effect, the TAS serves as our predictive model, and we search over
all AVP interleavings over events in the TAS.

Note that for a violation path, there must exist at least two events within the atomic
block that conflict with other access(es) outside the atomic block but within the TAS.
Although such events may exist across a long trace, they may not occur within a relatively
small TAS. This provides a static check: If such events do not exist in a TAS, then no
violation is possible among AV P (ρ). In practice, this static check is frequently successful.
3 Explicit Search within the TAS

If the TAS ZA fails the above simple static check, i.e. a serializability violation may
be possible, we search among all the interleavings within ZA to find the unserializable
one. In this section, we use a Dynamic Partial Order Reduction (DPOR [9, 37]) based
explicit search algorithm. We also improve this DPOR search with several sound pruning
techniques and search heuristics.
3.1 Overview of DPOR algorithm

An interleaving prefix π = e1, e2,. . . ek is a sequence of a subset of the events in ρ;
that is, ∀i, event ei belongs to ρ, |π| ≤ |ρ|, and events in π are not necessarily in the
same order as in ρ. Two interleaving prefixes comprised of the same subset of events are
conflict-equivalent iff the relative order of all pairs of conflicting events is same. The DPOR
algorithm can be used to generate one representative interleaving from each conflict-
equivalent class, by avoiding the other (redundant) interleavings.

In the DPOR algorithm, an interleaving prefix π is represented as a sequence s1, s2, . . . sk
of program states, where event ei is executed during the transition from si to si+1, for
all i = 1, 2, . . . k. At each state s, we use s.enabled to record the set of threads that are
ready to execute. The next event in any thread τ ∈ s.enabled is referred to as the ready-



transition. We also use s.backtrack ⊆ s.enabled to record a subset of the enabled threads,
where each thread τ ∈ s.backtrack represents a possible scheduling choice at s in some fu-
ture runs. Note that τ 6∈ s.backtrack means that, according to the partial order reduction
theory, executing thread τ at state s would have led to a redundant interleaving [8].

Two mutually independent transitions (ti,tj) whose events are both ready for execution
are referred to as co-enabled transitions. For instance, if a lock is acquired by one thread,
it must be released before another thread can acquire it. Therefore, the transition that
releases the lock and the transition that acquires it are mutually dependent, and hence
are not co-enabled transitions.

Although DPOR is efficient in testing concurrent programs, it is not geared toward
enumeration of interleavings in a predictive model such as ours. More specifically, it does
not take TAS and the read-write coupling requirements into consideration. Therefore,
we have customized the original DPOR for TAS, and our new algorithm is presented
in Figures 5& 6. (Our modifications are lines marked with a ‘?’.) In the pseudo-code,
we use symbol S to denote the state stack (s0s1 . . . sd . . . sn), and use s.stack depth to
denote the depth of state s in stack S. We start search with the first event in an atomic
region A (say u0) (lines 1-3, procedure Init). At each state s, we first find a set of
preceding states (whose next events are mutually dependent with the enabled events
at s) and update their backtrack sets (lines 2-12, procedure Explore). Here, in order
to properly update the backtrack sets and avoid redundant interleavings, we need to
track the conflicting pairs of transitions within the interleaving prefix. After finding and
updating the backtrack sets of dependent preceding states, we need to pick an enabled
thread at state s to execute. Rather than randomly picking (as in the original DPOR), we
heuristically pick a thread, insert it in s.backtrack (lines 14-15, procedure Explore), and
continue. We continue exploring the enabled threads in s.backtrack by calling Explore
recursively, until all threads in this backtrack set are explored (lines 17-27). At this point,
we insert the thread into the done set (line 18).

In this DPOR search, deciding whether any of the read-couples is broken in the current
prefix is crucial. We use a map called active couple to store the mapping from the ‘written
but not read’ shared variables to the last coupled-reader in ρ (a written value can be read
by multiple readers). Once the last reader reads the variable, the map is removed from
active couple (line 12, procedure computeEnabledRaW).

The set enabled is computed by procedure computeEnabledRaW if the current
transition is a read/write access (Figure 6) and by the standard procedure computeEn-
abled otherwise (pseudo-code omitted for brevity). Procedure computeEnabledRaW
is designed specifically to handle constraints from the RaW edges (or couples), while pro-
cedure computeEnabled deals with the standard synchronization primitives. It is worth
pointing out that the original DPOR does not have or need procedure computeEnable-
dRaW. In our case, if a coupled read is mismatched, i.e. the read event is not reading
the value it is supposed to read, the following events in the thread are skipped (line 6-7,
procedure computeEnabledRaW).

Several helper procedures such as preProcess and postProcess (lines 1 and 16, re-
spectively) are also called. We omit their pseudo code, but provide a brief description as
follows. Procedure preProcess helps in initializing the various data-structures of a state
(except for s0, the current state inherits those data-structures from the previous state).
Procedure postProcess helps in eliminating or inserting thread-ids into the enabled of
the current state depending on certain conditions related to the ready-transitions and the
data-structures of the current state.

Although we are performing a restricted search (by using RaW edges to reduce the
number of interleavings), the explicit search overhead is still not practical in most of our
initial experiments. These unrealistic run-times pushed us to look for smarter prunings
and heuristics. In order to further reduce the number of interleavings, we propose several
sound pruning techniques (Section 3.2) and search heuristics (Section 3.3).
3.2 Pruning TAS Search Space

Consider the scenario in Figure 7 (a), where tlastInAB is the last transition in the atomic
region (from state sd) and t is the current transition in the interleaving prefix. Assume
that ti, tj and tk are the predecessor transitions from states si, sj and sk respectively,



Init {
1: if(u0.type = read or write)

computeEnabledRaW(s0, s0, u0);
2: else computeEnabled(s0, s0, u0);
3: S.push(s0);
4: Explore(S);
5: }
Explore(S) {
1: let s = S.top of stack();
2: for each thread h{
3: let tn be a transition such that tn.tid ∈ s.enabled and tn.tid = h

and tn is not a coupled read in the atomic block;
4: for all transitions tdin the current explored path dependent with

tn and it may be co-enabled with tn{
5: let sd be the state in S from which td is executed;
? 6: if (sd.cs ≥ CSmax or

(bt tag.isTrue ? (bt tag.stack depth< sd.stack depth):false))
? 7: continue;
8: let E = {q.tid ∈ sd.enabled | (q.tid = h ∧ q is not a coupled

read from the atomic block) ∨ (td ≺ q ≺ tn and q is
dependent with some t′ such that, q ≺ t′ ≺ tn &
t′.tid = h)};

9: if (E 6= {}) then
choose any member of E and add to sd.backtrack;

10: else
add {q.tid | q.tid ∈ sd.enabled and q is not a coupled
read from the atomic block} to sd.backtrack;

11: }
12: }
13: if (s.enabled is not empty) {
? 14: heuristically, pick t.tid from s.enabled;
15: s.backtrack ← {t.tid};
16: let done = {};
17: while (∃t such that t.tid ∈ s.backtrack \done){
18: add t to done;
19: let, s′ ← next(s, t);
? 20: computeContextSwitch(s, s′, t); // compute cs for s′

? 21: if(t.type = read or write) computeEnabledRaW(s, s′, t);
22: else computeEnabled(s, s′, t); // compute s′.enabled
23: S.push(s′);
24: Explore(S);
25: S.pop();
26: }
27: }
28: }

Fig. 5: Generating and checking the non-interfering runs

computeEnabledRaW (states: sp, sc, transition: t) {
// sp: previous state; sc: current state;

1: preProcess (sp, sc);
2: if (t.type = write and this write is coupled) {
3: sc.active couple← sc.active couple ∪ {(t.var, last reader of t)};
4: } else if (t.type = read and this read is coupled) {
5: if (t.var ∈ sc.active couple){
6: if (read-couple is broken)
7: sc.next(t.tid)← null; // thread virtually terminates
8: if (t = sc.active couple[t.var]) //t is the last reader
9: sc.active couple← sc.active couple.erase(t.var);
10: }
11: }
12: if(read-couple is broken and t is the broken read within the atomic region) {
13: bt tag.isTrue ← true;
14: bt tag.stack depth ← sp.stack depth;
15: }
16: postProcess (sp, sc);
17: }

Fig. 6: Computing enabled using RaW edges.

conflicting with t. Our observation is that, if the atomicity property is not violated in the
interleaving prefix until tlastInAB , then updating the backtrack set of any successor state
after sd cannot generate any violation path. This claim can be justified as follows. First,
updating the backtrack set of successors of sd will not change the interleaving prefix until
tlastInAB . Second, there is no transition within the atomic block after tlastInAB , and no
violation exists in the prefix until tlastInAB . Hence there does not exist a serializability
violation path in the interleavings with fixed prefix until tlastInAB . Therefore, in Fig-



Fig. 7: (a) Setting a marker when the last transition (tlastInAB) from the atomic region
appears in the prefix helps in pruning the interleavings. (b) Tuning the parameter CSmax

can help in carrying out localized search.

ure 7 (a), we update the backtrack sets of si and sj only (and leave the backtrack set of
sk unchanged).

We implement this sound pruning technique in line 6 of procedure Explore, by intro-
ducing the global data-structure bt tag (read as backtrack-tag). This data-structure has
two fields: a Boolean variable isTrue and an integer variable stack depth. The data-
structure is set in line 13-14 in procedure computeEnabledRaW, if current tran-
sition t is a mismatched read in A and the following events within A are skipped.
The field stack depth records the depth of sd in the state-stack S such that, subse-
quent updates of the backtrack set of s can be ignored if bt tag.isTrue is true and
bt tag.stack depth < s.stack depth (lines 6-7, Fig. 5).
3.3 Heuristics for TAS Search

We also use context bounding (i.e. limiting the number of context-switches) as a search
heuristic to reduce cost. However, this is an unsound reduction technique because it may
miss real bugs. We call a context switch significant when it is either inevitable (i.e. the
previous transition is the last event of its thread) or needed to facilitate read-after-write
or wait-notify couples. All other context-switches are referred to as insignificant. Our
definition of insignificant context switches differs from the preemptive context switches
in CHESS [21] since we also consider the RaW constraints.

We assign a counter s.cs to record the number of insignificant context switches in the
interleaving prefix up to state s. Let CSmax be the maximum number of insignificant
context-switches permitted by the user. Observe that in line 6 of procedure Explore, for
a state sd, if sd.cs ≥ CSmax, we will skip the update of its backtrack set. The intuition
behind this conditional update is as follows. Assume that there is a potential violation
path comprising of fewer insignificant context-switches, then it will be detected by our
algorithm with a small predetermined CSmax. In line 14, procedure Explore, the thread
is heuristically picked from s.enabled to efficiently utilize this budget. In practice, we can
broaden the search space incrementally, by first exploring the interleavings with fewer
context switches, and then gradually increasing the maximum number of insignificant
context switches. In other words, the insignificant context-switch bounding enables a
localized search within a fixed prefix length.

The complexity of this clock-vector based algorithm, as derived in [9], is O(kdr), where
k is number of threads, d is the maximum size of the search stack and r is the number of
transitions explored.



4 Implicit Search within the TAS
As discussed earlier, an alternate framework for systematic exploration of events within

the TAS is SMT-based implicit exploration. We now show how to encode the problem as
an SMT instance using difference logic. This instance can then be analyzed by state of
the art SMT solvers.
4.1 Encoding of the Violation Path Reachability

Consider the example in Figure 8. All the vertices shown in the figure (u, v, v′ and w)
write to variable x. The path u→ v → v′ → w is a violation path. We encode this violation
path which may be present in some alternate interleaving ρ′ ∈ AV P (ρ). Although, an
alternate interleaving ρ′ may contain one or many broken read-couples (as any thread is
allowed to break its read-coupling), for ease of understanding, we first consider the case
which does not allow broken read-couples. This assumption will be subsequently relaxed
to include the possibility of broken read couples.

Fig. 8: The function inA(u) denotes whether vertex u belongs to the atomic block, while
function fromA(u) denotes if u is reachable from some vertex within A via a violation
path.

Atomic block membership condition: The violation path always begins in an
atomic block. We define the following function inA(u) for a vertex u.

inA(u) =
{

true if u ∈ V (A)
false otherwise (1)

Consider edge (u, v) such that v is a conflicting access in a different thread from u. In
the interleaving ρ′, u happens before v. Let x(u) be a function that assigns an integer
value to the vertex u. This is used to provide ordering constraints between vertices in the
violation path. x(u) < x(v) iff in ρ′, u happens before v.

We define function fromA(v) to be true if vertex v is reachable from A along a possible
violation path. Let the function edgeFromA(u, v) be true if v is reachable from A through
u. There are two cases.
Case 1 (u ∈ V (A)): In ρ′, x(u) < x(v) and v should be outside the atomic block (i. e.
inA(v) = false) ensuring that the path leaves the atomic block. Then,

edgeFromA(u, v) = (¬inA(v) ∧ (x(u) < x(v))) if u ∈ V (A) (2)

In Fig. 8, edgeFromA(u, v) is true.
Case 2 (u /∈ V (A)): Vertex u happens before v and u is already on a violation path (i.e.
fromA(u) = true). Then,

edgeFromA(u, v) = (fromA(u) ∧ (x(u) < x(v))) if u /∈ V (A) (3)

In Fig. 8, (x(v) < x(v′)) and fromA(v) = true imply edgeFromA(v, v′) = true.
We refer to the set of eligible (u, v) pairs that need to be considered in the edgeFromA

computation defined above as EP Set. There are two possibilities for edges in this set.
Either, (i) the vertices u and v conflict or (ii) they belong to the same thread.

EP Set = {(u, v) | ((u.type = write ∨ v.type = write)
∧ (u.var = v.var)) ∨ (u.tid = v.tid),where u,v ∈ VRW }



Thus, combining Eq. 2 and Eq. 3 we can define function fromA(v).

fromA(v) =
∨

∀(u,v)∈EP Set

edgeFromA(u, v) (4)

4.2 Encoding of the Violation Path
Finally, there exists a violation path iff there exists at least one vertex u within A

such that fromA(u) is true implying that u is reachable from some vertex in A via a
violation path that visits vertices outside A. So the following condition (Φ) is satisfied if
the interleaving contains a violation path.

ΦV P =
∨

∀u∈V (A)

fromA(u) (5)

4.3 Encoding of the Program Order
For each edge (u, v) ∈ E(G) except for the RaW edges (since the RaW edges denote

read-couples which can be broken), the following constraint is introduced in the encoding.

HB(u, v) = (x(u) < x(v)) (6)

Let,
ΦPO Sync =

∧
∀(u,v)∈PO Sync Set

HB(u, v) (7)

where,

PO Sync Set = {(u, v) | (u, v) ∈ E(G) and (u, v)
is not a RaW edge.}

Moreover, for each conflicting pair (u, v) such that u may happen in parallel with v,
denoted by u | v,

φPar(u, v) = (x(u) < x(v)) ∨ (x(v) < x(u)) (8)

Let,
ΦPar =

∧
∀(u,v)∈Par EP Set

φPar(u, v) (9)

where,
Par EP Set = {(u, v) | (u, v) ∈ EP Set and (u | v)}

4.4 Encoding of Synchronizations
The synchronization events like lock-unlock and wait-notify also need to be encoded

to get an alternate feasible interleaving. First, we encode the lock-unlocks. Let lk1 =
(ulk1, uunlk1) and lk2 = (ulk2, uunlk2) are two pairs of vertices that operate on the
same lock-variable. As the locked regions cannot overlap, there are two possibilities (1)
x(uunlk1) < x(ulk2), or (2) x(uunlk2) < x(ulk1). Therefore, for each pair of lock-unlock
events operating on the same lock,

φLK(lk1, lk2) = (x(uunlk1) < x(ulk2)) ∨ (x(uunlk2) < x(ulk1)) (10)

Let,
ΦLK =

∧
∀(lk1,lk2)

φLK(lk1, lk2) (11)

The wait-notify events are encoded similarly. Let, (uw, un) be a wait-notify couple and
u′n be another notify event operating on the same variable. Therefore, u′n should not come
in between uw and un in any interleaving. Therefore,

φWN (uw, un, u
′
n) = (x(u′n) < x(uw)) ∨ (x(un) < x(u′n)) (12)



Let,
ΦWN =

∧
∀(uw,un,u′

n)

φWN (uw, un, u
′
n) (13)

Fig. 9: Let (u, v) be a read-couple and u′ writes the same variable. The read-couple can
be broken in three ways in an alternate interleaving ρ′. (1) u′ happens between u and v,
or, (2) v happens before u, or, (3) u is skipped.

Fig. 10: Let u1, u2, . . . , un be the parents of v in G such that none of them writes. The set
{u1, u2, . . . , un} is denoted as SkipParent(v).
4.5 Encoding of Broken Read-couples

For a given trace ρ, the set AV P (ρ) contains interleavings where one or many read-
couples are broken. Next, we encode these broken read-couples. We introduce two new
related functions - Broken and Skip. Intuitively, whenever a read-couple is broken,
Broken(u) is true where u is the reader and Skip(v) is true for all the following ver-
tices v. These two functions are defined using mutual recursion. Consider the read-couple
(u, v) in Figure 9. The read-couple can be broken under three circumstances.
1. Some other write event u′ happens between u and v (i.e., HB(u, u′) ∧ HB(u′, v)),

where HB(u, v) stands for (x(u) < x(v))) and none of u, v and u′ are skipped (i.e.,
¬(Skip(u) ∨ Skip(v) ∨ Skip(u′))). We refer to u′ as “challenger” as it challenges the
read-couple (u, v). This condition is denoted as φB1(u, v).

2. Vertex v appears before u (i.e., HB(v, u) is true) and none of u and v are skipped
(i.e., ¬(Skip(u) ∨ Skip(v))). This condition is denoted as φB2(u, v).

3. The writer u is skipped while reader v is not skipped (i.e., Skip(u)∧¬Skip(v)). This
condition is denoted as φB3(u, v).

Further, if some write u′ happens before v, where v is initially not read-coupled and
none of u′ and v are skipped, then Broken(v) is true.

Thus, we define Broken(v) as follows.

Broken(v) =



φB1(u, v) ∨ φB2(u, v) (u,v) is a read-couple
∨ φB3(u, v) and u′ is challenger,∨

∀u′

(HB(u′, v) ∧ ¬(Skip(u′) ∨ Skip(v)))

v reads but not
read-coupled within the
TAS and u′ is a challenger,

false otherwise.

(14)



where,

φB1(u, v) = ¬(Skip(u) ∨ Skip(v)) ∧(∨
∀u′

(HB(u, u′) ∧HB(u′, v) ∧ ¬Skip(u′))

)
φB2(u, v) = ¬(Skip(u) ∨ Skip(v)) ∧HB(v, u)

φB3(u, v) = Skip(u) ∧ ¬Skip(v)

The intuitive idea behind the condition for a vertex v being skipped is as follows: (c.f.
Figure 10): when any of the parents of v in G is skipped or broken, except when the parent
is a conflicting write from a different thread (only possible in case of read-couples), v is
also skipped. When a parent that writes in a different thread is skipped, v must be the
coupled read which gets broken (but not skipped) and the events following v are skipped.
The set SkipParent(v) is defined as follows.

SkipParent(v) ={u | (u, v) ∈ E(G) except when u is a
write from a different thread}

Next we define Skip(v). We skip a vertex v when one of the members of SkipParent(v)
is skipped or broken.

Skip(v) =


false if SkipParent(v)={}∨
u∈SkipParent(v)

Skip(u) ∨ Broken(u)

otherwise.

(15)

Note that although we have used mutual recursion in the definitions of Skip and Broken,
the definitions are not cyclic. The reason for this is as follows. The definition of Skip(v)
depends on the values of Skip(u) and Broken(u), where u is one of the parents of v.
Therefore, the definition of Skip is not cyclic. The function Broken(v) is also acyclic
since it refers to Skip function and we have already argued that Skip is acyclic.
4.6 Encoding Allowing the Broken Read-couples

We now state the modified constraints that allow the broken reads. The modifications
in the constraints are underlined.
– The atomic block membership constraints: If a vertex within A is skipped, the

violation path cannot start from the vertex. Therefore, we modify Eq. 1 to account
for the broken read-couples in the following equation,

inA(u) =

{
¬Skip(u) if u ∈ V (A)
false otherwise

, (16)

– The encoding of the reachability of the violation path: The function edgeFromA
is meaningless when either u or v is skipped. Thus, we add a new conjunctive clause
(¬(Skip(u) ∨ Skip(v))) to the original definition of edgeFromA.

edgeFromA(u, v) =


(¬inA(v) ∧ (x(u) < x(v))
∧ ¬(Skip(u) ∨ Skip(v))),

if u ∈ V (A)
(fromA(u) ∧ (x(u) < x(v))
∧ ¬(Skip(u) ∨ Skip(v))),

otherwise

(17)

Finally, we combine Equations 5, 7, 9, 11 and 13 to get the complete encoding

Φ = (ΦV P ∧ ΦPO Sync ∧ ΦPar ∧ ΦLK ∧ ΦWN ) (18)

where, the functions inA, fromA, Broken, Skip are defined in Equations 16, 4, 14 and 15
respectively.



4.7 Complexity
The number of constraints is bounded by O(N + mpq2 + l2evl), where N , m, p, q, lev

and l represent: number of events, number of variables, maximum number of reads per
variable, maximum number of writes per variable, maximum number of events per lock
variable and number of lock variables respectively.
5 Results

Fig. 11: It is our intuition, although not validated over large set of programs, that the
winner among DPOR vs SMT can be predicted given the relative TAS size and the
strength of the coupling (these can be determined statically) between the threads in a
trace.

We have implemented our technique in a prototype tool. This tool is capable of log-
ging/analyzing execution traces generated by both Java programs and multithreaded
C/C++ programs using Pthreads. The program traces used are all available online [15].
The C++ benchmark is available online [13]. All the Java benchmarks are publicly avail-
able [3, 11, 14, 17, 24].

The tool logs execution traces at runtime from C++ source code instrumented using
the commercial front end from Edison Design Group (EDG). For Java programs, we use
execution traces logged at runtime by a modified Java Virtual Machine (JVM). For each
test case, we first execute the program using the default OS thread scheduling and log
the execution trace. Next we apply our algorithm to detect the serializability violations.
For Java traces, we assume that all synchronized blocks are intended to be atomic, unless
the synchronized block has a wait. For the C++ application, we assume that all blocks
using scoped locks (monitors implemented using Pthreads locks and condition variables)
are intended to be atomic.

All our experiments were conducted on an Intel i7 machine (2.67 GHz, 3 GB memory)
running Ubuntu 2.6.31-14-generic. Our experiments are designed to study how implicit
interleaving enumeration using SMT compares against explicit enumeration using DPOR.
As part of this, we consider two different SMT-solvers (Yices [16] & Z3 [32]). However, a
fair comparison of Yices and Z3 is not possible as we can use the Yices API, but need to
call Z3 using the SMT instance in a file as the Z3 API library is not available for Unix [2].
Further, we have also considered bit-blasting of the order variables (the x variables) in the
SMT encoding rather than using difference logic. However, the results with bit-blasting
are not significantly different from those without it.

The consolidated results of all the traces are presented in the appendix. We found
that when the number of constraints generated in symbolic exploration (i.e. SMT) largely
exceeds the interleavings explored in explicit exploration (i.e. DPOR), the DPOR-based
strategy runs faster compared to the SMT-solvers. This observation has been validated
for both the SMT solvers - Yices and Z3.



In Figure 11, we present an interesting observation made from our experimental results.
We define coupling strength as the ratio of the inter-thread edges and the number of
vertices in the graph. A low (high) number represents loosely (strongly)-coupled threads.
(These indicators can be derived & generalized over all available traces.) We characterized
the traces with respect to their relative TAS sizes (ratio of number of vertices within the
TAS and in the entire trace) (Y-axis) and coupling strength (X-axis). We found that
traces where DPOR beats SMT-solvers lie around the curve indicated in Figure 11. We
classify the traces that lie further away from this curve into two sub-groups: (1) Those
for which SMT-solvers beat DPOR, and (2) Those for which SMT-solvers run out of
memory. Observe that, the traces belonging to sub-group 2 lie further away from the
curve compared to those belonging to sub-group 1. We offer the following explanation for
this observation. The curve contains traces for which one of the following is true.

1. The strength of coupling is very low but relative TAS size is large - due to low in-
tensity of coupling, the number of conflicting accesses is probably very small, e.g. in
ThriftTraces the coupling strength is between 0.1-0.3, and the relative TAS size is
10-26%. Hence, TAS+DPOR is effective for these traces.

2. The strength of coupling is high but relative TAS size is small - due to small relative
TAS size, the possible number of interleavings is again very small, e.g. in DaisyTest,
Tsp the strength of coupling is between 0.65-0.8 and the relative TAS size is 0-2%.
Hence, once again, TAS+DPOR is effective for these traces.

However, in traces outside this curve, the coupling is such that the relative TAS size
is still large, e.g. in account, conpool the strength of coupling is approximately 0.56
while the relative TAS size is 32-38%. In such cases, DPOR runs significantly slower than
SMT-solvers. Finally, when both the coupling-strength and relative TAS size are both
high the SMT-solvers run out of memory, e.g. in traces from Elevator, the strength of
coupling is 0.7-0.8 and relative TAS size is 36-48% and SMT-solvers run out of memory.
We would like to clarify that while this explanation seems to fit this limited data set,
further experimentation is needed with a larger data set to draw general conclusions.
6 Conclusion

This paper builds on our previous work on predictive analysis using trace-atomicity-
segments for almost-view-preserving interleavings [29]. It first provides details of an ex-
plicit search algorithm that explores possible interleavings using specialized heuristics in
a DPOR based search. (This was not described in [29]). Next, it shows how this prob-
lem may be encoded as an SMT instance, thus leveraging modern SMT solvers. Finally,
based on experimental evaluation, it provides some insight into the characteristics of the
instances when one of these techniques is superior to the other. These characteristic can
be used to predict the preferred technique for a given problem instance.
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Appendix
This optional appendix provides the detailed experimental results that form the basis

of the graphs in Section 5. In Table A1, we present the results from all the experiments
on a specific trace in one horizontal slice. The columns contain the following information.



– Column 1: This column presents the various statistics of the logged program execu-
tion traces: number of threads (thrds), number of events (evs), number of lock events
(l-evs) and variables (l-vars), number of read/write events (rw-evs) and variables (rw-
vars) and number of wait-notify events (wn-evs).

– Column 2: This indicates the number of atomic blocks.
– Column 3: The average size of the TAS (absolute and relative to the full trace (%))

is given here.
– Column 4: This column enumerates the various scenarios explored, namely ‘DPOR’,

‘Yices, No BB’, ‘Yices, BB’, ‘Z3, No BB’ and ‘Z3, BB’ where BB stands for bit-
blasting.

– Column 5: (SP) gives the number (and %) of atomic blocks for which the static
check passes, i.e. no bug is possible among AVP interleavings.

A timeout of 10 minutes per atomic block is chosen for the search phase. The remaining
columns report the results for the search phase.

– Column 6: (NV) reports the number of atomic blocks for which no violations are
possible in AVP interleavings.

– Column 7: (V) reports the number of atomic blocks for which violations were found.
– Column 8: (TO) gives the number of atomic blocks for which the search for violations

did not terminate within the time-limit.
– Column 9: (MO) gives the number of atomic blocks for which the search for violations

did not terminate as the SMT-solver ran out of memory.
– Column 10: (Encoding Time) is the time spent in generating the encoding.
– Column 11: (Solving Time) is the time spent in solving by the SMT-solver or the

time spent in the DPOR-based search-phase.
– Column 12: (#Int.(DPOR)/Constraints(SMT)) is the number of interleavings (DPOR)

or constraints generated (SMT).



1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
Avg. TAS #Int.

Benchmark AB size (% SP (% NV V TO MO Encoding Solving (DPOR)/
of all of all) Time Time Constraints

events) AB’s) (SMT)
conpool DPOR 2 0 0 - - 0.02s 33

thrds: 4, evs: 97 Yices, No BB 2 2 0 0 0 0.04s 0s
l-evs: 16, l-vars: 1 4 34.5 Yices, BB (50) 2 0 0 0 0.06s 0s 708

rw-evs: 53, rw-vars: 5 (35.56) Z3, No BB 2 0 0 0 0s 0s
wn-evs: 3 Z3, BB 2 0 0 0 0.01s 0s

liveness DPOR 8 0 2 - - 20m 1.2M
thrds: 7, evs: 283 Yices, No BB 5 8 2 0 0 1.05s 50.81s
l-evs: 44, l-vars: 9 15 145.8 Yices, BB (33.3) 8 2 0 0 1.04s 50.9s 14804

rw-evs: 163, rw-vars: 12 (51.5) Z3, No BB 8 2 0 0 0.09s 3s
wn-evs: 6 Z3, BB 8 2 0 0 0.07s 1m13s

SynchBench DPOR 0 0 0 - - 0s 0
thrds: 16, evs: 1510 Yices, No BB 124 0 0 0 0 0s 0s
l-evs: 306, l-vars: 2 124 64.68 Yices, BB (100) 0 0 0 0 0s 0s 0

rw-evs: 533, rw-vars: 15 (4.2) Z3, No BB 0 0 0 0 0s 0s
wn-evs: 0 Z3, BB 0 0 0 0 0s 0s

Barrier1 DPOR 2 3 6 - - 1h4s 1.9M
thrds: 10, evs: 653 Yices, No BB 0 2 5 0 4 3.21s 6m44s
l-evs: 108, l-vars: 2 11 262.6 Yices, BB (0) 2 5 0 4 3.22s 6m44s 32623

rw-evs: 262, rw-vars: 12 (40.2) Z3, No BB 2 9 0 0 0.19s 20s
wn-evs: 7 Z3, BB 2 9 0 0 0.18s 12m34s

Barrier2 DPOR 0 2 9 - - 1h30m 2.2M
thrds: 13, evs: 805 Yices, No BB 0 2 4 0 5 5.11s 4m25s
l-evs: 136, l-vars: 2 11 342.27 Yices, BB (0) 2 4 0 5 5.02s 4m32s 52549

rw-evs: 340, rw-vars: 16 (42.5) Z3, No BB 2 9 0 0 0.24s 2m27s
wn-evs: 7 Z3, BB 1 6 4 0 0.26s 51m10s

account1 DPOR 0 0 10 - - 1h40m 839K
thrds: 11, evs: 902 Yices, No BB 51 7 0 0 3 2.47s 4m2s

l-evs: 146, l-vars: 21 61 307.6 Yices, BB (83.6) 7 0 0 3 2.46s 1m16s 25228
rw-evs: 430, rw-vars: 42 (34.1) Z3, No BB 7 3 0 0 0.19s 12s

wn-evs: 10 Z3, BB 7 3 0 0 0.18s 1m2s

account2 DPOR 0 2 19 - - 3h10m 400K
thrds: 21, evs: 1747 Yices, No BB 100 16 0 0 5 16.2s 2m6s
l-evs: 282, l-vars: 41 121 652.7 Yices, BB (82.6) 16 0 0 5 16.47s 2m7s 122896

rw-evs: 850, rw-vars: 82 (37.3) Z3, No BB 16 5 0 0 0.8s 1m50s
wn-evs: 20 Z3, BB 16 5 0 0 0.84s 10m26s

DaisyTest1 DPOR 1 1 0 - - 0.1s 5
thrds: 3, evs: 2998 Yices, No BB 140 1 0 0 1 16.64s 57.74s

l-evs: 422, l-vars: 10 142 88.5 Yices, BB (98.6) 1 0 0 1 16.46s 1m3s 45840
rw-evs: 2003, rw-vars: 45 (2.9) Z3, No BB 1 0 0 1 0.42s 7m33s

wn-evs: 15 Z3, BB 1 0 1 0 0.41s 11m2s

DaisyTest2 DPOR 2 1 0 - - 0.1s 6
thrds: 3, evs: 4998 Yices, No BB 200 2 0 0 1 31.4s 0s

l-evs: 699, l-vars: 14 203 88.5 Yices, BB (98.5) 2 0 0 1 31.51s 0s 286014
rw-evs: 3330, rw-vars: 64 (1.7) Z3, No BB 2 0 0 1 2.85s 2m10s

wn-evs: 25 Z3, BB 2 0 0 1 2.75s 3m7s

DaisyTest3 DPOR 2 1 0 - - 0.1s 6
thrds: 3, evs: 7999 Yices, No BB 288 2 0 0 1 42.92s 0s

l-evs: 1096, l-vars: 18 291 115.3 Yices, BB (98.96) 2 0 0 1 42.91s 0s 1.08M
rw-evs: 5341, rw-vars: 81 (1.4) Z3, No BB 2 0 0 1 10.75s 11m1s

wn-evs: 36 Z3, BB 2 0 0 1 11.51s 5m8s

Elevator1 DPOR 1 2 0 - - 1.9s 2
thrds: 4, evs: 3004 Yices, No BB 180 1 0 0 2 74.9s 1.69s

l-evs: 370, l-vars: 11 183 1306.17 Yices, BB (98.4) 1 0 0 2 75.8s 1.72s 82650
rw-evs: 1795, rw-vars: 70 (43.4) Z3, No BB 0 0 0 3 2.79s 11m4s

wn-evs: 0 Z3, BB 0 0 0 3 2.81s 5m36s

Elevator2 DPOR 6 0 0 - - 1m35s 125
thrds: 4, evs: 5001 Yices, No BB 225 1 0 0 5 182.31s 2.95s

l-evs: 610, l-vars: 11 231 1875.4 Yices, BB (97.4) 1 0 0 5 182.38s 2.97s 291534
rw-evs: 3668, rw-vars: 117 (37.5) Z3, No BB 0 0 0 6 12.16s 14m43s

wn-evs: 0 Z3, BB 0 0 0 6 12.30s 8m24s

Elevator3 DPOR 7 2 0 - - 12s 206
thrds: 4, evs: 8004 Yices, No BB 553 1 0 0 8 234.23s 1.98s

l-evs: 1128, l-vars: 11 562 3795.6 Yices, BB (98.4) 1 0 0 8 231.31s 1.97s 1.09M
rw-evs: 5601, rw-vars: 94 (47.4) Z3, No BB 0 0 0 9 55.33s 27m47s

wn-evs: 0 Z3, BB 0 0 0 9 55.87s 21m17s
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events) AB’s) (SMT)
philo DPOR 21 1 0 - - 1m30s 123K

thrds: 6, evs: 1141 Yices, No BB 6 20 0 0 2 18.39s 49.83s
l-evs: 126, l-vars: 6 28 273.5 Yices, BB (21.43) 20 0 0 2 17.63s 50.09s 93487

rw-evs: 857, rw-vars: 23 (23.9) Z3, No BB 20 1 1 0 0.78s 18m41s
wn-evs: 22 Z3, BB 20 0 2 0 0.71s 28m7s

Tsp DPOR 0 0 0 - - 0s 0
thrds: 4, evs: 45653 Yices, No BB 5 0 0 0 0 0s 0s
l-evs: 20, l-vars: 5 5 97 Yices, BB (100.0) 0 0 0 0 0s 0s 0

rw-evs: 25366, rw-vars: 42 (0.2) Z3, No BB 0 0 0 0 0s 0s
wn-evs: 3 Z3, BB 0 0 0 0 0s 0s

ThriftTrace1 DPOR 4 1 0 - - 0.04s 6
thrds: 4, evs: 2406 Yices, No BB 48 4 0 0 1 15.21s 25.15s

l-evs: 226, l-vars: 12 53 614.2 Yices, BB (90.6) 4 0 0 1 15.04s 25.24s 39808
rw-evs: 869, rw-vars: 62 (25.5) Z3, No BB 4 1 0 0 0.65s 2m14s

wn-evs: 53 Z3, BB 4 1 0 0 0.66s 7m31s

ThriftTrace2 DPOR 3 2 0 - - 0.04s 6
thrds: 4, evs: 2452 Yices, No BB 50 4 0 0 1 15.56s 25.18s

l-evs: 234, l-vars: 12 55 620.7 Yices, BB (90.9) 4 0 0 1 15.59s 25.2s 40692
rw-evs: 873, rw-vars: 62 (25.3) Z3, No BB 4 1 0 0 0.67s 2m47s

wn-evs: 55 Z3, BB 4 1 0 0 0.66s 7m11s

ThriftTrace3 DPOR 1 0 0 - - 0.1s 1
thrds: 10, evs: 4844 Yices, No BB 95 1 0 0 0 2.26s 0.12s
l-evs: 404, l-vars: 18 96 1044.5 Yices, BB (99) 1 0 0 0 2.24s 0.12s 10925

rw-evs: 1739, rw-vars: 129 (21.5) Z3, No BB 1 0 0 0 0.09s 5s
wn-evs: 91 Z3, BB 1 0 0 0 0.13s 55s

ThriftTrace4 DPOR 11 1 0 - - 0.1s 13
thrds: 4, evs: 6761 Yices, No BB 150 2 0 0 10 219.09s 2m52s

l-evs: 586, l-vars: 48 162 1304.3 Yices, BB (92.6) 2 0 0 10 222.25s 2m52s 238370
rw-evs: 2785, rw-vars: 171 (19.3) Z3, No BB 10 0 1 1 10.17s 21m46s

wn-evs: 125 Z3, BB 1 0 1 10 10.38s 1h5m40s

ThriftTrace5 DPOR 4 0 0 - - 0.4s 4
thrds: 20, evs: 8950 Yices, No BB 162 4 0 0 0 30.62s 3.6s
l-evs: 722, l-vars: 28 166 2200 Yices, BB (97.5) 4 0 0 0 30.49s 3.6s 143395

rw-evs: 3320, rw-vars: 223 (24.5) Z3, No BB 4 0 0 0 1.46s 44s
wn-evs: 165 Z3, BB 2 0 0 2 1.37s 6m37s

ThriftTrace6 DPOR 11 1 0 - - 0.2s 13
thrds: 4, evs: 11357 Yices, No BB 351 1 0 0 11 209.06s 0s

l-evs: 1384, l-vars: 48 363 1191.36 Yices, BB (96.7) 1 0 0 11 208.86s 0s 1.01M
rw-evs: 3184, rw-vars: 171 (10.5) Z3, No BB 10 0 0 2 22.57s 24m52s

wn-evs: 324 Z3, BB 1 0 0 11 22.65s 40m22s

ThriftTrace7 DPOR 5 0 0 - - 0.5s 5
thrds: 20, evs: 13561 Yices, No BB 362 0 0 0 5 154.06s 0s
l-evs: 1520, l-vars: 28 367 2495.6 Yices, BB (98.6) 0 0 0 5 156.85s 0s 744368

rw-evs: 3727, rw-vars: 223 (18.3) Z3, No BB 2 0 1 2 6.45s 29m4s
wn-evs: 372 Z3, BB 0 0 0 5 6.58s 34m28s

ThriftTrace8 DPOR 3 0 1 - - 10m1s 6K
thrds: 40, evs: 15975 Yices, No BB 309 3 0 0 1 82.64s 1.4s
l-evs: 1239, l-vars: 48 313 3874.9 Yices, BB (98.7) 3 0 0 1 82.51s 1.37s 435897

rw-evs: 5485, rw-vars: 429 (24.2) Z3, No BB 2 0 1 1 4.14s 20m26s
wn-evs: 259 Z3, BB 0 0 0 4 4.39s 32m41s

ThriftTrace9 DPOR 0 0 0 - - 0s 0
thrds: 10, evs: 16040 Yices, No BB 80 0 0 0 0 0s 0s
l-evs: 2981, l-vars: 18 80 2322.5 Yices, BB (100) 0 0 0 0 0s 0s 0

rw-evs: 1345, rw-vars: 107 (14.4) Z3, No BB 0 0 0 0 0s 0s
wn-evs: 1408 Z3, BB 0 0 0 0 0s 0s

ThriftTrace10 DPOR 1 0 0 - - 0.8s 1
thrds: 6, evs: 20640 Yices, No BB 501 1 0 0 0 1.28s 0.07s

l-evs: 1724, l-vars: 158 502 4321.8 Yices, BB (99.8) 1 0 0 0 1.24s 0.06s 4979
rw-evs: 8818, rw-vars: 519 (20.9) Z3, No BB 1 0 0 0 0s 2s

wn-evs: 349 Z3, BB 1 0 0 0 0s 11s

ThriftTrace11 DPOR 1 0 0 - - 0.9s 1
thrds: 6, evs: 25237 Yices, No BB 702 0 0 0 1 19.66s 0s

l-evs: 2522, l-vars: 158 703 3272.5 Yices, BB (99.9) 0 0 0 1 19.65s 0s 66806
rw-evs: 9218, rw-vars: 519 (12.9) Z3, No BB 0 0 0 1 0s 3m49s

wn-evs: 549 Z3, BB 0 0 0 1 0s 9m21s

Table A1: Experimental data of the serializability violation detection. (AB=atomic blocks,
SP=Static proofs, NV=Diagnosed to contain no violation after TAS failed the static check,
V=Violations found, TO=Timeouts, MO=Ran out of memory, BB=Bit-blasting). Note
that, AB=SP+NV+V+TO+MO.


