
Received February 18, 2016, accepted March 3, 2016, date of publication April 20, 2016, date of current version April 29, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2553671

High-Level System Design of IEEE 802.11b
Standard-Compliant Link Layer for
MATLAB-Based SDR
RAMANATHAN SUBRAMANIAN, (Member, IEEE), BENJAMIN DROZDENKO, (Member, IEEE),
ERIC DOYLE, (Member, IEEE), RAMEEZ AHMED, (Member, IEEE),
MIRIAM LEESER, (Senior Member, IEEE), AND
KAUSHIK ROY CHOWDHURY, (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA

Corresponding author: R. Subramanian (rsubramanian@coe.neu.edu)

This work was supported by MathWorks under the Development-Collaboration Research under Grant 1-945815398.

ABSTRACT Software-defined radio (SDR) allows the unprecedented levels of flexibility by transitioning the
radio communication system from a rigid hardware platform to a more user-controlled software paradigm.
However, it can still be time-consuming to design and implement such SDRs as they typically require
thorough knowledge of the operating environment and a careful tuning of the program. In this paper, our
contribution is the design of a bidirectional transceiver that runs on the commonly used USRP platform
and implemented in MATLAB using standard tools like MATLAB Coder and MEX to speed up the
processing steps. We outline strategies on how to create a state-action-based design, wherein the same
node switches between transmitter and receiver functions. Our design allows the optimal selection of the
parameters toward meeting the timing requirements set forth by various processing blocks associated with
a differential binary phase shift keying physical layer and CSMA/CA/ACK MAC layer, so that all the
operations remain functionally compliant with the IEEE 802.11b standard for the 1 Mb/s specification.
The code base of the system is enabled through the Communications System Toolbox and incorporates
channel sensing and exponential random back-off for contention resolution. The current work provides
an experimental testbed that enables the creation of new MAC protocols starting from the fundamental
IEEE 802.11b standard. Our design approach guarantees consistent performance of the bi-directional link,
and the three-node experimental results demonstrate the robustness of the system in mitigating packet
collisions and enforcing fairness among nodes, making it a feasible framework in higher layer protocol
design.

INDEX TERMS Software defined radio, IEEE 802.11b, CSMA/CA/ACK, energy detection, exponential
random back-off, MEX, reconfigurable computing.

I. INTRODUCTION
Software defined radios (SDRs) allow fine-grained con-
trol of their operation by executing the processing steps in
user-accessible program code [1]. This technology forms
the building block for applications needing high levels of
reconfigurability, such as access points that support multiple
wireless standards, or for systems like cognitive radios that
incorporate situational intelligence to evolve with the radio
frequency (RF) environment [2]. For example, in SDRs, the
network designer can tune basic elements, such as modula-
tion, spectrum spreading, scrambling, and encoding through

software functions, instead of relying on static hardware,
thereby allowing unprecedented access to all aspects of the
radio operation. However, significant expertise is required to
successfully navigate the hardware design, software imple-
mentation, wireless standards requirements, and computa-
tional timing limitations, which requires specialized training
and lengthens time to project completion.

A basic SDR system is composed of a computer connected
to a RF front end capable of receiving and transmitting
radio signals. A RF front end requires an antenna suited
for specified RF bands of interest, a transceiver chip that is

1494
2169-3536
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 4, 2016

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

comprised of at least one local oscillator, analog-to-digital
converter (ADC), and digital-to-analog converter (DAC), and
an interface (e.g. Ethernet cable) that connects the front end
to the computer. The computer may have a general pur-
pose processor to process the digital output and programs to
realize specialized tasks such as filtering, amplification, and
modulation, which have traditionally been implemented in
hardware. The design concept of the SDR is advantageous
because it reduces the need for special purpose hardware and
allows the developer to add new functionality to the radio
by modifying the software. The flexibility inherent in the
SDR allows for the potential to support many wireless stan-
dards, whereas a single hardware transceiver can only support
a few or one standard. Hence, the SDR device can be seen as
an increasingly affordable alternative.

Any modern wireless standard relies on accurate timing
to complete the standards-specified tasks. In SDR, as the
received and transmitted signals are represented as arrays of
data samples collected by the front-end, software process-
ing contributes to delays. Additionally, when multiple nodes
operate in a shared channel, timing issues add to the chal-
lenge of ensuring synchronized behavior between multiple
nodes. In the absence of hardware clocks, the SDR must
devise a means of calculating how much time has elapsed,
so that transmission and reception functions are performed at
the appropriate intervals. The processing functions and their
internal parameters must also be open for change, should a
better algorithm be designed, or if no set thresholds may be
possible, as is the case in highly challenging environments
with variable noise floor. Finally, the software running on
the SDR must be structured in a hierarchical manner, so that
its functionality can be separated into layers that are com-
pliant with the Open Systems Interconnection (OSI) model.
Thus, the base drivers that interface with the RF front-end
platform should be abstracted from the physical (PHY) layer
functionality, which in turn should be abstracted from the
medium access control (MAC) layer logic. In summary, there
are many design challenges that must be overcome before
a highly customizable SDR platform is made available for
general purpose use.

This paper details our approach to realize a SDR plat-
form using commonly available tools. We believe that true
and repeatable systems-level research is only possible when
a commonly used processing environment is used in con-
junction with affordable SDR hardware. This motivates our
choices for basing our work on MATLAB software and Ettus
USRP N210 hardware [3]. Our approach introduces a novel
methodology for an implementation starting at the USRP
hardware driver (UHD) and building progressively up the
protocol stack. To facilitate quick deployment, it includes
an initialization script for the setting and tuning of the
reconfigurable parameters at the physical layer based on the
specific channel measurements at the chosen experimental
site. Importantly, it complies with the processing defini-
tions in the IEEE 802.11b specification, though hardware
limitations increase the time to completion of the entire

transmission/reception cycle compared to an off-the-shelf
hardware-only Network Interface Card.

Our approach advances the state of the art and contributes
to the research community in the following ways:
Standards Compliant Link Layer: Our approach is based

on the IEEE 802.11b specifications [4], faithfully modeling
the DATA and ACK packet structure, and implements both
PHY-layer and MAC-layer protocols. Further, our work
provides a testbed to experiment with new MAC proto-
cols starting from the fundamental IEEE 802.11b compliant
standard.
State-Action Based Design: We model our system using

a finite state machine (FSM) that transitions only on the
clock cycles derived from the USRP clock, allowing for slot-
time synchronized operations. In this manner, we eliminate
the need for external clocks that would be necessary in a
hardware-based design, or interrupts that may be preferable
using a real-time operating system.
Design Methodology Using a Common Operating

Environment:We use the Ettus Research Universal Software
Radio Peripheral (USRP) hardware, a radio front end com-
monly used in wireless research. As the basis for our software
design, we use MATLAB R2015b and the Communications
System Toolbox Support Package for USRP-based radio [5].
We use the MATLAB tools such as MATLAB Coder and
the MEX interface to provide for acceleration and timing
consistency in the execution of system blocks.
Full Parameter Flexibility: Using a software-only

approach and parameterizing the most important variables
allows the user to reconfigure the system as needed to adapt
to changes in its environment.
Publicly Available: Our software is released to the public

for research purposes under the GNU Public License (GPL),
and is available for download directly from GitHub [6] and
MATLAB Central [7]. The modularity of our code makes it
relatively easy to manage and will enable extensibility by the
community.

The rest of this paper is organized as follows. In Sec. II,
we present the system architecture. We discuss related work
on SDR using heterogeneous systems and software platforms
in Sec. III. In Sec. IV, we describe the slot-time synchro-
nized operations around which the state machines for the
designated transmitter and receiver are modeled, and we
identify the common system blocks. We describe the algo-
rithms implemented for RFFE and preamble detection in the
PHY Layer, followed by a discussion on parameter selec-
tion and same-frequency channel operation in Sec. V. The
MAC layer design and key algorithms required to implement
the CSMA/CAprotocol, such as energy detection and random
backoff, are described in Sec. VI. The experimental setup
involving the USRP N210 platform and MathWorks prod-
ucts is given in Section VII. In Sec. VIII, we undertake a
comprehensive performance evaluation of the two node and
three node system and establish through the experimental
results that the system exhibits fairness. Sec. IX concludes
the paper.

VOLUME 4, 2016 1495

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

FIGURE 1. System architecture.

II. SYSTEM ARCHITECTURE OVERVIEW
The operational steps that architect our system are shown
in Fig. 1. In a given SDR pair, we identify clearly the
transmitting and receiving node by using the terms des-
ignated transmitter (DTx) and designated receiver (DRx).
This terminology helps avoid ambiguity in describing a bi-
directional transceiver link, where the transmitter must send
out its DATA packet and then switch to a receiver role to get
the acknowledgement (ACK). Thus, in the discussion ahead,
the DTx alternates between its transmit and receive func-
tions, and the DRx alternates between receive and transmit
functions.

In the initialization step, the system is preset with rec-
ommended parameters and lets the user modify a number
of parameters for the entire transceiver chain. The user
then, in a simulation-only environment, initiates a parameter
exploration stage, where all the nodes are virtual and are
contained within the same computer. The DTx and DRx
codes are executed with the user-supplied parameters as con-
stants, and the code cycles through possible variations in the
settings of processing blocks as well as entire algorithms,
each time identifying the performance that results from these
settings.

From this data set, the user is presented with a feasible
set of parameter settings. These parameter settings result
in less than 5% packet loss at the receiver. This represents
the best case scenario, for it should be noted that further
channel outages will be introduced by the actual wireless
channel. Once the user selects one of the possible feasible
configurations returned by the search, the code is ready for
driving the USRPs for over-the-air experiments.

We adopt the IEEE 802.11b PHY and MAC layer packet
structure specifications in our implementation [4], [8]. Our
approach collects all the bits in the packet in multiples
of 8 octets, which forms one USRP frame. This makes
it easy for us to work with the MATLAB system objects

(specialized objects required for streaming, henceforth
referred to as objects) and with PHY and MAC header fields
in the DATA/ACK packet that happen to have sizes that are
multiples of 8 octets. Multiple USRP frames will compose
the standard-compliant 802.11b packet.

We use differential binary phase shift keying (DBPSK),
as the differential component enables us to recover a binary
sequence from the phase angles of the received signal at any
phase offset, without compensating for phase. In addition,
DBPSK requires only coarse frequency offset compensation,
without any closed-loop techniques. If residual frequency
offset is much less than DBPSK symbol rate, then the bit error
rate (BER) approaches theoretical values [9].

III. RELATED WORK
A. SDR SOFTWARE PLATFORMS
Specialized software is needed to effectively work with the
SDR systems and perform the signal processing tasks needed
to instantiate wireless communications, such as modulation,
preamble detection, encoding, and filtering. GNU Radio is
one of the most widely used SDR programs, owing to the
fact that it’s open source, hardware-independent, and mod-
ifiable [10]. Its GUI, GNU Radio Companion, allows the
user to build block diagrams to represent complex encod-
ing and decoding schemes. Modules are built in C++,
ordering of components performed in Python, and connec-
tions are made using SWIG. Built-in modules allow the
user to perform various types of modulation (e.g. GMSK,
PSK, QAM, OFDM) and error-correcting codes (e.g. Reed
Solomon, Viterbi, turbo). The Software Communications
Architecture (SCA) is another open-source, HW-independent
framework that models SDR components using data flow
diagrams. It is also written using C++ and Python, but
intra-block message-passing is accomplished using Common
Object Request Broker Architecture (CORBA) middleware.
Different software blocks are graphically represented using
Unified Modeling Language (UML). The OSSIE software
effects an SDR using the SCA framework for interaction with
the USRP board [11]. OSSIE provides a GUI to enable the
designer to create new waveforms, add new signal processing
and modulation routines, and generate the C++/Python code
for SCA-CORBA interactions.

B. SDR ON HETEROGENEOUS SYSTEMS
There are existing SDR projects implemented on het-
erogeneous systems that make use of a combination of
hardware components to handle computing tasks, includ-
ing digital signal processors (DSPs), application-specific
integrated circuits (ASICs), and field-programmable gate
arrays (FPGAs). [12] describes an SoC design for placing
transceiver components, including RF receivers at 2 GHz
and 5 GHz, a voltage controlled oscillator (VCO), and a
baseband filter. Kim and Cho [13] proposes a hardware archi-
tecture for an embedded software modulation/demodulation
(modem) platform, implementing IEEE 802.11a PHY using

1496 VOLUME 4, 2016

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

the Altera Stratix II FPGA and S3C2410 ARM processor.
Jiao et al. [14] realizes BX501 components on an ASIC
and hardware modules for MAC-layer control on FPGA
in Verilog.

In addition, there are SDR projects that are implemented
in both hardware and software on a platform that comprises
both processor and FPGA, and this often includes many
custom-made components.WARP is scalable, extensible pro-
grammable wireless platform produced by Rice University
to prototype advanced wireless networks [15]. It combines a
MAX2829 RF transceiver, high-performance programmable
hardware Xilinx Virtex-4 FPGA board, and an open-source
repository of reference designs and support materials. This
platform has been used to build, among many other things,
a full duplex IEEE 802.11 network with OFDM and a
MAC protocol [16], and a distributed energy-conserving
cooperation MAC protocol for MIMO performance improve-
ments [17]. USC SDR presents a wireless platform to remove
bottlenecks from current SDR architectures [18]. It com-
bines Xilinx VC707 PCI FPGA development boards with
self-sufficient radio front-end daughterboards to make a
MIMO testbed, using the FPGA Mezzanine Card (FMC)
connection. Real-time SW architecture allows user programs
to perform signal processing tasks, PHY- and MAC-layer
algorithms. The Sora soft-radio stack combines a Radio
Control Board (RCB) with a multi-core CPU. The RCB
that consists of a Virtex-5 FPGA, PCIe-x8 interface, and
256MB ofDDR2 SDRAM [19].Microsoft Research built the
SoftWiFi Demo radio system to interoperate with
802.11a/b/g NICs, and it uses a company-proprietary lan-
guage for SDR description.

There are other SDR projects that are implemented using
Xilinx Zynq SoC, utilizing both the PS/ARM processor and
PL/FPGA fabric. Iris uses XML description to link together
components to form a full radio system [20]. Components
are run within an engine, which could be either a PS pro-
cessor core or PL logic fabric. It’s tested using OFDM for
video transmission. GReasy presents a GNU radio version for
Xilinx Zynq, using Tflow to instantly program FPGA
fabric [21]. Özgül et al. [22] uses Zynq SoC to implement
digital pre-distortion algorithm (DPD), which mitigates the
effects of power amplifier (PA) nonlinearity in wireless trans-
mitters, something required for 3G/4G base stations. This
uses Vivado HLS to design the PL component and receives
up to 7X speedup from HW acceleration. Dobson et al. [23]
proposes a scalable cluster of Zynq ZC702 boards, controlled
by a Zedboard that acts as a task mapper to partition data
flows across the Zynq FPGAs and ARM cores. tFlow rapid
reconfiguration software was used to build FPGA images
from a library of pre-built modules.

Collins and Wyglinski [24] describes an SDR-based
testbed that implements a full-duplex OFDM physical layer
and a CSMA link layer using MATLAB R2013a, MATLAB
Coder on USRP-N210 and USRP2 hardware. The
IEEE 802.11a based PHY layer, incorporates timing
recovery, frequency recovery, frequency equalization, and

error checking. The CSMA link layer involves energy detec-
tion based carrier sensing and stop-and-wait ARQ. It outlines
some strategies in establishing bidirectional communications.
However, this approach involves additional development
efforts to improve speed and enable full-duplex operation.

The above platforms make for capable choices in terms
of performance. However, our choice of the operating envi-
ronment was motivated by the price point, which is why
we chose to use the combination of USRP N210 hardware
and MATLAB software towards link layer implementation.
So far there has been little support for MATLAB in the exist-
ing SDRs and, in this regard, our framework allows for quick
development of new higher layer protocol design. In addition,
our software-only infrastructure allows for full flexibility of
parameter choices, an option not available to many other
SDR platforms.

IV. STATE-ACTION BASED SYSTEM DESIGN
Our approach involves first designing a number of (i) state
diagrams to reflect the logical and time-dependent opera-
tional steps of our system, and (ii) block diagrams to reflect
the sequential order of operations. Furthermore, we structure
the MATLAB code in a way that enables slot-time synchro-
nized operations. For the implementation, we use MATLAB
Coder to generate the MEX functions for the USRP objects
on an Ubuntu 64-bit platform that serves as the host computer
for the USRPs.

Since the underlying code in a MEX function is written
in C, it is generally faster than the interpreted MATLAB.
The speed-up in performance can vary depending on the
application. In our case, we preferred the MEX interface
because it can enforce a consistent processing time per frame.
The interpreted MATLAB, unlike the MEX, lacks this ability
because it exhibits significant deviation from the desired tim-
ing. In addition, time-sensitive operations such as frequency
offset compensation, show speed improvement using MEX.

Our system design builds upon an already-defined plat-
form, the USRP, produced by a well-known platform sup-
plier, Ettus Research [3]. The communication between the
USRP and host computer is established in MATLAB using
the Communications System Toolbox (CST) USRP Radio
support package, which acts as a wrapper for the Ettus USRP
Hardware Driver (UHD) drivers. Identifying the manner in
which the RF samples are transported between the USRP and
a calling function defines the manner in which we must build
the physical (PHY) layer, as illustrated in Fig. 2.

TheUHD transfer of a frame of samples to a transmit buffer
is performed as soon as it is requestedwhile theUHD retrieval
of a frame from a receive buffer has to wait until the next
rising edge of a clock cycle before trying to retrieve again.
The most common undesirable behaviors that can occur are
underflow and overflow. Underflow occurs when the radio
requests for a frame of data from the transmit buffer, but the
host is not yet ready to provide it. Overflow occurs when
the receive buffer becomes full and buffered data must be
overwritten.

VOLUME 4, 2016 1497

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

FIGURE 2. System methodology.

In this regard, we define real-time operation over the course
of an entire DATA-ACK packet exchange using equation (1)
below:

treceive ≤ tradio (1)

where tradio is the frame time stipulated by the USRP radio’
s analog-to-digital converter (ADC) and treceive is the average
time to recover any given frame, which includes the time to
retrieve a frame from the receive buffer, process the retrieved
frame to decode it into the corresponding bits, and other
memory and conditional operations.

Essentially, we operate in real-time if we meet the timing
deadline set forth by equation (1). Such an operation will
guarantee a stable, basic bi-directional link that shows no sign
of any undesirable system behavior, such as buffer underflow
or buffer overflow.AMACprotocol that effectively schedules
packet transmissions reduces the potential for packet colli-
sions and buffer overflow, thereby decreasing packet errors.

A. SLOT-TIME SYNCHRONIZED OPERATIONS
Any IEEE 802.11-based wireless transceiver implementation
must have the ability to perform operations based on some
slot-based timing. Performing such slot-time synchronized
operations will let us realize time-sensitive functions, for
example, make a nodewait for a backoff (BO) duration before
sending a DATA packet.

Interpreted MATLAB or any other software that runs on
the host computer may have trouble performing such oper-
ations in this manner, even by actively waiting. For this
reason, we rely on the USRP for our timing. Using the value
for USRP interpolation/decimation defined in Section V-C1,
we can calculate the slot time. Then, we write our while loop
in the main program so that it calls the transceive function
once per loop, running helper functions to prepare data to
transmit or process received data based on the active state,
as shown in the program code in Listing 1.

At the heart of the transceiver model is the transceive
function, as shown in Listing 2. By design, transceive is

Listing 1. Main program calls transceive function.

Listing 2. Transceive function code.

called at a constant time interval that we define as a slot time.
At each slot time, transceive sends and receives a fixed
number of samples, which we refer to as a USRP frame.
We define a slot time as the smallest unit of time in which

our SDR can make a decision. In our design, the frame time
is the minimum time our system takes to make a decision
and hence, we equate it to the slot time. In this regard, our
transceive function performs two actions: it gets a frame
from, and puts a frame into the USRP buffers at fixed time
intervals [9]. A data frame is sent or received every slot
time and further, the functions we define for processing the
received data frame or preparing a new data frame to transmit
are intended to complete in less than a slot time to ensure
timing accuracy. In practice, we recognize that the processing
time for certain frames may exceed the radio time, tradio, but
the recovery time, treceive, converges to the radio time.
When a node (either DTx or DRx) enters a transmit state

(refer to Fig. 3), it transmits the samples in the transmit buffer
and ignores all samples in the receive buffer. On the other
hand, when a node enters a receive state, it retrieves samples
from the receive buffer for processing and puts zeroes in the
transmit buffer. This way, we make sure that the samples in
the transmit and receive buffer are current and relevant.

The step method of the transmitter object operates in
a blocking way as it returns only after the radio accepts
the frame to be transmitted. On the other hand, the step

1498 VOLUME 4, 2016

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

Figure. 3. Transceive function behavior as defined by operational state.

method of the receiver object returns right away, hence it is
non-blocking.

The step call of receiver object will return 0 as length of
the received frame if there is not enough data in the radio.
Once the radio collects enough data, the next step call returns
a non-zero length value and the valid data. Since we know the
sample rate of the data and the number of samples in a frame,
we can calculate how long it takes to get one frame of data
from the radio. The while loop blocks the transceive function
until a frame of data is received. Therefore, we can use the
call duration of this function as our clock source.

B. DESIGNATED TRANSMITTER STATE MACHINE
In implementing the carrier sense multiple access with colli-
sion avoidance (CSMA/CA)-based protocol in the link layer,
we identify 4 main states for the DTx, as shown in Fig. 4.
Table 1 identifies the blocks in each substate and is described
in detail in Section IV-D.

Figure. 4. States for the designated transmitter (DTx).

1) DETECT ENERGY
At the start, a new USRP frame arrives, and gets stored in a
receive buffer. The DTx begins to continually sense energy in

TABLE 1. Substate operation combinations.

the channel and decides to transition either into a backoff state
or to a transmit state depending on whether or not the channel
is busy. It first waits for a DCF interframe spacing (DIFS)
duration and then waits for a random amount of time that
is chosen uniformly from a progressively increasing time
interval. Only when the channel is free does the DTx decre-
ment the chosen random backoff time; otherwise, it stalls.
Only when the backoff time counts down to zero does the
DTx attempt to transmit.

2) TRANSMIT DATA
Upon entering this state, the DTx prepares the DATA packet
and then, by calling the transceive function continually,
places it in the transmit buffer of the USRP which then gets
transmitted over the air. After transmitting the DATA packet,
two possibilities exist. The transmission is successful with the
reception of an ACK, or the transmission is not successful due
to packet collision with another DTx.

3) RECEIVE ACK
As soon as the DATA packet is transmitted, the DTx moves
into the Receive ACK state, searching and decoding the Phys-
ical Layer Convergence Procedure (PLCP) header in the
received ACK. If that is successful, the frame control and the
address fields are read-out from the subsequent MAC header
and checked for accuracy. The DTx then progresses to trans-
mit a new frame and repeats the above mentioned sequence of
steps until the last frame is successfully transmitted. On the
other hand, if no ACK is received, the packet is considered
lost and the DTx backs-off for an increased random backoff
time and re-attempts transmission.

4) END OF TRANSMISSION
When there are no more DATA packets left to be transmitted,
the DTx reaches the end of transmission (EOT) state.

C. DESIGNATED RECEIVER STATE MACHINE
Similarly, we identify 3 main states for the DRx as shown
in Fig. 5. Unlike the DTx, the DRx does not perform energy
detection.

VOLUME 4, 2016 1499

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

Figure. 5. States for the designated receiver (DRx).

1) RECEIVE DATA
When the DRx successfully detects the Preamble and the
Start Frame Delimiter (SFD), it decodes the PHY and
MAC header and then progresses to extract the payload.
When extracting the last set of payload bits, Frame Check
Sequence (FCS) is obtained and checked.

2) WAIT SIFS
TheDRxwaits for a fixed interval of time, referred to as Short
Inter-frame Space (SIFS), before sending anACK packet post
reception of the DATA packet.

3) TRANSMIT ACK
The DRx sends out an ACK addressed to the DTx when it
successfully retrieves all the payload bits.

D. SYSTEM BLOCKS
Within each of the substates in the FSM diagrams
(Figs. 4 and 5), there are sequential operations that need
to be performed. In order to simplify the logic of which
operations must be performed in each state, we define a
number of blocks to comprise the most common operations,
as shown in Table 1. Identifying the grouping of blocks with
the related substates helps better organize and restructure the
implemented code.

In each substate of DTx state 2 (Tx) and DRx state 2
(Tx ACK), SMSRC is performed prior to each transceive
(send and receive operation). In DTx substate 3.1 and
DRx substate 1.1, RFFE and PD are performed after each
transceive. In DTx substate 3.2 and DRx substates 1.2, RFFE
and DDD are performed after each transceive.

V. PHY LAYER ALGORITHMS
A. RF FRONT END ALGORITHMS
The components in the RFFE block recover a signal
prior to preamble detection. These include the auto-
matic gain control (AGC), frequency offset estimation and
compensation, and raised cosine filtering. The ordering
of these components is an important consideration, and

through exhaustive simulations, we found the preceding
order to be ideal. The AGC algorithm counters attenua-
tion by raising the envelope of the received signal to the
desired level. We chose to use the MATLAB comm.AGC
object [25]. To accurately estimate the frequency offset
between the receiver and the transmitter, we chose to use
the comm.PSKCoarseFrequencyEstimator object,
which uses an FFT-based-based method, based on equa-
tion (2), and finds the frequency that maximizes the FFT of
the squared signal:

foffset = argmax
f

F{x2} (2)

where x is the signal, F denotes the Fast Fourier
Transform (FFT), and foffset is the frequency offset.

1) SPEEDING UP THE RFFE BLOCK
From our initial experiments, we know that a frequency
resolution (on the order of 1-10 Hz) is necessary in order
to do preamble detection accurately. Setting such a low fre-
quency resolution takes too long to execute with a sample rate
of 200 kHz, or 200,000 samples per sec. For this rea-
son, we decided to decimate the signal by a factor of 22
(the RCRF factor times the spreading rate) before CFOE,
which is, in essence, an FFT. After decimation, we experi-
mented with raising the CFOE’s frequency resolution by an
order of magnitude to 10-100 Hz, and determined that it is
accurate up to 100 Hz and meets the timing guidelines set by
radio time.

Listing 3. RFFE decimation method.

We employ a FIR Decimator step, as shown in Listing 3,
that enables us achieve an order of magnitude reduction in
RFFE block execution time. In essence, we are able to get
enough frequency estimation accuracy with reduced sample
rate (hence the use of decimation) and 100 Hz frequency
resolution, which requires much less processing power than
full frame higher resolution estimates.

B. PREAMBLE DETECTION ALGORITHMS
The IEEE 802.11b preamble is a sequence of all one bits
that undergoes scrambling. Since the scrambling phase is not
known, and the received signal is correlated to the zero phase
scrambled sequence, the maximum correlation position may
not be the synchronization position. Therefore, the standard
provides Start Frame Delimiter (SFD), to fine tune the syn-
chronization time.

Preamble detection (PD) is performed in two stages.
In the first stage, we perform a cross-correlation of the

1500 VOLUME 4, 2016

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

received complex data after raised cosine filtering with the
expected real preamble to get an estimate of where the pream-
ble starts, giving the so called synchronization delay. Finally,
in the second stage, we look for the SFD immediately after
the preamble in the descrambled bit stream. If it is not in the
expected place, we perform a cross-correlation on a window
of descrambled frame samples to the left and right to further
fine-tune the synchronization delay.

1) OPTIMIZATION OF PREAMBLE DETECTION
Detecting the Preamble fast and with high accuracy is crit-
ical to the speed at which the nodes can reliably exchange
DATA/ACK packets. In one implementation, we exploit
the property of the cross-correlation of two real signals in
the frequency domain to compute the same (i.e. the point-
wise product of the Fourier transform of the two signals),
followed by an inverse Fourier transform resulting in the
cross-correlation of the two signals. Since one of the signals
is the expected preamble, its Fourier transform can be pre-
computed and loaded into the workspace during run-time.

We experimented with several MathWorks utilities to com-
pute cross-correlation faster (e.g. dsp.CrossCorrela
tion object, xcorr function).
We determined the version of dsp.Crosscorrelator

(‘method’, ‘fastest’) compiled using MEX to be
the fastest among all the candidate methods for computing
cross-correlation with increasing signal lengths, as shown
in Fig. 6. It is important to note that although we operate with
signal lengths on the order of 103, preamble detection is a
frequent operation, so savings in time add up quickly.

Figure. 6. Comparison of execution time for 5 methods of computing
cross-correlation.

We declare packet detection only if the second stage finds
a perfect match for the SFD. This approach greatly minimizes
false packet detections.

C. PARAMETER SELECTION
The initialization step described in Section II lets us carefully
choose a number of design parameters (see table 2).

1) CONSTANT PARAMETERS FOR USRP &
IEEE 802.11b PACKET
We recognize parameters that cannot change during packet
transmission/reception and have to be fixed. The number of

TABLE 2. Important parameters.

octets in the payload per IEEE 802.11b packet should be
maximized to decrease the header overhead. In that case,
a large frame size is preferred as it reduces the percentage
of overhead processing. On the other hand, the frame size
should be minimized to make quick decisions with a small
number of samples or bits, unlike a large frame size which
increases the frame time, thereby reducing the resolution of
time ticks for the system. We chose frame length of 1408 as a
well balanced compromise between these two requirements.
For this reason, the frame length is left fixed.

The USRP N210 analog-to-digital converter (ADC)
operates at a fixed rate of 100MHz. The USRP interpolation-
decimation rates control the rate of transmitting and receiv-
ing frames. For example, setting interpolation rate, Ri, and
decimation rate, Rd , to 500 ensures that the ADC and DAC
convert a sample every 5 µs, as shown in equation (3).

tsample = Ri/(100Msamples/sec)

= 500/108

= 5× 10−6sec/sample (3)

Setting frame length, Lf , to 1408 samples means that a frame
is retrieved by the transceive function every 7.04ms, as shown
in equation (4).

tradio = Lf × (Ri/100Msamples/sec)

= 1408× (500/108)

= 7.04× 10−3sec/frame (4)

Even though our system may take more than 7.04 ms to
process a frame every once in a while, the buffers in the
USRP receiver prevents the system from overrunning (or lose
samples) and the system, on average, stays real-time.

2) TUNABLE PARAMETERS FOR RFFE BLOCK
Tunable parameters can change during transception. For
example, the AGC adaptation step size controls the conver-
gence speed of a received signal’s envelope to the desired
level. In other words, it governs the speed of convergence.
The frequency offset estimation component’s frequency res-
olution setting is an important design consideration as it is

VOLUME 4, 2016 1501

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

inversely proportional to the FFT length. A lower frequency
resolution gives more accurate offset estimates, but with
increased computational time.

D. SAME-FREQUENCY CHANNEL OPERATION
In amulti-node setting, it is advantageous to operate the trans-
mit and receive links, at theDTx andDRx, in the same band of
frequencies. Thus, we set both DTx and DRx to operate at the
same center frequency. Unlike different-frequency channel
operation, this eliminates the need for repeated switching of
transmit and receive center frequencies when transitioning
among the energy detection, transmit, and receive states.
In addition, it makes for an easier implementation of medium
access and contention resolution.

From our initial experiments, we learned that the receive-
only port, RF2, of the USRP leaks about 7 dBm into the
transmit & receive port,RF1. The effect of this leakage causes
the DTx to detect the preamble in its own DATA packet while
it is waiting for an ACK. We added logic to ensure that the
DTx rejects its own DATA packet as soon as it reads theMAC
header and does not find the expected ACK frame control
sequence.

VI. MAC LAYER DESIGN
We first implement the CSMA/CA protocol that allows the
nodes to sense the channel and attempt to transmit packets
only when the channel is idle to avoid packet collisions. Then,
we modify this base implementation with the standards-
specific functions, as described below.

Figure. 7. CSMA/CA/ACK timeline chart - energy detection.

A. MAC OVERVIEW
Our MAC layer employs the Distributed Coordination Func-
tion (DCF) strategy incorporating the CSMA/CAmechanism
as it is described in the IEEE 802.11 specification [8]. Our
implementation incorporates the key features of CSMA/CA,
namely, 1) carrier sensing via energy detection, 2) DCF inter-
frame spacing (DIFS) duration, and 3) exponential random
backoff. An illustration of the overall steps of the operation
is shown in Fig. 7 and Fig. 8.

1) ENERGY DETECTION
Channel occupancy can be identified by detecting RF
energy in the channel. Energy in the channel is computed

Figure. 8. CSMA/CA/ACK timeline chart - exponential random backoff
and retransmission.

using equation (5).

Energy =
n=N∑
n=1

|x(n)|2 (5)

In our implementation, x(n) represents the samples in the
USRP frame retrieved from the receive buffer of the USRP.

2) DIFS PERIOD
The standard specifies that when a packet is prepared by the
DTx and ready to be sent to the intended DRx, the DTx must
actively listen to the channel for a fixed specified amount
of time known as the DIFS period. If during this period,
the DTx senses RF signal energy from other transmitting
devices (i.e. when the channel is found busy), it defers the
transmission and enters a Channel Occupied state. In this
state, the DTx stays idle as long as the ambient RF energy
is above a specified threshold. When the energy drops below
the threshold (i.e. the medium is sensed to be free), the DTx
resets the DIFS duration and starts counting down again.

3) BINARY EXPONENTIAL RANDOM BACKOFF
This method of random backoff is used to schedule retrans-
missions after collisions. Essentially the retransmissions are
delayed by an amount of time determined by a minimum
contention window, cmin, and the number of attempts to
retransmit the DATA packet. With this increased number of
retransmit attempts, the delay can increase exponentially.

When the DIFS duration runs out, the DTx transitions
to the exponential random backoff state wherein it gener-
ates a random backoff delay uniformly chosen in the range
[0, W− 1] where W is called the contention window (CW).

In correspondence with the IEEE 802.11 standard, time
is slotted using a basic time unit which is the time needed
to detect the transmission of a packet from any other sta-
tion. In our implementation, tradio represents the basic time
unit for the system, within which we can detect another
DTx transmitting.

As an example, after k collisions, a random number of slot-
times is chosen at random from [0, 2k − 1] as described in
equation (6).

Random Back-off Delay = randi[0, 2k − 1]× tradio (6)

The MATLAB randi function picks an integer uniformly
at random from the specified interval. In our implementation,
we have the option to truncate the exponentiation with a fixed

1502 VOLUME 4, 2016

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

number of retransmits so as to have a ceiling for the Random
backoff Delay.

VII. EXPERIMENTAL SETUP
We use the USRP N210 platform [3], as it allows us to
define the parameters listed in Section V-C.1, connect to a PC
host using a gigabit Ethernet cable, and to program it using
MATLAB [5]. We use the Ubuntu OS, with send and receive
buffer sizes for queues set to ensure that there is enough
kernel memory set aside for the network Rx/Tx buffers.
We also set the maximum real-time priority for the
usrp group to give high thread scheduling priority.
This change is made by adding a line to the file
\etc\security\limits.conf that sets the rtprio
property for the @usrp group to 50. The overall setup is
shown in Fig. 9.

Figure. 9. Transceiver hardware setup.

A. COMMUNICATIONS SYSTEM TOOLBOX
USRP SUPPORT PACKAGE
We use the Communications System Toolbox objects for
our design [26]. We used the comm.AGC object and the
PSK coarse frequency offset estimator that allows us to
work with FFT-based options. These objects facilitate easy
generation of C code using MATLAB Coder. Here, the
comm.SDRuTransmitter object puts a frame on the
USRP transmit buffer, and comm.SDRuReceiver gets a
frame from the USRP receive buffer. However, this approach
has some disadvantages, such as a requirement for fixed
frame length and single-threaded step methods.

B. MATLAB CODER
A number of steps must be taken to make the MATLAB
code ready for C code generation using MATLAB Coder.
All variables that do not change over the course of the pro-
gram execution are given a static size and type (including
real or complex). All objects are declared as persistent vari-
ables as they cannot be passed into MEX functions. The first
call to each function tests whether the persistent variable is
empty, and initializes each object if true. The transceive and
RFFE function code are designed in this manner.

VIII. EXPERIMENTS AND RESULTS
We choose to evaluate our system using a number of exper-
iments. First, we time the reception of DATA packets at

the DRx. Next, we time the RFFE block using both inter-
preted MATLAB and MEX. We then perform a two node
experiment, measuring bi-directional link latency and packet
error rate. We then profile execution time in the transmitting
states. Finally, we perform a three node experiment, measur-
ing previous metrics and goodput.

In the three node experiment, we address the fairness in our
system. Considering two bi-directional links emerging from
two DTxs but incident on a DRx helped us to design (within
hardware constraints) and demonstrate a stable bi-directional
link and allowed us to test the fairness enabled by the
MAC protocol in the most simplified way, thereby elimi-
nating the need for further multi-node scenarios. Perform-
ing more scenarios would require setting up and performing
experiments involving multiple nodes and host machines, and
would take a large amount of effort. Such an effort would not
have helped us in attaining our goal of fairness assessment.
In addition, we can presume that an increase in the number
of DTx nodes would exhibit less fairness because it increases
the likelihood of collisions. In this situation, nodes that would
collide would also choose to wait for increased backoff peri-
ods, which would give other nodes an increased opportunity
for transmissions. Additional tests would not be necessary to
confirm this hypothesis.

Figure. 10. Process time per USRP frame at DRx.

A. TIMING DATA PACKET RECEPTION AT DRx
At the DRx, after preamble detection, the elapsed time to pro-
cess each retrieved USRP frame corresponding to an entire
DATA packet is shown in Fig. 10. The dotted line represents
the average of all the frame processing times towards a DATA
packet reception. The DTx sends out a DATA packet that is
made up of 258 USRP frames. After recovering the header
bits, the DRx retrieves the payload, which is 250.5 USRP
frames (2004 octets). Since the Preamble is 128 bits long, it
corresponds to 2 USRP frames. Hence, we account for the
reception of (258 − 2) = 256 USRP frames in the DATA
packet.

The time to process any given frame usually falls below the
desired frame time, tradio, and is fairly constant at 2.87 ms.
The first set of frames have a higher processing time because
they consist of the MAC header information that must be
resolved (e.g. frame control, MAC address).

VOLUME 4, 2016 1503

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

Figure. 11. RFFE block timing using interpreted MATLAB and MEX.

B. RFFE BLOCK TIMING
The timing of the RFFE block for various values of the
frequency resolution parameter in interpreted MATLAB and
C code compiled into MEX is shown in Fig. 11. The addition
of a FIR decimation step in the RFFE block reduces the
sampling rate of the input for the subsequent coarse frequency
offset estimation (CFOE). This reduction helps in increasing
the frequency resolution, currently set at 100 Hz, which is
the key parameter in controlling the execution time of CFOE.
Further, we benefit from the improved accuracy of CFOE
in that it corrects the signal so well that the later preamble
detection block produces the correct synchronization delay
to detect the start of DATA/ACK packet. The results clearly
establish that average execution time for the RFFE block
decreases with increase in frequency resolution. The reason
for this is that CFOE uses progressively smaller FFT lengths.
As before, the average execution time usingMEX is generally
smaller than using interpreted MATLAB. Also, the standard
deviation for MEX results is always significantly less. Hence,
MEX is a better option for the purpose of enforcing consis-
tent RFFE execution times, which is required for slot-time
synchronized operations.

C. TWO NODE PERFORMANCE (1 DTx AND 1 DRx)
Link layer contention resolution and other MAC layer func-
tions depends on the ability to reliably generate alternating
DATA-ACK packets between the sender and receiver. In this
regard, determining the performance of this basic link is
important.

Packet error rate (PER) and bi-directional link latency
are key performance indicators of the two node system.
Of particular interest is the performance of the system when
the transmit power level of the DTx is decreased below
standard levels. The DTx was set up to send IEEE 802.11b
compliant packets eachwith a large payload of random binary
bits (2012 octets). The DRx receives the packet, checks
for the correctness of the header information and acknowl-
edges the receipt of theDATApacket by transmitting anACK.
The experiment was designed to be statistically significant,
and hence, 100 packets were transmitted for each of the
5 different transmit gain settings. The results were averaged
over 5 runs.

The experimental setup involved two host computers, both
running MATLAB R2015b on a Ubuntu OS environment,
each interfaced via the Ethernet cable to a USRP N210. The
devices are configured to be DTx and DRx respectively and
are kept about a meter apart.

1) PACKET ERROR RATE
A packet is in error if the ACK for the same is not received
in time by the DTx. This could mean that either the packet
could not be decoded properly by the DRx or that the ACK
was corrupted or lost while in transit to the DTx. An ideal
systemmust recover quickly from such errors and, best trade-
off PER and bi-directional link latency. PER is measured on
average in percentage reflecting how many packets might be
received in error for every 100 packets sent.

2) BI-DIRECTIONAL LINK LATENCY
Bi-directional link latency is the average time taken by the
DTx between sending a DATA packet and receiving the
corresponding ACK packet. The bi-directional link latency
includes any delay resulting from retransmissions accounting
either for loss of DATA packet or ACK packet. Note that
since the MAC layer code runs during the course of the
experiment, the bi-directional link latency includes the DIFS
duration and the random backoff period both set at 20 ms.
The MAC layer functionality however is largely dormant in
the 2 node case due to the lack of contention. Bi-directional
link latency is averaged for a packet in seconds.

In the two node system, increasing DIFS and backoff time
practically has no effect on the packet error rate due to lack of
contention. However, increasing DIFS and backoff time also
increases link latency by the same amounts. It should be noted
that in the specifications, DIFS and contention window slot
time are both fixed constants.

Figure. 12. Two node performance: packet error rate.

D. PROFILE OF TIME ELAPSED IN DTx STATES
At the DTx, we measured the time elapsed in each state for
a DATA-ACK packet exchange. The stacked plots shown
in Fig. 14 and Fig. 15 show the breakdown of the time
spent in each substate. The plot at the top shows the small
contributors to the overall processing time, and the one at the

1504 VOLUME 4, 2016

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

Figure. 13. Two node performance: bi-directional link latency.

Figure. 14. Timeline breakup of DATA-ACK packet exchange at DTx.

Figure. 15. Timeline breakup of DATA-ACK packet exchange at DTx.

bottom shows the large contributors. Both the plots are part
of the same DATA-ACK packet exchange and are separated
for clarity. Note that (1) the time spent in the MAC portion
of the code includes the time elapsed to detect energy in
the channel continually together with the DIFS and ran-
dom backoff duration, and (2) the time taken to send the
IEEE 802.11b DATA packet includes the time to prepare the
packet.

From Fig. 12 and Fig. 13, we can infer that the 2 node
experiments show that the system guarantees a consistent
≤ 5% packet error rate and approximately 7 seconds of
bi-directional link latency (DATA-ACK packet exchange
inclusive of theMAC functions) over a wide range of transmit
gains (15-30 dB). Importantly, varying the distance between
the 2 nodes does not significantly affect performance.

Even moving the 2 nodes farther apart while still in line-
of-sight (e.g. by 15 meters), the PER and bi-directional link
latency stayed consistent. However, the presence of many
metallic surfaces, such as in our lab setting, give rise to multi-
path reflections that can be strong and result in packet errors.
The fact that the performance was significantly better when
the nodes were connected by RF cables confirms the case.

Keeping the packet sizes identical (DATA and ACK are
2072 octets and 40 octets long respectively), the standard
off-the-shelf devices, operating at standard specified tim-
ings, the link latency Lstd−link (neglecting media contention,
backoff times, and retransmissions) can be computed using
Equation 7. TxDATA and TxACK represent the elapsed
time (in microseconds) to transmit a DATA packet and an
ACK packet (at 1Mbps) respectively.

Lstd−link = DIFS + TxDATA+ SIFS + TxACK
= 50µs+ (2072× 8)µs+ 10µs+ (40× 8)µs
= 16956µs = 16.956ms (7)

Comparing this to tradio in equation (4), we see that the link
latency is in the same order as our slot time. Owing to hard-
ware constraints, packet exchanges in standard devices are
in the order of milliseconds while exchanges in this system
are in the order of seconds. However, we argue that this is
acceptable because our system adds the feature of software
definition, which requires additional time for execution.

E. THREE NODE EXPERIMENTAL
SETUP (2 DTxs AND 1 DRx)
Given that without the MAC layer, the DATA/ACK packet
collisions and the link latencies will be unacceptably high,
we performed experiments to assess the MAC performance
with a set of 3 USRPs (three nodes: 2 DTxs and 1 DRx).
To that end, we implemented MAC functions to distinguish
the two links and fine-tuned the MAC/PHY parameters of the
system.We expect to see increased bi-directional link latency
and PER as the DTxs contend to gain access to the channel
leading to packets collisions and subsequent retransmits.

In our 2 node experiments, we confirmed that for a wide
range of transmit gains, the performance remains consis-
tent. We now have two independent links incident on one
shared DRx, and hence, we do not expect to see much dif-
ference in the performance of the two links when varying the
transmit gains here in the 3 node case. Instead, we measured
bi-directional Link Latency and Packet Error Rate for
DATA-ACK packet exchange in the two links as shown
in Fig. 16 by varying the payload size in the DATA packet.
Essentially, the experiments let us compare the individual
performances of the two links and further establish the
MAC layer’s role in enforcing fairness among the DTxs in
accessing the channel.

1) IMPLEMENTED MAC FUNCTIONS
The MAC header format for DATA and ACK shown
in Fig. 17 and Fig. 18 respectively will aid in discussion of
the MAC layer functions [8].

VOLUME 4, 2016 1505

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

Figure. 16. Three node system with 2 DTxs and 1 DRx.

Figure. 17. MAC header - DATA packet [8].

Figure. 18. MAC header - ACK packet [8].

The DRx determines the DTx address from the
MAC header of the received DATA packet and sends out
an ACK addressed to that DTx. Furthermore, the DRx can
reject DATA packets not addressed to it. Note that steps right
from preamble detection, SFD detection, all the way up to
reading into the IP address of the DTx from the MAC header,
are carried out at the DRx, preceding the rejection of that
DATA packet. On the other hand, the DTxs can determine the
DRx from the MAC header of the received ACK and can go
on to either accept or reject the ACK based on the IP Address.
Previously, we had the DTx re-transmitting DATA packet
only towards lost ACKs. Clearly, these are theMAC functions
necessary for scaling up the system, enabled by reading into
the MAC header of the DATA/ACK packet.

2) MAC PARAMETERS
We learned from our initial set of experiments that the
DATA/ACK packet processing in the host machine takes sig-
nificantly more time compared to time taken in transmitting
a DATA packet. This is expected as most SDRs use a host
computer for processing. Also, the SIFS duration, set in the

order of microseconds in commercial products, imposes a
time constraint in most SDRs that is difficult to achieve. The
reason is that the latency for the signal to move back and
forth from the radio to the host exceeds the SIFS duration
requirements. The standard specifies the constants as follows:
Slot-time = 20 µs, SIFS = 10 µs, DIFS = SIFS + 2 × Slot-
time = 50 µs.

The experiments helped us fine-tune the DIFS duration
(which the standard specifies be greater than SIFS), random
backoff duration, and ACK timeout duration towards fewer
packet collisions. As a result, we performed our experi-
ments with DIFS duration, minimum contention window, and
ACK timeout duration set at 0.75, 0.5, and 5.0 seconds,
respectively.

3) PICKING THE ENERGY THRESHOLD
Three node performance relies heavily on the energy detec-
tion step at both the DTxs. Accuracy of energy detection
is critical and it requires the energy threshold be carefully
picked at both the DTxs, enabling each DTx to back off as
soon as they sense another DTx transmit, and subsequently
transmit at the right instants of time, thereby keeping the
packet errors and bi-directional link latency to a desired
minimum. Additionally, it enforces fairness towards channel
access among the DTxs.

The receive gain set at the DTx and the inter-node distances
(1 meter in our experiments) affect the magnitude of the
energy threshold. A value close to and slightly above the
noise floor set as the energy threshold will not work as
intended, as a power-cycle of the USRP changes it. Also, an
energy threshold set at a large value might not allow the DTxs
to sense each other transmitting due to rapidly fluctuating
RF power output despite the AGC. Therefore, each DTx may
not backoff at the right instants, leading to collisions at the
DRx. However, by picking a small enough energy threshold,
which is enough to detect signal energy over channel noise,
we could make each DTx sensitive enough to sense the other
DTx transmitting and backoff fairly well, thereby reducing
packet retransmissions.

F. THREE NODE PERFORMANCE:
EXPERIMENTAL RESULTS
Packet error rate and bi-directional link latency for
DATA-ACK packet exchanges in the two links varying the
payload size in the DATA packet are shown in Fig. 19 and
Fig. 20, respectively. Four different payload sizes, 500, 1000,
1500, and 2000 octets, were used for the experiment to
measure 3 node performance.

Smaller payload sizes correspond to smaller packets and
decreased time that theDTx is occupying the channel whereas
larger payload sizes increases the likelihood of packet colli-
sions. The link latency and the packet error rate in the latter
is bound to increase as larger packets incur higher processing
delay at the DRx and more collisions necessitating increased
packet retransmits.

1506 VOLUME 4, 2016

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

Figure. 19. Three node performance - packet error rate of the links.

Figure. 20. Three node performance - bi-directional link latencies.

1) GOODPUT
Goodput, a performance measure used in computer networks,
is the rate at which useful information bits traverse a link.
Goodput can be measured using equation (8),

Goodput =
Total payload bits correctly decoded
Average Bi-directional Link Latency

(8)

The average Goodput of the two bi-directional links com-
puted using (8) are shown in Table 3. Notice that the goodput
increases with the payload size. The reason for this is that the
combined PHY and MAC header occupies a decreased frac-
tion of the entire DATA packet as the payload size increases.

TABLE 3. Average goodput for varying payload sizes.

In the three node system, when there is a symmetric
increase in DIFS and backoff time at the two DTxs, then the
system will remain fair with reduced contention, resulting in
fewer packet errors. However, the goodput decreases as link
latency increases. Also note that the standard specifies the
DIFS and the contention window slot time be fixed constants.

Figure. 21. MAC layer fairness - averaged link latencies.

2) FAIRNESS
The line shown in Fig. 21 is representative of an ideal system,
in which the two DTxs access the channel equally often, such
that their bi-directional link latencies are identical. Fairness is
an important feature for the system to possess, and is brought
about by the MAC protocol.

Notice that the latencies of the two links deviate by only
a small amount from the ideal line for varying payload sizes.
This result establishes the role and efficacy of the MAC layer
in enabling and enforcing fairness among the two DTxs when
accessing the common channel.

IX. CONCLUSIONS
Building our system around the concept of state-action based
design and slot-time synchronized operations helped com-
bine and realize the PHY andMAC layer that is IEEE 802.11b
standard compliant. In addition, the system allows the user
reconfigure the parameter values as needed. Using the
MATLAB Coder to automatically generate MEX functions is
beneficial in improving the speed consistency of our system
blocks, most notably RFFE, which can vary its frequency
resolution parameter. This work provides a testbed to exper-
iment with new MAC protocols beyond that specified in the
IEEE 802.11b standard. The state machine design enables
modularity of code base and should allow for extensibility
by the community. The three node system remains fair to
the two bi-directional links for varying payload sizes in the
DATA packet. Through our experiments we have established
the role and efficacy of the implemented MAC layer towards
mitigating packet collisions and enforcing fairness among
DTxs in accessing a common channel.

There were a number of difficulties during the implementa-
tion that we had to overcome. Foremost, we had trouble real-
izing slot-synchronized operations, one of the most crucial
issues in real-time testbeds. Second, it was difficult to pick the
right energy threshold to deal with a variable noise floor due
to environmental noise effects. Finally, our system required

VOLUME 4, 2016 1507

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

a thorough calibration step prior to running experiments.
The minimum receive gain settings at the devices are always
different. While performing the experiments, we took care to
isolate the experimental setup from highly reflective metallic
surfaces and external transmissions, as is typical in a lab
environment.

These experimental results have provided us with per-
formance benchmarks that will focus future work on fur-
ther optimization and sophistication of the MATLAB-based
MAC layer. Also, as part of our future work, we plan use this
framework to perform evaluation studies on the co-existence
of LTE and 802.11 Wi-Fi networks.

ACKNOWLEDGMENTS
This work is supported by MathWorks under the Develo-
pment-Collaboration Research Grant A#: 1-945815398.
We would like to thank Mike McLernon and Ethem Sozer for
their continued support on this project. We would also like to
thank Taylor Skilling for his support with the experiments.

REFERENCES
[1] I. F. Akyildiz,W.-Y. Lee,M. C. Vuran, and S.Mohanty, ‘‘NeXt generation/-

dynamic spectrum access/cognitive radio wireless networks: A survey,’’
Comput. Netw., vol. 50, no. 13, pp. 2127–2159, 2006.

[2] K. R. Chowdhury and T. Melodia, ‘‘Platforms and testbeds for exper-
imental evaluation of cognitive ad hoc networks,’’ IEEE Commun.
Mag., vol. 48, no. 9, pp. 96–104, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1109/MCOM.2010.5560593

[3] Ettus Research, Inc. (2015). USRP N200/N210 Networked Series.
[Online]. Available: https://www.ettus.com/product/category/USRP-
Networked-Series

[4] Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the
2.4 GHz Band, IEEE Standard 802.11b-1999, 1999.

[5] MathWorks, Inc. (2016). USRP Support from Communications Sys-
tem Toolbox. [Online]. Available: http://www.mathworks.com/hardware-
support/usrp.html

[6] R. Subramanian. (2016). IEEE 802.11b Standard Compliant
Link Layer Code for MATLAB-Based SDR. [Online]. Available:
https://github.com/80211bSDR

[7] R. Subramanian. (2016). IEEE 802.11b Link Layer for MATLAB-Based
SDR. [Online]. Available: http://www.mathworks.com/matlabcentral/
fileexchange/55784-ieee-802-11b-link-layer-for-matlab-based-sdr

[8] Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, IEEE Standard 802.11, 1999.

[9] B. Drozdenko, R. Subramanian, K. Chowdhury, and M. Leeser, ‘‘Imple-
menting a MATLAB-based self-configurable software defined radio
transceiver,’’ in Cognitive Radio Oriented Wireless Networks (Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering), vol. 156, M. Weichold, M. Hamdi,
M. Z. Shakir, M. M. Abdallah, G. K. Karagiannidis, and M. Ismail, Eds.
Doha, Qatar: Springer, 2015, pp. 164–175.

[10] GNU Radio Project. (2015). GNURadio: The free and Open Source Radio
Ecosystem. [Online]. Available: http://www.gnuradio.org

[11] C. R. A. Gonzalez et al., ‘‘Open-source SCA-based core framework
and rapid development tools enable software-defined radio education and
research,’’ IEEE Commun. Mag., vol. 47, no. 10, pp. 48–55, Oct. 2009.

[12] M. Simon et al., ‘‘An 802.11a/b/g RF Transceiver in an SoC,’’ in IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 562–622.

[13] S. G. Kim and S. H. Cho, ‘‘Implementation of an embedded software
modem platform,’’ in Proc. Int. Conf. Adv. Technol. Commun. (ATC),
Oct. 2008, pp. 356–359.

[14] Y. Jiao, X. Wang, G. Xiao, and H. Chen, ‘‘Design, implementation and
testing of an IEEE 802.11 b/g baseband chip,’’ in Proc. 7th Int. Conf. ASIC
(ASICON), Oct. 2007, pp. 934–937.

[15] WARP Project, Rice University. (2015). Wireless Open-Access Research
Platform. [Online]. Available: http://warp.rice.edu/index.php

[16] M. Duarte et al., ‘‘Design and characterization of a full-duplex multi-
antenna system for WiFi networks,’’ IEEE Trans. Veh. Technol., vol. 63,
no. 3, pp. 1160–1177, Mar. 2014.

[17] C. Hunter, L. Zhong, and A. Sabharwal, ‘‘Leveraging physical-layer coop-
eration for energy conservation,’’ IEEE Trans. Veh. Technol., vol. 63,
no. 1, pp. 131–145, Jan. 2014. [Online]. Available: http://dx.doi.org/
10.1109/TVT.2013.2271121

[18] H. V. Balan et al., ‘‘USC SDR, an easy-to-program, high data rate, real time
software radio platform,’’ in Proc. 2nd Workshop Softw. Radio Implement.
Forum, 2013, pp. 25–30.

[19] K. Tan et al., ‘‘Sora: High performance software radio using gen-
eral purpose multi-core processors,’’ in Proc. 6th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), Boston, MA, USA, Apr. 2009,
pp. 75–90. [Online]. Available: http://www.usenix.org/events/nsdi09/
tech/full_papers/tan/tan.pdf

[20] J. van de Belt, P. D. Sutton, and L. Doyle, ‘‘Accelerating software radio:
Iris on the Zynq SoC,’’ in Proc. 21st IEEE/IFIP Int. Conf. VLSI Syst.-
Chip (VLSI-SoC), Istanbul, Turkey, Oct. 2013, pp. 294–295. [Online].
Available: http://dx.doi.org/10.1109/VLSI-SoC.2013.6673295

[21] R.Marlow, C. Dobson, and P. Athanas, ‘‘An enhanced and embedded GNU
radio flow ,’’ in Proc. 24th Int. Conf. Field Program. Logic Appl. (FPL),
Sep. 2014, pp. 1–4.

[22] B. Özgül, J. Langer, J. Noguera, and K. Visses, ‘‘Software-programmable
digital pre-distortion on the Zynq SoC,’’ in Proc. 21st IEEE/IFIP Int. Conf.
VLSI Syst.-Chip (VLSI-SoC), Oct. 2013, pp. 288–289. [Online]. Available:
http://dx.doi.org/10.1109/VLSI-SoC.2013.6673292

[23] C. Dobson, K. Rooks, and P. Athanas, ‘‘A power-efficient
FPGA-based self-adaptive software defined radio,’’ in Proc. 24th Int.
Workshop Power Timing Model., Optim. Simulation (PATMOS), Palma de
Mallorca, Spain, Sep./Oct. 2014, pp. 1–8. [Online]. Available: http://dx.
doi.org/10.1109/PATMOS.2014.6951901

[24] T. F. Collins and A. M. Wyglinski, ‘‘SkyNet: SDR-based physical sim-
ulation testbed,’’ in Proc. IEEE 82nd Veh. Technol. Conf. (VTC Fall),
Sep. 2015, pp. 1–2.

[25] MathWorks, Inc. (2016). comm.AGC System Object. [Online]. Available:
http://www.mathworks.com/help/comm/ref/comm.agc-class.html

[26] MathWorks, Inc. (2016). Communications System Toolbox. [Online].
Available: http://www.mathworks.com/help/comm/index.html

RAMANATHAN SUBRAMANIAN received
the master’s degree in computer science and
automation from the Indian Institute of Science,
Bangalore, India. He is currently pursuing the
Ph.D. degree with the Department of Electrical
and Computer Engineering, Northeastern Uni-
versity, Boston, advised by Prof. K. Chowdhury.
His current efforts are focused on implementing
the MAC layer functionality for MATLAB-based
SDR on the USRP hardware. He then will progress

to research MAC mechanisms that allow LTE to co-exist with Wi-Fi in the
unlicensed spectrum.

BENJAMIN DROZDENKO is currently pursuing
the Ph.D. degree with Northeastern University.
He is a university wide MathWorks TA and a
Graduate Research Assistant in implementation
of a MATLABbased Cognitive Radio framework,
co-advised by Prof. Chowdhury and Prof. Leeser.
From 2008 to 2014, he was with MathWorks,
Inc., producers of MATLAB and Simulink, where
he wrote technical documentation and examples
for several signal processing and communications

area products and traveled to customers’ sites to deliver training courses.
From 2004 to 2008, he was a Systems Engineer with Raytheon Integrated
Defense Systems, focusing on ground-based radar for ballistic missile
defense.

1508 VOLUME 4, 2016

R. Subramanian et al.: High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer

ERIC DOYLE is currently pursuing the bachelor’s
degree in electrical and computer engineering with
Northeastern University. He has been a Research
Assistant with the Prof. Kaushik Chowdhury’s
GENESYS Laboratory since 2015. His research
interests are in communication systems and
acoustics. He has been the Vice President of
the Acoustical Society of America Chapter at
Northeastern University since 2014, and has held
co-op positions with Bose Corporation and Insulet

Corporation.

RAMEEZ AHMED is currently pursuing the
Ph.D. degree with the Department of Electrical
and Computer Engineering, Northeastern Univer-
sity, Boston. He works under the guidance of
Prof. M. Stojanovic in the field of underwater
acoustic communication. His research interests are
in digital communication, wireless communica-
tion, and network protocols.

MIRIAM LEESER (S’79–M’80–SM’97) received
the B.S. degree in electrical engineering from Cor-
nell University, and theDiploma and Ph.D. degrees
in computer science from Cambridge University,
U.K. She was a Faculty Member with the Depart-
ment of Electrical Engineering, Cornell Univer-
sity, before coming to Northeastern, where she is
a member of the Computer Engineering Research
Group. She is a Professor of Electrical and Com-
puter Engineering with Northeastern, where she

is the Head of the Reconfigurable and GPU Computing Laboratory. Her
research includes using heterogeneous architectures for signal and image
processing applications, including wireless communications and implement-
ing computer arithmetic and verifying critical applications. She is a Senior
Member of the ACM.

KAUSHIK ROY CHOWDHURY (M’09–SM’15)
received the M.S. degree from the University of
Cincinnati, in 2006, advised by Prof. D. Agrawal,
and the Ph.D. degree from the Georgia Institute of
Technology, in 2009, under Prof. I. F. Akyildiz.
He was an Assistant Professor with Northeastern
University from 2009 to 2015. He is an Associate
Professor with the Electrical and Computer Engi-
neering Department, Northeastern University. He
received the NSF CAREER Award in 2015, the

best paper award at the IEEE International Conference on Communications
in 2013, 2012, and 2009, and the best paper award at the International Con-
ference on Computing, Networking and Communications in 2013. He is the
Chair of the IEEE Technical Committee on Simulation. He serves as the Area
Editor of Elsevier Ad Hoc Networks, Elsevier Computer Communications,
and EAI Transactions on Wireless Spectrum.

VOLUME 4, 2016 1509

