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Abstract— This paper presents multi-layer feed-
forward neural network-based identification and ap-
proximate predictive controller (NNAPC) for a
two degree-of-freedom (DOF), quarter-car servo-
hydraulic vehicle suspension system. The nonlinear
dynamics of the servo-hydraulic actuator is incorpo-
rated in the suspension model. A suspension travel
controller is developed to improve the ride comfort
and handling quality of the system. A SISO neural
network (NN) model based on Nonlinear AutoRegres-
sive with eXogenous input (NARX) is developed us-
ing input-output data sets obtained from mathemat-
ical model simulation. The NN model was trained
using Levenberg-Marquardt algorithm. The NNAPC
was used to predict the future responses that are op-
timized by cost minimization. The proposed con-
troller is compared with a constant-gain PID con-
troller (based on Ziegler-Nichols tuning method) dur-
ing suspension travel setpoint tracking in the presence
of deterministic road disturbance. Simulation results
demonstrate the superior performance of the NNAPC
over the generic PID - controller in adapting to the
deterministic road disturbance.
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1 Introduction

Research interest in active vehicle suspension system has
continued to grow since the late 1960s as progress was
made in random vibrations research and optimal control
theory [1, 2]. This development and the current rapid ad-
vances in electronics and intelligent control are enhanc-
ing the development of better active vehicle suspension
system (AVSS). AVSS application holds good prospect
despite drawbacks such as : higher cost; inherent sys-
tem nonlinearities and uncertainties; hardware complex-
ity; actuator dynamics complications; and varying oper-
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ating conditions of the vehicle [3, 4, 5].

The most common types of actuators used in AVSS are
electro-hydraulic and electro-pneumatic actuators, but
the former are more preferred because of their: superior
power-to-weight ratio, fast response, high stiffness, lower
cost and lower risk of overheating when used continuously
for a long time. However, the effects of actuator dynamics
and nonlinearities due to the other suspension elements
are often ignored in the published works [3, 5, 6].

Gaspar et al. [7], and Fialho and Balas [8] presented
linear parameter varying (LPV) control technique for a
nonlinear AVSS with actuator dynamics. LPV theory
is mainly useful to tackle measurable and bounded non-
linearities [9]. LPV design is also one of the fixed-gain
strategies that are designed to be optimal for nominal pa-
rameter set and specific operating condition. Review of
other classical, modern and intelligent control techniques
that has been applied to AVSS control in the literature
is provided in [10].

Model predictive control (MPC) is an iterative, finite
horizon optimization control technique. It relies on em-
pirical models obtained by system identification. MPC
predicts the outputs based on current plant measure-
ments, set-points of controllers and the modelled dynamic
system. While many MPC schemes have been developed;
MPC based on the polynomial NARX model is generally
desirable because of the plant nonlinearities [11].

Neural network based model predictive control (NN-
MPC) has been widely applied in metallurgical processes,
chemical plants, food and pharmaceutical processes [12],
but the same is not the case for AVSS. This study is mo-
tivated by the need for real-time control of AVSS and
proper handling of design constraints. The suitablity of
fuzzy logic and neural network control also arises from
their emulation of human logic or brain rather than ac-
curacy of mathematics in modelling nonlinear plants.
Fuzzy logic and neural network are therefore useful in
by-passing the rigours of directly developing the required
dynamic model [4, 13].

NN have found wide applications in the field of system
identification and control because of its: ability to ap-
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proximate arbitrary nonlinear mapping; highly parallel
structure which allows parallel implementation, thereby
making it more fault-tolerant than conventional schemes;
ability to learn and adapt on-line; and good application
for multivariable systems [14, 15, 16, 17].

NN model may also be easier to develop than a polyno-
mial AutoRegressive model with eXogenous input (ARX
model), especially when applied to multivariable systems.
Hence, MPC is often used with other techniques like neu-
ral network when dealing with highly nonlinear control
applications [18]. NNMPC involves the generation of val-
ues for plant inputs as solutions of an online optimization
problem. This is done based on prediction of the future
plant performance through a NN model obtained for the
nonlinear plant [19].

NNAPC uses an indirect design approach by applying the
instantaneous linearization principle, this makes approx-
imate predictive control (APC) to be less computation-
ally demanding in comparison to other predictive con-
trol methods like the nonlinear predictive control (NPC)
and generalized predictive control (GPC). NNAPC can
be readily tuned intuitively. It is good for systems with
time delay and it is flexible, thus it is effective in a wide
spectrum of control applications [11, 20].

Renn and Wu [21] showed that the body displacement re-
sponses of a PID controlled nonlinear, quarter-car model
compared well with a NN controlled one. However, the
NN-based control clearly suppressed the vehicle body ac-
celeration better. Eski and Yildrim [17] compared the
suspension deflection response of a linear, full-car AVSS
with PID control to a NNMPC of the same AVSS model.
Good profile tracking was achieved. Actuator dynamics
and system nonlinearities were ignored.

A thorough review of the intelligent control methodolo-
gies for AVSS has been presented in [14], this includes
adaptive fuzzy, adaptive fuzzy sliding mode, adaptive
neural network and GA-based adaptive control. Good
performance has been achieved through the application
of optimal and robust control to linear AVSS. However,
the presence of nonlinearities and uncertainties in the ve-
hicle model calls for better robustness to cater for the
multi-objective problem [4, 22, 23]. This situation makes
it necessary to either base the AVSS controller design on a
combination of modern and intelligent control techniques
or solely on intelligent control techniques.

A good vehicle suspension is characterized by good ride
comfort, road handling, and road holding qualities within
acceptable range of suspension travel [24, 25]. Suspen-
sion travel is a readily measurable signal, whose analysis
makes the AVSS design realistic [26, 27].

PID controllers are the most widely used controllers
for industrial applications, due to their simple struc-
ture and the success of Ziegler-Nichols tuning algorithm

[28, 29, 30]. However, tuning of the controller constant
gains is often done intuitively and its major disadvantages
are in terms of robustness and high loop gains [31]. This
motivates for the augmentation of the PID control with
evolutionary algorithms (EA) like genetic algorithm (GA)
and particle swarm optimization (PSO). These combina-
tions and others, like the combination of PID and Fuzzy
control have been reported in literature [4, 30, 32]. PID
control is in this work used to benchmark the NNAPC
control.

In this paper, NNAPC is proposed for the suspension
travel control of an electro-hydraulically actuated vehi-
cle suspension system in the presence of a deterministic
road disturbance. The novelty of the paper lies in the
application of the designed controller to improve the ride
comfort and road handling quality of the AVSS; while si-
multaneously satisfying the suspension travel and control
input constraints.

System identification is a requisite for successful applica-
tion of NNAPC. It enables the inference of an accurate
model or characteristics of a dynamic system from its
input-output data. Instantaneous linearization is applied
by extracting a linear model from the nonlinear neural
network model at each sampling time for control process.
Model approximation for the passive vehicle suspension
system (PVSS) plant was done using Neural Network Au-
toRegressive with eXogenous input (NNARX) model.

The paper is structured as follows: Physical and mathe-
matical modelling of the AVSS is presented in section 2.
System identification and controller design descriptions
are presented in section 3, numerical simulation and dis-
cussion of results are presented in section 4. Section 5
gives the concluding remarks.

2 System Overview and Modelling

2.1 Physical Modelling

Figure 1 shows the quarter-car AVSS model, where ms

is the sprung mass, mu is the unsprung mass, ks is the
suspension spring constant, bs is the suspension damping
coefficient, and kt is the wheel spring constant. The ver-
tical displacement of the car body, wheel and the road
disturbance are represented by x1, x2 and w respectively.
The hydraulic actuator force, F, is applied between the
sprung and unsprung masses.

The relative displacement between the vehicle body and
the wheel, (x2−x1), represents the suspension travel. The
relative displacement between the wheel and the road,
(x2 − w), characterizes the road holding quality.

2.2 Mathematical Modelling

Application of Newton’s law to the quarter car model
shown in Figure 1 yields the following governing equa-
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Figure 1: Simplified Quarter Car Model

tions [7, 8]:

ẋ1 = x3 (1)
ẋ2 = x4 (2)

msẋ3 = kls(x2 − x1) + knls (x2 − x1)3

+bls(x4 − x3)− bsyms |x4 − x3|
+bnls

√
|x4 − x3|sgn(x4 − x3)−Ax5 (3)

muẋ4 = −kls(x2 − x1)− knls (x2 − x1)3

−bls(x4 − x3) + bsyms |x4 − x3|
−bnls

√
|x4 − x3|sgn(x4 − x3)

−kt(x2 − w) +Ax5 (4)
ẋ5 = γΦx6 − βx5 + αA(x3 − x4) (5)

ẋ6 =
1
τ

(−x6 + u) (6)

where; Φ = φ1φ2, φ1 = sgn[Ps − sgn(x6)x5],
φ2 =

√
|Ps − sgn(x6)x5|, α = 4βe

Vt
, β = αCtp,

and γ = CdS
√

1
ρ . A is the area of the piston, x3 and x4

are vertical velocities of the sprung and unsprung masses
respectively, x5 is the pressure drop across the piston, x6

is the servo valve displacement, Ps and Pr are the supply
and return pressures going into the spool valve, Pu and
Pl are the oil pressures in the upper and lower portion of
the cylinder. Vt is the total actuator volume, βe is the
effective bulk modulus of the system, Φ is the hydraulic
load flow, Ctp is the total leakage coefficient of the piston,
Cd is the discharge coefficient, S is the spool valve area
gradient and ρ is the hydraulic fluid density.

The spring and damping forces have linear and nonlin-
ear components. Spring constant kls and damping coeffi-
cient bls affect the spring force and damping force in linear
manner. bsyms contributes an asymetric characteristics to
the overall behaviour of the damper. knls and bnls are re-
sponsible for the nonlinear components of the spring and
damper forces respectively.

Figure 2 illustrates the hydraulic actuator, which is

mounted in between the sprung and the unsprung
masses. The actuator is controlled by means of the

Figure 2: Schematic of the Double Acting Electro-
hydraulic Actuator

electro-hydraulic servo-valve in a three-land, four-way
spool valve system. The maximum control input (volt-
age) of 10V was applied to the servo-valves to achieve a
maximum suspension travel of ±10 cm.

It is assumed that the vehicle experiences a sudden
bump with amplitude of 11cm, whose profile is shown in
Fig. 3 and described by:

w(t) =


a
2 (1− cos 2πV t

λ ) 1.25 ≤ t ≤ 1.5

0 otherwise
(7)

where a is the bump height, V is the vehicle speed and λ
is the half wavelength of the sinusoidal road undulation.
The values of the system parameters are given in Table
1.
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Figure 3: Road Profile
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Table 1: Parameters of the Quarter-Car Model [7, 8]
Parameters Value
Sprung mass (ms) 290kg
Unsprung mass (mu) 40kg
Linear suspension stiffness (kls) 2.35 ∗ 104N/m
Nonlinear Suspension 2.35 ∗ 106N/m
stiffness (knls )
Tyre stiffness (kt) 1.9 ∗ 105N/m
Linear damping (bls) 700Ns/m
nonlinear damping (bnls ) 400Ns/m
Asymetry damping (bsyms ) 400Ns/m
Actuator parameter (α) 4.515 ∗ 1013

Actuator parameter (β) 1
Actuator parameter (γ) 1.545 ∗ 109

Piston area (A) 3.35 ∗ 10−4m2

Supply pressure (Ps) 10, 342, 500Pa
Actuator time constant (τ) 3.33 ∗ 10−2

Amplitude of bump (a) 11cm
Vehicle speed (V) 30ms−1

Disturbance half wavelength (λ) 7.5m

3 Controller Design

The main performance requirement for the controller is
for the AVSS to track a generated desired suspension
travel in the presence of a deterministic road disturbance
(Eq.(7)). Other performance requirements include [6, 20]:

1. nominal stability,

2. good command tracking,

3. disturbance rejection,

4. rise time not greater than 0.1sec, and

5. maximum overshoot not greater than 5%.

3.1 NN Plant Model Identification

A feedforward, multilayer perceptron (MLP), error back
propagation NN was used for the system identification.
Training inputs are supplied to the input layer of the
network in a forward sweep such that the output of each
element is computed layer by layer [33].

Two steps are generally involved in most neural
network architectures used for control: system identi-
fication and control design. The system identification
results in the development of a dynamic model of the
plant.

The output of the final layer is compared with the desired
output such that the error is back-propagated through
the previous layers. The objective of the identification
process is to minimize the error signal ε(k) = y(k)− ŷ(k)
when the plant and NN model are subjected to the same

input, u(k) (see Figure 4), where ŷ(k) is the NN model
output, y(k) is the plant output, yu(k) the true system
output, e(k) is noise, ε(k) is the model residual, θ is the
vector of adjustable weights and MSE represents mean
squared error which is the performance criterion for the
identification process [34].

Figure 4: General Structure of System Identification

The identification process consists of four steps: exper-
imentation, model structure selection, model estimation
and model validation [11]. Control design stage comes
after the system identification, here the NN plant model
is used to design the controller.

3.1.1 Experimentation

The PVSS is first identified from a set of input-output
data pairs collected from numerical experiments using
the PVSS model (Eq.(1)-(6)). The input-output data is
collected as shown in Figure 5:

ZN = f [u(k), y(k)]; k = 1, ......, N (8)

Figure 5: Structure for Input-Output Data Collection

where k is the sampling instant and N is the total
number of samples. The sampling time was chosen in
accordance with the fastest dynamics of the system
which is equivalent to sampling at 1KHz.

The PVSS model identification was conducted using a
20, 000 input-output data pairs - split into 10, 000 each
for training and validation. A non saturating ”band-
limited white noise” random input was used to excite
the PVSS in its operating range, u(k) ∈ [−10V,+10V ].
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The estimation and validation data sets are presented in
Figures 6 and 7. As part of the data preparation pro-
cedure, the data collected were scaled to zero mean and
variance 1 before training to enhance faster convergence
and improve numerical stability [11].

Figure 6: A Snapshot of the Training Data

Figure 7: A Snapshot of the Validation Data

3.1.2 Model Structure Selection

NNARX is widely used in representing nonlinear,
discrete and time-invariant system. It is simpler, non-
recursive (that is, unlike nonlinear models based output
error (OE) and Auto Regressive with eXogenous inputs
(ARMAX), and more stable since it requires no feedback
[11, 35]. The general structure of the NNARX is shown
in Figure 8.

Figure 9 shows two stages of NNARX implemen-
tation. The regressors are first computed, then a
nonlinearity estimator block that consists of a combina-
tion of nonlinear and linear functions maps the regressor.

The AVSS nonlinear system is represented by the

Figure 8: NNARX Model Structure

Figure 9: Neural Network Nonlinear ARX Structure

NNARX model structure for a finite number of past
inputs u(k) and outputs y(k) [36, 37, 38]:

y(k) = f [φ(k), θ] + ε(k) (9)

where f is the nonlinear function that is realized by the
neural network model, φ(k) represents the regressors, vec-
tor θ contains the adjustable weights and ε represent the
model residual.

As a result of the numerical experiment and training,
the network implements an estimation of the non-linear
transformation, f̂(∗) which leads to the predicted out-
put. The one-step ahead prediction (1-SAP) based on
the identification structure is given by:

ŷ(k) = f [φ(k), θ] (10)

and the regression vector is

φ(k) = [y(k − 1), y(k − 2), . . . , y(k − na), u(k − nk),
u(k − nk − 1), . . . , u(k − nk − nb + 1)

where nk delay from input to the output in terms of
number of samples, while na and nb are the number of
past outputs and inputs.

Lipshitz algorithm was used in the determination
of the system order. Figure 10 presents the plot of the
order index based on the evaluated Lipshitz quotients
for the input - output pair combinations against the lag
space (number of past inputs and outputs) ranging from
1 to 10.

The slope of the graph can be seen to decrease when the
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Figure 10: Two Dimensional View of the Order of Index
versus Lag Space

model order is ≥ 2 thus defining the ”knee point” of the
curve and consequently a NNARX model of the order
≥ 2. This implies that the appropriate number of past
inputs and outputs is 2. The number of neurons in the
hidden layer becomes five since the hidden layer neuron
equals the sum of na, nb and nk [11, 36]. The choice of a
model order that is higher than two may result in lower
mean squared error (MSE), but with data overfitting.

3.1.3 Model Estimation

The choice of the the feedforward multi-layer perceptron
neural network (MLPNN) structure with backpropaga-
tion training for this work is based on its simplicity and
computational ease. The two-layer MLPNN structure
used is shown in Figure 11. It consists of an input layer
that contains two neurons and a bias, while the hidden
layer contains five neurons with tangent hyperbolic acti-
vation function:

f(x) = tanh(x) =
ex − e−x

ex + e−x
. (11)

The output layer contains one neuron with linear activa-
tion function [11, 19, 39].

Backpropagation training is a process of training
the network with the input and target vectors until it
can approximate the desired function, or when it can
associate input vectors with appropriate output vectors
[33]. During identification, the NN weights are adjusted
until its output satisfies the desired MSE performance
criteria given as [33, 40]:

MSE =
1

2N

N∑
k=1

[y(k)− ŷ(k)]2 (12)

Several backpropagation training algorithms were consid-

Figure 11: Neural Network Structure

ered for use in training the MLPNN before the Levenberg-
Marquardt optimization algorithm was chosen. Table 2
shows the number of epochs and MSE for the tested train-
ing algorithms.

Levenberg-Marquardt minimization algorithm is the pre-
ferred training algorithm because it improves over time
relative to the other algorithms. It is a compromise
between the gradient descent and Newton optimization
methods. It is a robust algorithm and converges rela-
tively faster [11, 33, 41]. The training parameters for the
identification are listed in Table 3.

3.1.4 Model Validation

A MSE performance value of 1.1938e−10 was attained
for the the Levenberg-Marquardt training algorithm
at the maximum number of epochs (500) (see Figure 12).

Figure 12: Training of the Plant NN Model.

The one-step ahead prediction and the prediction
error plots for the training and validation data are
presented in Figures 13 and 14. The one-step ahead
prediction data overlapped the training and validation
data almost perfectly. This fitness is corroborated by
the 10−6 and 10−5 orders of the residuals for both data.
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Table 2: Performance Analysis of Selected Training Algorithms
Training Full Name of Algorithm Number MSE

Algorithm of Epochs
1 trainbfg Broyden-Fletcher-Goldfarb-Shanno (BFGS) 104 1.9192 ∗ 10−6

quasi-Newton backpropagation
2 traincgb Powell-Beale conjugate 6 3.3761 ∗ 10−4

gradient backpropagation
3 traincgf Fletcher-Powell conjugate 71 2.7807 ∗ 10−6

gradient backpropagation
4 traincgp Polak-Ribiere conjugate 74 3.1559 ∗ 10−6

gradient backpropagation
5 traingd Gradient descent backpropagation 500 4.2644 ∗ 10−3

6 traingdm Gradient descent with 500 3.205 ∗ 10−3

momentum backpropagation
7 traingda Gradient descent with 135 1.0632 ∗ 10−3

adaptive learning backpropagation
8 traingdx Gradient with momentum 213 1.1512 ∗ 10−4

and adaptive learning backpropagation
9 trainlm Levenberg-Marquardt backpropagation 500 1.1938 ∗ 10−10

10 trainoss One step secant backpropagation 147 1.8989 ∗ 10−5

11 trainrp Resilient backpropagation 500 9.6591−7

12 trainscg Scaled conjugate 125 1.0600 ∗ 10−5

gradient backpropagation

The distribution of the predicted errors is also pre-
sented in Figure 15. Although the distribution is skewed
to the right in the residuals for validation, the magnitude
is too little to make much impact.

However the magnitude of the sampling frequency is high
enough to ensure that fitness of the one-step ahead pre-
diction to the measured data is close to 100%, therefore
the model validation cannot be based on visual inspection
of the fitness one-step ahead prediction with the mea-
sured data [11, 36, 34]. Figure 16 shows the cross corre-
lation of the training and validation data. The two plots
are similar in the sense that, the latter 60% of both plots
falls within the 95% confidence interval.

Table 3: Parameters for the Neural Network Model
Parameters Value
Total number of samples 20000
Total sampling time 5sec
Maximum number of 500
epochs
Sampling frequency 1KHz
Time delay, nk 1
Training algorithm Levenberg-Marquandt

algorithm
Number of hidden 5
layer neurons
Number of past outputs, na 2
Number past inputs, nb 2

3.2 NN-based Approximate Predictive Con-
trol (NNAPC)

The control structure in Figure 17 presents an arrange-
ment that allows for selection between the implementa-
tion of PID or NNAPC. The NNAPC employs the use
of a nonlinear NN plant model to predict future plant
responses over a specific period. These predictions sub-
sequently undergo numerical optimisation in a sub-loop
to minimise the cost function online.

The NNAPC also involves an optimisation process which
is realised through the minimization of the cost function
[11, 39]:

J(t, U(t)) =
N2∑
i=N1

[r(t+ i)− ŷ(t+ i)]2

+ ρ

Nu∑
i=1

[∆u(t+ i− 1)]2 (13)

the future controls are given by

U(t) = [u(t) . . . u(t+Nu − 1)]T

and subjected to the constraint given by

∆u(t+ i) = 0, Nu ≤ i ≤ N2 − d

the tuning parameters are; N1 - minimum prediction hori-
zon or minimum cost, it is equal to the time delay of the
system in this case. N2 - maximum control horizon, ρ
- the weighting factor penalizing changes in the control
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Figure 13: One-Step Ahead Prediction Fitness with the Training and Validation Data

Figure 14: Prediction Error for the Training and Validation Data

Figure 15: Histograms of Prediction Errors for the Training and Validation Data

Figure 16: Cross-Correlation of the Training and Validation Data
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Figure 17: Architecture for PID and NN based APC

input, Ts is the sampling time and the total number of
sample was 500. A variable but preset control input in
the form of voltage (which was ≤10volts) was supplied to
the servo-valve to generate the actuation force at the pis-
ton. The NNAPC and PID controller’s parameters used
for the simulations are given in Table 4

Table 4: NNAPC and PID tuning parameters
NNAPC PID Tuning

Parameters Value Parameters Value
N1 1 Kp 3.0
N2 8 Ti 15
Nu 1 Td 0.04035
ρ 0.03 α 0.047

3.3 PID Control and Tuning

The structure of the PID controller is given as [39, 42]:

U(s) =
(
Kp

1 + Tis

Tis

1 + Tds

1 + αTds

)
E(s) (14)

where E(s) = Yref (s)− Y (s) is the error signal between
the reference signal Yref (s) and the actual output sig-
nal Y (s), U(s) is the plant input signal, Kp is the pro-
portional gain, Td is the derivative time constant, Ti is
the integral time constant and α is the lag factor in the
derivative component of the PID controller.

The PID controller was tuned in accordance with the
recommendation in [42] for the classical cascade PID con-
troller. Ziegler-Nichols tuning rule is used with a decay
ratio of 0.25 to obtain the PID controller gains. This
is because PID controllers can easily generate too high
control inputs which can lead to saturation.

4 Simulation Results and Discussion

The NNAPC and PID controllers were applied to an
AVSS nonlinear model with actuation force generated
by an electro-hydraulic actuator. The NN-based iden-
tification process was implemented in MATLAB using
Levenberg-Marquardt training algorithm.

The AVSS suspension travel responses in Figures 18 and
19 show a good command tracking by both controllers,
except at the points where the values of the desired out-
put changes, here both controllers have overshoots.

Figure 18: Suspension Travel Tracking for Neural Net-
work based APC

The PID controller has better rise time but with sig-
nificant overshoots. The rise time for the NNAPC is
marginally above the specified value but its overshoots
are below the specified value. Both controllers have
zero steady state error until the transition points are ap-
proached.
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Figure 19: Suspension Travel Tracking for PID Control

The PID controller has pronounced overshoots at the
transition points. Measured performances of the con-
trollers against specified performance parameters are pre-
sented in Table 5.

Table 5: Performance Evaluation
Performance Specified NNAPC PID
parameters value
Over-shoot 5% 4.1% 14.1%
Rise Time(sec) 0.1 0.1057 0.0304
Steady state error 0% 0% 0%

Figure 20 shows the control input for the NNAPC. The
supplied voltage values range between (approximately) -
0.15V and 0.2V. Small voltage spikes are visible at the
transition points. Figure 21 shows the control input for

Figure 20: Approximate Predictive Control Input

the PID controller. PID control is achieved at much
greater cost, as shown with surges of magnitude ranging
from (approximately) -4V to 3V occurring at the transi-
tion points.

5 Conclusion

A NNAPC controller has been designed for a nonlinear
AVSS. The system identification and control of the AVSS

Figure 21: PID Control Input

took into account the effect of the actuator dynamics.
The nonlinear system was identified using a two layer
MLPNN with five hidden layer neurons and the quality
of the neural network model that resulted from the sys-
tem identification is evident from the model validation
analysis and the NNAPC control results.

The designed controller shows better tracking of the de-
sired output in the presence of deterministic disturbance
input than the constant-gain PID controller. Although it
shows marginal overshoots at the transition points of the
desired output being tracked, the optimization module of
the NNAPC was able to cut down on the tasking compu-
tational works which makes real-time control challenging.

Although it is normally expected that a control system
like NNAPC that is based on instantaneous linearization,
will only have good performance around or near an op-
erating point, the reference tracking control has demon-
strated the flexibility of NNAPC when applied to AVSS.
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