
Computers & Graphics 36 (2012) 673–684
Contents lists available at SciVerse ScienceDirect
Computers & Graphics
0097-84

http://d

n Corr

E-m

kainz@i

khlebni

schmals
journal homepage: www.elsevier.com/locate/cag
Special Section on CANS
Ray prioritization using stylization and visual saliency
Markus Steinberger n, Bernhard Kainz n, Stefan Hauswiesner, Rostislav Khlebnikov,
Denis Kalkofen, Dieter Schmalstieg

Institute for Computer Graphics and Vision, Graz University of Technology, Austria
a r t i c l e i n f o

Article history:

Received 10 October 2011

Received in revised form

20 February 2012

Accepted 20 March 2012
Available online 30 March 2012

Keywords:

Ray-tracing

Ray-casting

Volume rendering

Photorealistic rendering

Visual saliency
93/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.cag.2012.03.037

esponding authors.

ail addresses: steinberger@icg.tugraz.at (M. St

cg.tugraz.at (B. Kainz), hauswiesner@icg.tugr

kov@icg.tugraz.at (R. Khlebnikov), kalkofen@i

tieg@icg.tugraz.at (D. Schmalstieg).
a b s t r a c t

This paper presents a new method to control scene sampling in complex ray-based rendering

environments. It proposes to constrain image sampling density with a combination of object features,

which are known to be well perceived by the human visual system, and image space saliency, which

captures effects that are not based on the object’s geometry. The presented method uses Non-

Photorealistic Rendering techniques for the object space feature evaluation and combines the image

space saliency calculations with image warping to infer quality hints from previously generated frames.

In order to map different feature types to sampling densities, we also present an evaluation of the

object space and image space features’ impact on the resulting image quality. In addition, we present an

efficient, adaptively aligned fractal pattern that is used to reconstruct the image from sparse sampling

data. Furthermore, this paper presents an algorithm which uses our method in order to guarantee a

desired minimal frame rate. Our scheduling algorithm maximizes the utilization of each given time

slice by rendering features in the order of visual importance values until a time constraint is reached.

We demonstrate how our method can be used to boost or stabilize the rendering time in complex ray-

based image generation consisting of geometric as well as volumetric data.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A common challenge of high-quality ray-based image genera-
tion is maintaining the scene interactivity of the applications. This
interactivity is normally achieved by sacrificing some of the
image quality during the interaction and by progressively refining
the result as soon as the interaction stops. The simplest method in
this context is regular subsampling: rendering the scene in a
small viewport during interaction and stretching the resulting
image to the target image size using linear interpolation. This
method indiscriminately discards features and results in a blurred
image or block artifacts.

Adaptive sampling approaches try to assign the computational
costs to regions with high image fidelity and to approximate the
remaining image parts. Typically, these techniques use features
that have been detected in the image plane only. These
approaches obviously require the final result as an input for the
optimal result, which is impossible. Hence, image regions from
previously rendered frames [1] or sparsely sampled regions [2]
are used.
ll rights reserved.

einberger),

az.at (S. Hauswiesner),

cg.tugraz.at (D. Kalkofen),
We investigate the key element of adaptive approaches, which
is the determination of which elements of an object can be
coarsened and which must be preserved. Fig. 1 outlines the core
idea of this work.

Much perceptually based research has been performed in this
area by researchers from different communities (e.g., the Non-
Photorealistic Rendering, NPR, community). However, these
results have mostly been used for scene stylization and scene
enhancement so far. We present a new sampling strategy for ray-
based image synthesis, which uses information about the scene,
which is known to support the comprehension of three-dimen-
sional shapes [3] and visually attractive images areas in gen-
eral [4]. In this paper, these techniques are used to control the
reduction of ray samples and thus to achieve a higher image
quality while maintaining the same level of interactivity.

Our implementation produces a feature buffer for every frame
that is efficient enough to be used during the ray generation as a
lookup table for the required ray density. We derive a feature
priority map from the feature buffer that consists of object space
features like silhouettes, suggestive contours, ridges and valleys,
combined with image space features like the visual bottom-up
saliency information from previously rendered frames. All of
them affect the ray density differently. Because different features
generate different ray densities, our method is able to support an
importance-driven rendering to guarantee the minimum desired
frame rate. Even though our main focus is the efficient

www.elsevier.com/locate/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2012.03.037
mailto:steinberger@icg.tugraz.at
mailto:kainz@icg.tugraz.at
mailto:hauswiesner@icg.tugraz.at
mailto:khlebnikov@icg.tugraz.at
mailto:kalkofen@icg.tugraz.at
mailto:schmalstieg@icg.tugraz.at
dx.doi.org/10.1016/j.cag.2012.03.037

Fig. 1. This figure illustrates the basic idea of our method. Rays do not have to be

equally distributed over the scene in ray-based rendering environments to get a

visually pleasing result. It is sufficient to trace rays only in areas that have been

proven to convey the shape of an object (left) for a good approximation of the

result (right).

M. Steinberger et al. / Computers & Graphics 36 (2012) 673–684674
visualization of volumetric datasets, we also demonstrated a way
to apply our method to geometric objects with highly complex
materials in ray-traced scenes.

This is an extended version of [5], which newly introduces the
use of an image-based visual saliency analysis to capture the
impact of lightning effects which go beyond pure geometric
features and presents a thoroughly evaluation of our technique
using the HDR-VDP-2 [6] visual metric for visibility and quality
predictions. The main contributions of our method can be
summarized as follows:
�
 A method that allows the optimization of the ratio between
the sampling rate of the scene and its resulting perceptual
quality (Section 4).

�
 A method to calculate the visual saliency information effi-

ciently enough from previous frames, so that this scene
information gets applicable for a perceptually guided ray setup
(Section 4.1).

�
 A progressively refineable sampling pattern, which is used to

reconstruct sparsely sampled regions of the image (Section
4.4).

�
 An algorithm that uses our method to guarantee frame rates

while maximizing the visual quality within the available time
frame (Section 5).

�
 An evaluation of different object space line features to cate-

gorize them based on their abilities to enhance the image
quality and a comparison to image space saliency information
from previous frames (Section 6).
2. Previous work

Previous researchers have been concerned with the real-time
performance of ray-based image generation algorithms. Recent
work has introduced the exploitation of modern GPUs for solving
the brute-force full-resolution ray traversal interactively, while
coarse adaptive and progressive sampling approaches have been
discussed since ray-tracing algorithms first became available. We
give a brief overview of recent GPU methods and adaptive
progressive rendering methods in Section 2.1 and discuss possible
scene feature computation strategies in Section 2.2. A further
overview of the reconstruction techniques for sparsely sampled
data is given in Section 2.3, and previous attempts at guarantee-
ing minimal frame rate are outlined in Section 2.4.

2.1. Interactive ray-based rendering

In this section, we briefly summarize the most common
approaches to speed-up ray-based rendering algorithms. These
approaches can roughly be divided into algorithmic improve-
ments and the exploitation of successively available graphics
hardware features.

Adaptive progressive rendering. Adaptive approaches, such as
the one presented in this paper, aim for the best possible trade-off
between interactive frame rates and the loss of image quality,
instead of finding the maximum achievable frame rate for a full
quality image. Finding this trade-off is still an ill-defined problem,
because the perception of quality differs between human beings
and between applications. However, several algorithms exist to
accelerate rendering speeds through ray reduction. The simplest
method is a regular subsampling with a nearest neighbor inter-
polation. As discussed by [7] and still used in many interactive
ray-based rendering systems [8,9], this method is prone to
strongly perceivable aliasing artifacts during the interaction. To
deal with this problem, most related work has investigated the
impact of different sampling pattern strategies in image space
[10,2,11]. The sampling pattern is usually visually noticeably
refined over time until a desired quality level is reached.

Levoy reformulated the front-to-back image order volume
rendering algorithm to use an adaptive termination of ray-tracing
[12]. The subdivision and refinement process is based on an E
threshold and does not consider human feature perception and
temporal coherence. Later work altered the ray termination
criteria [13] depending on the required rendering time or used
texture-based level of detail [14], topology guided downsampling
[15] or multiple resolutions of the same dataset [16,17].

Exploiting the GPU. Numerous rendering engines have been
developed to deal with one of the most computationally expen-
sive problems of computer graphics: ray-tracing. Besides CPU-
based libraries [18,19], most recent GPU approaches reach
remarkable frame rates for low- to medium-complexity scenes
for rendering in full quality [20,21]. However, screen filling scenes
or scenes with very high complexity are still too slow in order to
meet hard real-time constraints. Furthermore, rendering algo-
rithms that aim at achieving real-time performance for the full-
quality ray-casting of volume data use empty-space skipping [22],
iso-surface ray-casting [23,24], ray pre-integration [25], homo-
geneous region encoding [26] and many kinds of direct GPU
implementations [27, Chapter 39].

2.2. Important image areas

The choice of a suitable sampling pattern is crucial for adaptive
rendering. For non-trivial systems, the pattern refinement strat-
egy is usually chosen depending on prominent features. In the
following paragraphs, we discuss our selected methods to find
those regions.

Image space methods. Most methods refine the image sampling
pattern based on image intensity variances. Early algorithms
assume that image areas with high frequencies require a denser
sampling than large uniform areas do [28,2], to gain a visually
acceptable result. Later systems adapt this assumption towards
the limitations of the human visual system. Ramasubramanian
and colleagues [29] have been one of the first who have success-
fully introduced an image-based perceptual threshold map which
steers the sampling density of a global illumination path tracing
algorithm. The Ramasubramanian system shows that it is possible
to generate images with only 5–10% of the rays which have been

M. Steinberger et al. / Computers & Graphics 36 (2012) 673–684 675
used for a reference solution. Their results have visually only little
to no difference to a fully computed ground truth.

Another popular method to extract visually attracting image
areas is the calculation of the visual bottom-up saliency [4]. The
saliency of an image is usually defined as a measure of how much
a particular location contrasts with its surroundings, using
dimensions such as color, orientation, motion, and depth. Hence,
this method is especially suitable for analyzing cluttered scenes
which are more dominated by texture rather than sharp edges
[30,31].

Non-Photorealistic Rendering of line features. NPR deals with
salient object features, often directly in object space. Related
rendering techniques are mainly used for illustrative rendering
and in cognitive science. Cole and colleagues [3], for example,
show that object contours including the object silhouette are also
used by artists to outline scenes. Several visualization algorithms
and perceptually motivated work demonstrate that these features
can be used to simplify complex scenes for a better understanding
of the essential parts [32–34].

The features of an object or of a scene can be extracted in
various ways: meshes can be analyzed in object space or, after
rendering, their projection can be analyzed in image space.
Similar methods apply to volumetric datasets, where the object
space contains a voxel grid instead of a set of geometric primi-
tives. Finding features in a rendered image has the advantage of
including textures and other effects, while in object space, more
accuracy is usually available because the data have not been
discretized into pixels. Moreover, the features in object space may be
view-independent, which allows their reuse without recomputation.

Fig. 2 gives a visual impression of some sparse object features
and the visual saliency information of a rendered object that we
evaluate for ray decimation in this work. Our definitions of object
features are similar to those from [34] and the definition of visual
saliency is similar to that from [4].

2.3. Sparse data reconstruction

Computing only rays for important areas means that the final
image has to be reconstructed from those sparse samples.
Numerous approaches exist besides the simplest, conventional
approach of regular subsampling. This attempt requires a nearest
neighbor computation or a linear interpolation and leads to
perceivable block artifacts. A good general overview of non-
homogeneously sampled data reconstruction is given in [35].

Point-based rendering. Specialized approaches for computer
graphics can be found for point-based rendering. The widely used
pull–push algorithm [36] utilizes a pyramid algorithm for surface
reconstruction. It has been adapted for the image space
Fig. 2. The happy Buddha object (a) rendered with different object space sparse line fe

contours (c), suggestive highlights (d), ridges (e), valleys (f) and bottom-up visual salien

areas correspond to highly salient regions, while white areas stand for zero saliency.
reconstruction of under-sampled point-based surfaces [37]. Pfis-
ter and colleagues [38] extended this approach to fill the holes
between splats. Unfortunately, these approaches are not suited
for direct GPU implementations, as stated by Marroquim and
colleagues [39]. The approach of Marroquim et al. [39], who
proposed a GPU implementation for large point-based models
with elliptic box-filters and deferred shading, is also applicable to
the reconstruction problem in this work. However, its computa-
tional overhead is still higher for large viewports than that of the
method presented in Section 4.4.

Image warping. Image warping [40] is a form of image-based
rendering that allows to extrapolate new views from existing
images with per-pixel depth information. Such methods can be
useful if the changes between frames are small (i.e., during
interaction with high frame-to-frame coherence), so that a new
view can be reconstructed from previous frames. Artifacts occur-
ring because of occlusions and disocclusions can be solved by a
recalculation of those areas [41,42].

2.4. Guaranteed frame rates

To the best of our knowledge, our method is the first that
successfully implements an algorithm to guarantee a certain
minimal frame rate and still maintains an acceptable image
quality for ray-based image generation. Pomi and colleagues
[43] proposed that a guaranteed frame generation time would
be essential for mixed reality TV studio ray tracing applications,
but they did not implement such an approach. For non-ray-based
rendering approaches, a few systems that guarantee a certain
frame rate exist. For example, [44] replaces complex objects
optimally by impostors. These examples show that several appli-
cations require guaranteed frame rates but also that this problem
is not well researched yet.
3. Overview over the method

Our approach consists of two passes. First, an importance
buffer is created from object space features and image space
features with the goal of encoding the visual importance of every
image region for the perceivable image quality. The object space
features are deduced from a set of line features which are
extracted from the dataset’s corresponding meshes, projected to
screen space, and classified according to our evaluation (see
Section 6). The image space features are deduced by performing
a saliency analysis of the previously rendered frame, warping the
saliency to the current frame, and analyzing the result for
disocclusions. The combined feature buffer is evaluated during
atures (b)–(f) and an image space feature detector (g). Silhouettes (b), suggestive

cy (g) are evaluated for ray decimation in this work. In the saliency image (g) dark

Fig. 3. Overview of our prioritized rendering algorithm. Every ray’s priority is

computed according to Section 4.2 and is used to sort the pixels in a one-

dimensional priority queue. Additionally, the visual saliency information can be

image warped from the last frames as described in Section 4.1. The selection of

features depends on the kind of scene and can therefore be modified by the user.

The features are sorted in a priority queue and if a certain time limit is reached,

the rendering process stops. The resulting sparse data frame can be reconstructed

with the method from Section 4.4.

M. Steinberger et al. / Computers & Graphics 36 (2012) 673–684676
the ray setup and traversal, which forms the second pass. Given
that we can assign a priority value to every ray, it is possible to
construct a rendering system that aims at producing the best
image quality within a given time frame, as outlined in Fig. 3.

We adaptively adjust the image space sampling frequency
according to the feature buffer. More rays are sent into the scene
in feature-rich areas and their vicinity, while the sampling
frequency for feature-poor areas is strongly decreased. The same
strategy can be used for per-ray quality parameters (such as ray
bounces, object space sampling frequency or stopping threshold).
Finally, we reconstruct the image by filling in color values for
pixels to which we have not previously assigned a ray. In Section
4.4, we present a suitable method for a full image reconstruction
using a fractal reconstruction pattern and an adaptive linear
interpolation.

Our method is applicable to a ray-based rendering of geo-
metric surface meshes and to volumetric datasets. The only
difference is given by the object space feature extraction step.
For surface meshes, the feature-forming geometry is defined by
the mesh itself. Using volumes requires the extraction of multiple
iso-surfaces based on an evaluation of the given transfer function
before the line features are rendered.
4. Importance-driven sampling and reconstruction

To control the frequency of the sampling pattern, we render an
importance buffer in each frame (Section 4.1). This importance
buffer is filled by a projection of object space line features to
screen space combined with the result of an image space saliency
analysis from the previously rendered frame. To yield the priority
of every ray (Section 4.2), the entries from the importance buffer
are combined with priority values from a fractal sampling pattern
(Section 4.3).

4.1. Importance buffer

The aim of the importance buffer is to estimate the importance
of an image region for the overall perceivable image quality. A
high importance value (close to 1.0) means that this area is
important for the viewer to be able to understand the rendered
objects. At the same time these areas will also strongly contribute
to image quality. A low importance value (close to 0.0) means that
this image area does not hold visually interesting features and
that this region is rather homogeneous in color and intensity. We
furthermore encode information about which areas correspond to
pure background in the importance map to omit these areas from
ray-tracing. To generate the importance buffer, we rely on object
space features, which are exact and efficient to compute, as well
as image space features, which can cover additional effects due to
lighting or object textures. As there is a partial overlap between
the two methods, we combine the feature-sets applying a per-
pixel max operator if both kinds of features are used at the same
time. To benefit from our method, the importance buffer must be
produced in a time frame that is shorter than the savings from the
main rendering pass. Note that it is in general sufficient to
compute the importance buffer at a lower resolution.

Object space features. To provide a sufficiently high frame rate
in the first render pass, we have extended the approach from
DeCarlo and colleagues [34] with selective GPU acceleration
techniques, which are described in Section 7. In practice, we can
render this step at several hundred frames per second because the
features are rendered as simple OpenGL lines. These lines are also
reused from frame to frame. To simulate smooth features and to
gradually decrease the priority in the vicinity of features, we can
replace these lines by textured triangle strips, compute a distance
transform on the feature buffer, or use a fractal pattern as
described in Section 4.3. The last option provides the highest
flexibility. To remove any hidden features, we also render the
underlying base mesh as fully opaque, homogeneous surface.

Image space features. Because pure object space features do not
incorporate high frequencies in textures or lighting effects like
shadows, reflections, or refractions, we also evaluate image space
features. To detect these features in image space, we rely on
bottom-up visual saliency in terms of color and intensity opposi-
tions [4]. As we require an image to calculate the saliency, we face
a chicken–egg problem. To determine the importance of an image
region, we require the image. To efficiently create the image, we
need to know where important areas are. Targeting interactive
systems, we can make use of the previously generated view. We
calculate a saliency buffer for the previous frame building an
image pyramid using GLSL shaders. Afterwards, the saliency
buffer is image warped according to the transformations that
have been applied to the scene since the last frame was gener-
ated. Finally, small holes in the map are closed and big holes,
probably due to disocclusions, are filled with a medium impor-
tance value. Warping the saliency buffer is less error prone than
warping the image itself, because we only use it as basis for the
decisions of which rays to cast into the scene and only warp from
one frame to the other.

4.2. Adaptive subsampling

When the importance buffer is available, the actual ray
traversal starts. Every pixel of the output frame defines a possible
ray starting point which is equal to one thread in terms of GPU
stream processing. If the importance buffer contains a negative
value at the thread’s position, this ray’s thread will immediately
return and fill its corresponding position in the output buffer with
the background color. Otherwise, we consult an adjustable ray
priority table, which defines an image space sampling pattern
(see Section 4.3). Combining the importance buffer entry pimp

with the pattern priority ppatt, which is read from the sampling
priority table, we can determine a per-ray priority pray. The way
the two independent priorities pimp and ppatt are combined
essentially captures the contribution to the image quality that

Fig. 4. We use a sampling priority pattern similar to that outlined in this figure.

For illustration reasons, this figure shows a much finer grid than would be used in

reality. Blue defines the initial rays with priorities 1.0. With every sampling step,

the pattern becomes finer, and the priority decreases. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version

of this article.)

M. Steinberger et al. / Computers & Graphics 36 (2012) 673–684 677
can be expected when casting a certain number of rays in a region
of a certain importance. To make this important quantity adjus-
table, we support an arbitrary mapping function fmap to combine
these two priorities:

pray ¼ f mapðpimp,ppattÞ ð1Þ

For an efficient implementation, we use a second-order Taylor
series approximation, whose implementation consists only of
basic and fast algebraic operations. It is defined by six fixed
parameters ai,j:

pray ¼
X

iþ jr2

ai,j � p
i
imp � p

j
patt ð2Þ

Rays are traced according to their priority pray. As the mapping
function captures every ray’s contribution to image quality, a
fixed threshold can be used to trace rays with a high contribution
only. Another option is to sort rays according to pray and use the
available time slot to draw the rays with the highest contribution
(see Section 5). The way that fmap and thus the a values are
chosen, controls the influence of the importance buffer on the
output image. Low weights for terms dominated by pimp will
result in a nearly uniform pattern, while a high contribution of
pimp creates samples at the feature areas only. A good trade-off
between these extremes is a method that creates a dense
sampling pattern along important features while reducing the
number of samples along the transition from a feature to feature-
less areas. Lower priority features would thus receive a lower
sampling density than would higher priority features. Homoge-
neous areas would contain only a few sampling points (see also
Fig. 8). All non-background rays, which have not been traced, are
subject to a reconstruction step as described in Section 4.4.

In practice, we have used a rather simple choice for the a
values: a2;0 ¼ a0;2 ¼ 0 and ai,j ¼ 0:570:2 for all remaining terms.
However, an optimal mapping function fmap takes information
about the rendered objects into consideration. Images of strongly
transparent objects naturally show few homogeneous areas; thus,
increasing the influence of ppatt (increasing a0;1 and a0;2) will have
a positive influence on the image quality. Nearly opaque objects
with low color variation will benefit from an increasing influence
of pimp (increasing a1;0 and a2;0), as most variation in color appears
along the feature regions.
4.3. Sampling pattern

The choice of an incrementally refineable sampling pattern is
crucial to smoothly add detail to transitions between fully traced
areas and a coarsely traced background. The design of this sampling
pattern should further consider the possibility of interpolating the
resulting ray pattern efficiently. Both problems can be addressed by
defining a fractal sampling scheme that considers only two local
shapes: a square and a diamond (451 rotated square). To define the
sampling pattern, we start with a square pattern and a power of two,
which defines the maximal distance between rays. In practice we
place a ray every 8�8 pixel. In the next step, we place a sample at
the center of the square which splits every square into four triangles.
Together with the surrounding squares, which are also augmented
with an additional sample, a diamond pattern results. The density of
this pattern can be increased by placing a ray at the center of each
diamond. This procedure leads again to a uniform square pattern.
Repeating these steps places rays at exactly the centers of pixels until
every pixel is covered with a single sample. The associated priority
values are deduced by starting with the maximum priority and
linearly decreasing the priority with each new shape. The whole
procedure is outlined in Fig. 4. The pattern can be refined locally and
thus increase the sampling density for arbitrarily sized regions.
4.4. Image reconstruction

To improve the quality of the reconstructed image, we have
investigated methods to fill areas for which no rays have been
traversed. We focus on reconstructing without losing much
performance. Our approach linearly interpolates samples based
on the fractal pattern presented in Section 4.3.

Various methods exist for interpolating non-homogeneously
sampled data [35]. However, our sampling pattern allows us to
combine the choice of ray locations with their interpolation and
compute both steps efficiently. A pixel contained in the interior of
a square pattern can be constructed with a bilinear interpolation
from the four anchor points defining the square. Because the
diamond shape is a rotated square, we only need to rotate the
pixel position accordingly to enable a standard bilinear interpola-
tion for this shape.

The transition from one interpolation density to the next
requires an additional step, as up to three anchor points might
be missing. In this case, we have to interpolate the missing anchor
points from the coarser pattern first. From another point of view,
we add a ray according to the pattern described in Section 4.3, but
instead of tracing it, we interpolate its value from the already
given rays. As this new anchor point is placed exactly in the
middle of the already existing ones, the linear interpolation
breaks down to an evenly weighted mixture of the four anchor
points. For an efficient implementation, we have to make sure
that we do not create a dependency chain when gradually
decreasing the sampling density. If the sampling density is
decreased too abruptly, not enough lower density rays will be
available to construct the missing points for the next higher
density. For maximum performance, we make sure that the
importance buffer is smoothed sufficiently, such that enough rays
are traced to construct all of the missing anchor points in a
single step.
5. Guaranteed frame rate rendering

For a continuous rendering scenario with a good frame-to-
frame coherence, we can build a reactive rendering system that
adjusts the number of traced rays depending on the time needed

 0% 5% 20% 50% 100%
0

0.1

0.2

0.3

0.4

0.5

Number of Rays

Geometric Objects: Pmap

 0% 5% 20% 50% 100%
0

20

40

60

80

100

Number of Rays

Geometric Objects: QMOS

 0% 5% 20% 50% 100%
0

0.2

0.4

0.6

0.8

Number of Rays

Volumetric Objects: Pmap

 0% 5% 20% 50% 100%
20

40

60

80

100

Number of Rays

Volumetric Objects: QMOS

M. Steinberger et al. / Computers & Graphics 36 (2012) 673–684678
for previous frames. This step is possible by dynamically adjusting
the threshold that defines which rays shall be rendered, i.e., by
decreasing a0;0 by a fixed value if the frame rates are too low. If
the scene is static and the camera is still, the rays traced in the
previous frame are reused, and we progressively add new rays by
increasing a0;0. Thus, the image converges to the highest quality.

There are scenarios in which the aforementioned approach
will fail. An unexpected load on the GPU, complex objects
popping up in the scene, or highly different viewing positions
prohibit us from deducing enough information for the next frame.
However, in these cases, we can still rely on the ray priorities to
guarantee the given update rates. We require an additional
sorting step before the actual ray tracing is conducted. Every
ray’s priority is computed according to Section 4.2 and inserted
into a one-dimensional priority queue. In this scenario, the
parameter a0;0 is irrelevant, because it has no influence on the
sorting order. During the following rendering step, each block of
threads fetches a set of rays from the front of the queue and
processes them. This step is repeated until the available time
frame is nearly over. The use of this priority queue guarantees
that the available time is spent on rays that have been classified
as being the most important. For the sorting itself, we use a fixed
number of buckets instead of completely sorting the queue to
increase performance. As we cannot guarantee that all elements
within a bucket will be processed, we randomize the order in
every bucket. Otherwise, the render order for similar ray priorities
would match the insertion order, and the sampling density might
thus only increase locally.

Our experiments have shown that the reconstruction step’s
execution time is very short and has little variation. We can thus
measure an upper bound for this step in the initialization phase
and reduce the time frame during the rendering accordingly to
have enough time for the reconstruction step. This setup enables
us to output a frame within the desired latency. The time
measurement is performed on the graphics card itself, which
allows each block of threads to work autonomously without
synchronization via the host. For static scenes, we can again use
our system for a progressive rendering. As low priority rays are
still present in the queue after the time frame is over, we can
simply re-launch the rendering kernel right after presenting the
current quality level. In this way, the next set of rays are traced
within the next time frame, and we are able to progressively
update the scene with the next lowest ray importance level.
 0% 5% 20% 50% 100%
0

0.2

0.4

0.6

0.8

1

Number of Rays

Textured Objects: Pmap

 0% 5% 20% 50% 100%
0

20

40

60

80

100

Number of Rays

Textured Objects: QMOS

regular subsampling silhouettes

contour suggestive contours
and highlights

ridges and valleys

warped saliency

Fig. 5. These graphs compare the render quality in terms of the visibility (Pmap)

and mean-opinion-score quality (QMOS) reached by tracing a certain number of

rays according to different feature classifiers. The left column shows the result for

the difference predictor Pmap and the right columns shows the results obtained for

the mean-opinion-score predictor QMOS. Each row represent a different use case

scenario, whereas the numerical results were obtained from averaging multiple

datasets of varied complexity. For visual examples of the different classifiers see

Fig. 2.
6. Feature classification

To evaluate how features improve the visual quality of the
result, we have tested selected volume-rendered objects with
different transfer functions and ray-traced objects with and
without textures and different physical properties (i.e., different
reflection and refraction coefficients). Rendering at a lower
resolution with bilinear interpolation served as a base-line con-
dition. The upper visual quality bound is given by the ground
truth (ray tracing at full resolution). We evaluate subsequently
how the image quality improves when the number of rays cast
into the scene is increased. Rays are subsequently added accord-
ing to their importance defined by tested feature evaluation
strategy.

To quantify the visual improvements of different features, we
use the currently most advanced image comparison metrics, the
recently published HDR-VDP-2 [6] method. Image comparison
means for our application to compare an image, which has been
produced by our method, to the fully sampled ground truth
image. HDR-VDP-2 is a very useful tool for predicting the visual
quality as it is perceived by a human observer. The method
provides two different comparison metrics.

The first metric is the visibility metric Pmap, which gives an
image in which each pixel represents the probability of detecting
a difference between the two input images. To derive a single
quantitative difference measure from this map, we compute its
average value. This value can be seen as the average probability of
detecting a difference between the fully traced ground truth
image and the coarsely traced image. The second metric estimates
a quasi-subjective mean-opinion-score quality predictor QMOS,
which would normally require an extensive user-study. There-
fore, the authors of HDR-VDP-2 have tested over 20 different
variations of value pooling strategies and compared their predic-
tions to two different image quality databases. HDR-VDP-2
revealed to be the best visibility and quality predictor [6] at the
time of this work.

Fig. 5 shows that all feature classifiers improve the image
quality during interaction, compared with the conventional reg-
ular subsampling rendering. We believe the region between 5%
and 100% of cast rays is the most interesting for our approach. It

Volume

Mesh
Extraction

Geometry

Mesh
Preparation

NPR
Line Feature
Rendering

Previous
Color Buffer

Visual Saliency
Analysis

Previous
Depth Buffer

Feature
Priorities

Image Warping

Hole Closing +
Disocclusions

Object Space
Feature Buffer

Image Space
Feature Buffer

Feature Buffer Combination

Importance Buffer

Ray Priority Evaluation
+ Ray Sorting

Sampling
Priorities

Pr
ep

ro
ce

ss
in

g

Priority Queue

Ray Tracing

Sparse Data Frame

Fractal Interpolation

Color Frame

Fig. 6. The rendering pipeline used for our perceptually guided ray tracing. Red

boxes denote data objects, green boxes represent CUDA kernels, orange boxes

indicate shader based OpenGL rendering, and blue boxes represent Optix Kernel

calls. (For interpretation of the references to color in this figure caption, the reader

is referred to the web version of this article.)

M. Steinberger et al. / Computers & Graphics 36 (2012) 673–684 679
yields acceptable image qualities according to the mean-opinion-
score quality measure QMOS. In this region, the average probability
of detecting a difference between the full quality image and the
image rendered with a reduced number of rays Pmap is approxi-
mately twice as high for the conventional regular subsampling
approach than for any of the proposed feature detection methods.
We observed that the image-based feature detector based on
visual saliency performs very well for low ray counts, while its
performance is approximately equal to the object space detectors
for medium to high ray counts. In terms of object space feature
detectors, using a combination of exterior silhouettes and con-
tours works best. Using the exterior silhouette leads to the best
result for objects with a low interior feature count (e.g., glass
objects). For volumetric objects, the exterior silhouette initially
does not necessary improve the image quality, because it might
cover the whole dataset and exclude the (probably more impor-
tant) internal features. Ridges and valleys as well as suggestive
contours and highlights overall contribute less to image quality
than contours or silhouettes. If strongly textured objects are
rendered, object space line features cannot predict the visual
outcome, which results in a performance comparable to conven-
tional regular subsampling. However, applying our image space
visual saliency measure significantly increases the image quality.

Based on our observations from automatic tests, we first
roughly classify the object space line features into strong visual

features and medium visual features. We do not introduce the class
weak visual features here because we have already considered
regions on/in an object with no response to any feature extraction
algorithm as regions with a low image signal frequency. Our
experiments show that contours in particular lead to a much
better relative perception during the scene interaction for our
tested scenes. Exterior silhouettes also yielded a good result in all
of the tested scenes. Therefore, we categorize contours as strong

features (along with the external silhouettes as a subset of contours)
and the remaining ones as medium features. In Section 5, we
directly use the results from Fig. 5 to define static feature priority
lookup tables for each separate feature in a numerical way. Using
the values measured in this section, we can provide good default
values for the priority lookup tables. However, a user is still able
to alter these priorities in our system.

It is desirable to evaluate the importance of different features
for every frame independently. For a fully automatic evaluation of
the image quality improvement of different features per frame,
obtaining the ground truth is necessary, which is of course not
feasible during runtime. Therefore, users can alter the proposed
feature ranking in our system during runtime. Preliminary experi-
ments with this option have shown that users tend to fully
disable object space features such as suggestive contours, sugges-
tive highlights, ridges and valleys to gain higher frame rates.
These features have also shown a low visual improvement during
our offline evaluation as previously outlined. Most users preferred
to disable the image space feature generation based on visual
saliency for untextured objects and volumetric datasets. For
textured objects, most users exclusively used the image space
visual saliency warping for the importance buffer generation.
7. Implementation

In this section, we describe the implementation details of our
rendering pipeline as shown in Fig. 6. The preprocessing and
feature generation stages use a combination of OpenGL and
CUDA. We have implemented the main part of our method as
part of the OptiX SDK [21], which we have enhanced with volume
rendering abilities. OptiX provides a Cþþ/CUDA-based program-
ming interface, which is specialized for ray-tracing applications.
Because several materials, like the glass effect, which has been
used in this work, are already implemented in the SDK, we only
had to extend the framework to include a volume material and
specialized ray generation programs (cameras) to support our
method.

In OptiX, a simple ray-tracing program normally consists of a
combination of a hit function, a trace function, a miss function, and
a camera for the ray setup. The main functions are executed per-
ray. The hit function is used to intersect rays with object surfaces
in the scene. The trace function evaluates the color contribution of
a ray between two intersections, and the miss function fills rays
that hit no geometry with a defined background color. These
functions are implemented in separate CUDA files, which are
preprocessed by the OptiX SDK.

7.1. Mesh extraction

The object space feature evaluation requires a smooth surface
mesh. At that stage, we distinguished between a pure geometric
input for ray-tracing applications and volumetric datasets for a
direct volume ray-casting. In the first case, an input mesh is
directly available for the mesh preparation step. The second case
requires an intermediate step depending on the used volume
transfer function and the volume histogram. In our case, a transfer
function is defined by several color gradients, mapping a certain
intensity range to a defined color and opacity. One can also define
high-dimensional transfer functions for a better visual result (e.g.,
using the gradient magnitude as a second dimension, as proposed
by [45]). However, for an iso-surface extraction, the peak value of
the direct (one-dimensional) mapping gradients or the projection
of the color gradient’s opacity peak to the intensity axis for high-
dimensional transfer functions together with the peak of the
volume histogram is sufficient. Consequently, we define the

M. Steinberger et al. / Computers & Graphics 36 (2012) 673–684680
necessary iso-values for a multi-iso-surface extraction as the
highest peaks of the volume’s histogram, if the transfer function
is not zero at that position. We use a fast GPU-accelerated
marching cubes implementation (CUDA version of the marching
cubes [46] algorithm) to extract the iso-surfaces whenever the
transfer function is changed. Because the resulting meshes are
over-tessellated, we simplify this mesh with a GPU-based sim-
plification method as described in the following paragraphs.
0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

Frames per Second

Guaranteed Framerates: Pmap

0 10 20 30 40 50
0

20

40

60

80

100

Frames per Second

Guaranteed Framerates: QMOS

high feature count, untextured geom. ray-tracing

low feature count, untextured geom. ray-tracing

high feature count, textured geom. ray-tracing

high feature count, volumetric ray-casting

Fig. 7. These plots show the increase of the visibility metric Pmap and the decrease
7.2. Mesh preparation

The quality and size of surface meshes, used as inputs for our
algorithm, vary dramatically. Ray-tracing applications are often
applied to high-quality meshes with hundreds of thousands of
triangles. The iso-surface meshes extracted from volumes are
known to be noisy and often contain lots of small triangles, which
can be merged without a loss in quality. We thus use a combina-
tion of mesh smoothing [47] and mesh simplification [48] to
generate meshes that fulfill our demands: (a) the mesh contains
little noise, (b) the number of faces is low enough to generate the
feature buffer quickly, and (c) main features from the original
mesh are conserved at the according position.

Our algorithm successively applies Taubin smoothing, mesh
simplification and another instance of Taubin smoothing. The first
smoothing step is especially important for iso-surfaces extracted
from a volume. Taubin smoothing preserves the volume of the
mesh and thus also conserves the location of remaining features.
Our implementation of the mesh simplification method is run
once per mesh as a preprocessing step and does not include any
view-dependent simplifications. A static simplification based on a
fixed error metric turned out to be sufficient for our demands.
Both algorithms allow a highly parallel GPU-based implementa-
tion, which enables low latency on input data changes. The
overall process takes up to a second, depending on the mesh
complexity and the number of peaks in the transfer function.
of the mean-opinion-score quality predictor QMOS for increasing guaranteed frame

rates averaged over different datasets. The viewport for this test was 1024�768.

Note that, after a certain guaranteed frame rate, the time frame becomes too short

to render the important features. This issue becomes apparent in the plots by the

bend between 25 and 40 fps.

Table 1
An overview over the average rendering times for each step and different objects

using our approach on our test system (variance o1%). For geometry, we tested

the Stanford Dragon, Buddah, and Bunny datasets, our Piggy dataset and some

simpler drinking glass meshes. For volume, we tested the 5123 datasets, MANIX

and FEET, with different transfer functions. The measured times refer to a

computation within a 1440�900 viewport. The object space feature frame and

the saliency warping was performed in full resolution, which is in general not

necessary. Note that not all rays on feature lines have to be computed. To obtain

high guaranteed frame rates that maintain a visual appealing result, low priority

features might be omitted by our algorithm from Section 5.

Rendering step Geometry
(ms)

Volume
(ms)

Av. ray count
(#rays)

Object space features 2 3 –

Saliency warping 6 6 –

Rays on contours 10 11 31.461

Rays on ridges 8 9 23.356

Rays on silhouette 5 7 9.251

Rays on sug. highlights 8 9 17.122

Rays on sug. contours 5 7 15.549

Rays on valleys 5 6 9.646

Rays on saliency 12 13 35.678

Reconstruction 15 15 1,153,937

Sum 76 86 1,296,000

Ground truth 208 251 1,296,000
7.3. NPR line feature rendering

The object space feature frame is rendered by using an
extended version of the publicly available framework provided
by [34], which is based on the Princeton Trimesh2 library. To
provide high frame rates for very complex objects, we extended
this library with GPU-accelerated calculations. Therefore, we
moved all per-frame calculations (e.g. normal vector � viewing
vector per geometry vertex) to CUDA kernel functions and
attached the line-output to an OpenGL Vertex-Buffer object. This
vertex buffer is subsequently rendered into an OpenGL Framebuf-

fer object, which is concurrently mapped as a texture in the OptiX
context.

For volume rendering, we have also attempted a direct feature
line extraction as proposed by Burns et al. [33]. Experiments with
the Burns system have shown that the frame rates are not as high
as those obtained with iso-surfaces, which we use with the
DeCarlo system, especially for very large volumes and multiple
transfer function peaks. This fact can be explained by the
difference in the order of complexity when processing a surface
(Oðn2Þ) compared to processing a volume dataset (Oðn3Þ). Because
iso-surfaces for the feature frame generation only have to be
recalculated when the transfer function changes, we have decided
to use the feature extraction approach from De Carlo et al.
However, it would also be possible to use the approach of Burns
et al. because it also shows frame rates that are high enough to
meet our two-pass rendering criteria for certain cases.
7.4. Visual saliency analysis

To generate the image space feature frame, we require a
previously rendered frame. In order to match the current view as
closely as possible, we use the last rendered frame and compute its
bottom-up visual saliency [4]. We use GLSL shaders to convert the
image into the CIELab space and to build the image pyramid required
for the saliency computation. To efficiently build the image pyramid,
we apply separable Gaussian filtering with multiple render targets,
each representing a different scale. In a final pass, the saliency of
each pixel is computed from the image pyramid.
7.5. Image warping and hole closing

The saliency buffer is mapped as a texture in the OptiX
context. In a first launch, we use the depth information

M. Steinberger et al. / Computers & Graphics 36 (2012) 673–684 681
from the previously generated frame to warp the saliency
buffer to match the current view. Because the previously
generated frame was also constructed using our adaptive
method, its depth information may be available as a sparsely
populated buffer only. Hence, holes may arise during the warping
process. In a second pass, we close these holes using a nearest
neighbor search with a search frame size chosen according to the
Our Sampling Pattern Our Recon

fu
ll

sa
m

pl
in

g
15

 f
ps

30
 f

ps
40

 f
ps

60
 f

ps

Fig. 8. This figure illustrates the decreasing ray count with increasing requested guaran

column shows the actual pixels that have been traced, and the middle column shows the

of the left column are the edge images of the traced pixels to emphasize their position

regular subsampling pattern with a linear interpolation for comparison.
sampling pattern of the last frame. If no warped information is
found in the vicinity of the target position, the hole most
likely stems from a disocclusion. We fill these holes with a
medium importance value of 0.5. This empirically determined
value proved to be a good compromise between ignoring
unknown previously hidden areas and rendering them in full
quality.
struction Regular Sampling

teed frame rates for the Happy Buddha dataset in a 1024�768 viewport. The left

result with our fractal pattern interpolation scheme. The 40 fps and 60 fps images

s in the printed versions of this paper. The right column shows the results using a

M. Steinberger et al. / Computers & Graphics 36 (2012) 673–684682
7.6. Importance buffer and ray setup

The importance buffer is formed from the feature buffers using
a max operator. The ray priority is determined from the impor-
tance buffer and a fixed sampling priority as described in Section
4.2. After the rays have been sorted according to their priority the
ray tracing is carried out. To reduce the number of ray fetches
from the priority queue, rays are fetched in groups of 32. For the
ray tracing itself we use a pinhole camera model.
7.7. Volume rendering

We have implemented a standard ray-casting approach as a
material trace function. In contrast to tight-fitting bounding
geometry volume rendering systems, the volume bounding geo-
metry can be a simple cube or a sphere instead of a tight fitting
one. This detail reduces the necessary intersection calculations
and maximizes the thread coherence, which was stated by [21] to
be one of the most important factors for an efficient execution.
Because every ray can store a certain amount of payload, we save
the entrance point and the exit point of the hit function in every
ray’s payload structure. After transforming these two points to
the volume object space, we let every ray accumulate all the
values in between, depending on the given transfer function. In
addition, the values are shaded according to the Phong illumina-
tion model depending on the approximated volume gradient.
7.8. Fractal interpolation

The reconstruction based on the fractal interpolation scheme
as described in Section 4.3 requires two passes. In the first pass,
we reconstruct those anchor points, which have four available
surrounding anchor points. This pass guarantees smooth transi-
tions from one fractal level to the next. In the second pass, we use
information from the importance buffer and the priority queue fill
level to estimate the trace level in the vicinity of the pixel. Based
Fig. 9. This figure illustrates the decreasing quality with increasing requested guaran

complex lighting model combining procedural texturing, reflections, and refractions. T

detectors, thus we also apply an image space saliency detector. The second row shows

previously rendered frame and warped according to the current view. The gray area nex

from the previous frame is available due to viewpoint motion. Note that the saliency res

image space saliency evaluation is that by decreasing the number of traced rays the

interpretation of the references to color in this figure caption, the reader is referred to
on this initial guess, we search for available anchor points and
interpolate the pixel’s color from the found anchor points.
8. Results

In Section 6, we present our results on how much a certain feature
can improve the visual quality. In this section, we evaluate the
performance of the overall system. Our test system is equipped with
an Intel i7 Processor, 6 GB System memory and an Nvidia Quadro
6000 graphics card. Fig. 7 shows the increase of the visibility metric
Pmap and the decrease of the mean-opinion-score quality predictor
QMOS for increasing guaranteed frame rates. With our feature adaptive
sampling strategy, non-important rays are omitted first, which
increases framerates dramatically while the image quality is influ-
enced little.

The feature importance buffer can be generated with up to 1000
frames per second on a modern graphics workstation in a moderate
viewport and it does not need to be of the same size as the render
frame. For quality estimation, we use the fractal pattern interpolation
image reconstruction method, as described in Section 4.4. Table 1
gives an overview of the computation times of our method compared
with the unaltered ground truth. Figs. 8–10 show the decrease of
quality with an increasing frame rate demand for different object
types. The image quality remains subjectively stable, as long as the
frame rate is reasonably adjusted. Fig. 8 also shows the pixels that are
required to calculate a full ray traversal and compares our image
reconstruction method to a regular subsampling with linear inter-
polation. Fig. 9 shows the quality decrease for a textured object and
the associated image space feature frames. Fig. 10 shows the quality
decrease for a volumetric object.
9. Conclusions and future work

This paper presents a novel method for integrating perceptual
features into a rendering environment as a quality hint for the
teed frame rates for the Piggy dataset in a 1024�768 viewport rendered with a

he textural effects cannot be detected by the geometry-based object space feature

the response of this saliency detector applied to a four-fold-smaller version of the

t to the pig’s mouth (red arrow) indicates a disocclusion, for which no information

ponse is especially high at the borders of the reflective patches. One problem of the

image gets more blurry and thus the saliency response is also less accurate. (For

the web version of this article.)

Fig. 10. This figure illustrates the decreasing quality with increasing requested guaranteed frame rates for a 5123 volumetric dataset in a 1024�768 viewport. In image

(b) the low priority features at the side are discarded to reach the requested frame rate. The important parts of the foot are still very well presented. To meet 40 fps (c), the

number of contour forming rays is reduced, which causes coarser borders of the bones.

M. Steinberger et al. / Computers & Graphics 36 (2012) 673–684 683
required granularity during a ray-based rendering. To analyze the
scene for geometric features, we utilize Non-Photorealistic Ren-
dering techniques, which can be evaluated efficiently. To analyze
textured objects, we utilize image space saliency combined with
image warping to infer information from previously rendered
frames. We show that higher frame rates are achievable during
the scene interaction without a severe loss of image quality. Our
method outperforms the state-of-the-art implementation of
adaptive rendering, for example, delivered with the OptiX SDK,
in terms of speed and quality.

We have performed a quantitative evaluation of the perceptual
features to determine their impact on the visual quality and to
show which features are best suited for adaptive ray-based image
generation. Our algorithm can therefore also be used to achieve
guaranteed frame rates by sorting the image pixels according to
the feature priorities. Our algorithm is mainly intended for highly
complex ray-based calculations, such as volume rendering, and
for systems that require that object rendering does not occupy the
whole computation unit (e.g., concurrently performed GPU-based
simulation and segmentation).

We plan to perform a larger user study with different ray-
tracing materials and ray-casted volumetric objects. From such a
work, we expect a qualitatively founded classification of salient
object features to answer the question of which feature works
best for a particular type of object by means of human perception.
In this work, we show evidence that contours are the most
valuable feature of an object in terms of mathematically esti-
mated image error and quality. However, to better qualify the
remaining, less distinctive features, a deeper analysis will have to
be performed with a sufficient number of human subjects, even
though the HDR-VDP-2 metric approximates the outcome of a
prospective user-study about the visual quality of images already
quite well, as shown by Mantiuk et al. [6].
Acknowledgments

We would like to thank Morgan McGuire (Williams College)
and Marc Streit (Graz University of Technology) for their valuable
comments and Doug DeCarlo and Michael Burns (Princeton
University) for providing their source code. This work was funded
by the European Union in FP7 VPH initiative under Contract no.
223877 (IMPPACT) and the Austrian Science Fund (FWF) under
Contract P23329-N23.

References

[1] Dayal A, Woolley C, Watson B, Luebke D. Adaptive frameless rendering. In:
ACM SIGGRAPH 2005 courses, SIGGRAPH’05; 2005. p. 24.

[2] Painter J, Sloan K. Antialiased ray tracing by adaptive progressive refinement.
In: ACM SIGGRAPH computer graphics, SIGGRAPH’89 proceedings of the 16th
annual conference on computer graphics and interactive techniques, vol. 23,
no. 3; 1989. p. 281–8.

[3] Cole F, Golovinskiy A, Limpaecher A, Barros HS, Finkelstein A, Funkhouser T,
et al. Where do people draw lines? ACM Transactions on Graphics
(TOG)—proceedings of ACM SIGGRAPH 2008 2008;27(3):88:1–88:11.

[4] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid
scene analysis. IEEE Trans Pattern Anal Mach Intell 1998;20(11):1254–9.

[5] Kainz B, Steinberger M, Hauswiesner S, Khlebnikov R, Schmalstieg D.
Stylization-based ray prioritization for guaranteed frame rates. In: Proceed-
ings of the ACM SIGGRAPH/eurographics symposium on non-photorealistic
animation and rendering, NPAR’11. ACM; 2011. p. 43–54.

[6] Mantiuk R, Kim KJ, Rempel AG, Heidrich W. HDR-VDP-2: a calibrated visual
metric for visibility and quality predictions in all luminance conditions. ACM
Transactions on Graphics (TOG)—proceedings of ACM SIGGRAPH 2011
2011;30(11):40:1–14.

[7] Mitchell DP. Generating antialiased images at low sampling densities. ACM
SIGGRAPH computer graphics, SIGGRAPH’87 proceedings of the 14th annual
conference on computer graphics and interactive techniques, vol. 21, no. 4;
1987. p. 65–72.

[8] Schroeder W, Martin KM, Lorensen WE. The visualization toolkit: an object-
oriented approach to 3D graphics. second ed.Prentice-Hall, Inc; 1998.

[9] Wald I, Benthin C, Slusallek P. OpenRT—a flexible and scalable rendering
engine for interactive 3D graphics. Technical report, CG Group, Saarland
University; 2002.

[10] Dippé MAZ, Wold EH. Antialiasing through stochastic sampling. ACM
SIGGRAPH computer graphics, SIGGRAPH’85 proceedings of the 12th annual
conference on computer graphics and interactive techniques, vol. 19 no. 3;
1985. p. 69–78.

[11] Notkin I, Gotsman C. Parallel progressive ray-tracing. Comput Graphics
Forum 1997;16(1):43–55.

[12] Levoy M. Volume rendering by adaptive refinement. Visual Comput
1990;6(1):2–7.

[13] Danskin J, Hanrahan P. Fast algorithms for volume ray tracing. In: Proceed-
ings of the 1992 workshop on volume visualization, VVS’92; 1992. p. 91–8.

[14] Weiler M, Westermann R, Hansen C, Zimmerman K, Ertl T. Level-of-detail
volume rendering via 3d textures. In: Proceedings of the 2000 IEEE sympo-
sium on volume visualization, VVS’00; 2000. p. 7–13.

[15] Kraus M, Ertl T. Topology-guided downsampling. In: Proceedings of the
volume graphics 2011, VG’11. Springer computer science. Wien, New York:
Springer Verlag; 2001. p. 223–34.

[16] La Mar EC, Hamann B, Joy KI. Multiresolution techniques for interactive
texture-based volume visualization. In: Proceedings of the 10th IEEE visua-
lization 1999, VIS’99. IEEE Computer Society; 1999. p. 355–61.

[17] Boada I, Navazo I, Scopigno R. Multiresolution volume visualization with a
texture-based octree. Visual Comput 2001;17(3):185–97.

[18] Parker S, Martin W, Sloan P, Shirley P, Smits B, Hansen C. Interactive ray tracing.
In: Proceedings of the interactive 3D graphics, I3D’99; 1999. p. 119–26.

[19] Wald I, Mark WR, Günther J, Boulos S, Ize T, Hunt W, et al. State of the art
in ray tracing animated scenes. In: STAR proceedings of EG 2007; 2007.
p. 89–116.

[20] Seiler L, Carmean D, Sprangle E, Forsyth T, Abrash M, Dubey P, et al. Larrabee:
a many-core x86 architecture for visual computing. ACM transactions on
graphics (TOG)—proceedings of ACM SIGGRAPH 2008 2008;27(3):18:1–15.

[21] Parker SG, Bigler J, Dietrich A, Friedrich H, Hoberock J, et al. Optix: a general
purpose ray tracing engine. ACM Transactions on Graphics (TOG)—proceed-
ings of ACM SIGGRAPH 2010 2010;29(4):66:1–13.

[22] Li W, Mueller K, Kaufman A. Empty space skipping and occlusion clipping for
texture-based volume rendering. In: Proceedings of the 14th IEEE visualiza-
tion 2003, VIS’03; 2003. p. 42.

[23] Wald I, Friedrich H, Marmitt G, Slusallek P, Seidel H-P. Faster isosurface ray
tracing using implicit KD-trees. IEEE Trans Visualization Comput Graphics
2005;11(5):562–72.

[24] Wang Q, JaJa J. Interactive high-resolution isosurface ray casting on multicore
processors. IEEE Trans Visualization Comput Graphics 2008;14(3):603–14.

[25] Engel K, Kraus M, Ertl T. High-quality pre-integrated volume rendering using
hardware-accelerated pixel shading. In: Proceedings of the ACM SIGGRAPH/
EUROGRAPHICS workshop on graphics hardware, HWWS’01; 2001. p. 9–16.

M. Steinberger et al. / Computers & Graphics 36 (2012) 673–684684
[26] Freund J, Sloan K. Accelerated volume rendering using homogeneous region
encoding. In: Proceedings of the 8th conference on visualization, VIS’97;
1997. p. 191–196.

[27] Fernando R. GPU gems: programming techniques, tips and tricks for real-
time graphics. Pearson Higher Education; 2004.

[28] Lee ME, Redner RA, Uselton SP. Statistically optimized sampling for dis-
tributed ray tracing. In: Proceedings of the 12th annual conference on
computer graphics and interactive techniques, vol. 19, no. 3; 1985. p. 61–8.

[29] Ramasubramanian M, Pattanaik SN, Greenberg DP. A perceptually based
physical error metric for realistic image synthesis. In: Proceedings of the 26th
annual conference on computer graphics and interactive techniques, SIG-
GRAPH’99. ACM; 1999. p. 73–82.

[30] Gao D, Vasconcelos N. Discriminant saliency for visual recognition from
cluttered scenes. In: Saul LK, Weiss Y, Bottou l, editors. Advances in neural
information processing systems, vol. 17. MIT Press; 2005. p. 481–8.

[31] Gao D, Mahadevan V, Vasconcelos N. On the plausibility of the discriminant
center-surround hypothesis for visual saliency. J. Vision 2008;8(7) 13:1–18.

[32] Bruckner S. Interactive illustrative volume visualization. PhD thesis, Institute
of Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstrasse 9-11/186, A-1040 Vienna, Austria; March 2008.

[33] Burns M, Klawe J, Rusinkiewicz S, Finkelstein A, DeCarlo D. Line drawings
from volume data. ACM Transactions on Graphics (TOG)—proceedings of
ACM SIGGRAPH 2005 2005;24(3):512–8.

[34] DeCarlo D, Rusinkiewicz S. Highlight lines for conveying shape. In: Interna-
tional symposium on non-photorealistic animation and rendering (NPAR),
NPAR’07; 2007. p. 63–70.

[35] Amidror I. Scattered data interpolation methods for electronic imaging
systems: a survey. J Electron Imaging 2002;11(2):157–76.

[36] Gortler SJ, Grzeszczuk R, Szeliski R, Cohen MF. The lumigraph. In: Proceedings
of the 23rd annual conference on computer graphics and interactive
techniques, SIGGRAPH’96; 1996. p. 43–54.

[37] Grossman JP, Dally WJ. Point sample rendering. In: Rendering techniques.
Berlin, Heidelberg: Springer; 1998. p. 181–92.
[38] Pfister H, Zwicker M, van Baar J, Gross M. Surfels: surface elements as
rendering primitives. In: Proceedings of the computer graphics and inter-
active techniques, SIGGRAPH’00; 2000. p. 335–42.

[39] Marroquim R, Kraus M, Cavalcanti PR. Special section: point-based graphics:
efficient image reconstruction for point-based and line-based rendering.
Comput Graphics 2008;32(2):189–203.

[40] McMillan L, Bishop G. Plenoptic modeling: an image-based rendering system.
In: Proceedings of the 22nd annual conference on computer graphics and
interactive techniques, SIGGRAPH’95. ACM; 1995. p. 39–46.

[41] Mark WR, McMillan L, Bishop G. Post-rendering 3d warping. In: Proceedings
of the 1997 symposium on interactive 3D graphics, I3D’97. ACM; 1997.
p. 7–16.

[42] Hauswiesner S, Kalkofen D, Schmalstieg D. Multi-frame rate volume render-
ing. In: Eurographics symposium on parallel graphics and visualization,
EGPGV’10. Eurographics Association; 2010. p. 19–26.

[43] Pomi A, Slusallek P. Interactive ray tracing for virtual TV studio applications.
J Virtual Reality Broadcast 2005;2(1):1–10.

[44] Jeschke S, Wimmer M, Schumann H, Purgathofer W. Automatic impostor
placement for guaranteed frame rates and low memory requirements. In:
Proceedings of the 2005 symposium on interactive 3D graphics and games,
I3D’05. ACM; 2005. p. 103–10.

[45] Kniss J, Kindlmann G, Hansen C. Interactive volume rendering using multi-
dimensional transfer functions and direct manipulation widgets. In: Proceed-
ings of the conference on visualization, VIS’01; 2001. p. 255–62.

[46] Lorensen WE, Cline HE. Marching cubes: a high resolution 3d surface
construction algorithm. ACM SIGGRAPH computer graphics, SIGGRAPH’87
proceedings of the 14th annual conference on computer graphics and
interactive techniques, vol. 21, no. 4; 1987. p. 163–9.

[47] Taubin G. A signal processing approach to fair surface design. In: Proceedings
of the 22nd annual conference on computer graphics and interactive
techniques, SIGGRAPH’95; 1995. p. 351–8.

[48] Luebke D, Erikson C. View-dependent simplification of arbitrary polygonal
environments. In: Proceedings of the 24th annual conference on computer
graphics and interactive techniques, SIGGRAPH’97; 1997. p. 199–208.

	Ray prioritization using stylization and visual saliency
	Introduction
	Previous work
	Interactive ray-based rendering
	Important image areas
	Sparse data reconstruction
	Guaranteed frame rates

	Overview over the method
	Importance-driven sampling and reconstruction
	Importance buffer
	Adaptive subsampling
	Sampling pattern
	Image reconstruction

	Guaranteed frame rate rendering
	Feature classification
	Implementation
	Mesh extraction
	Mesh preparation
	NPR line feature rendering
	Visual saliency analysis
	Image warping and hole closing
	Importance buffer and ray setup
	Volume rendering
	Fractal interpolation

	Results
	Conclusions and future work
	Acknowledgments
	References

