
Experiences with Handheld Augmented Reality

Dieter Schmalstieg1 Daniel Wagner2

Graz University of Technology

Figure 1: The Augmented Reality game “Expedition Schatzsuche” played in the “Landesmuseum Kärnten” in Carinthia, Austria.

Left and right: Participants of the test run; Middle: Playing the silent piano game.

ABSTRACT
In this paper, we present Studierstube ES, a framework for the
development of handheld Augmented Reality. The applications
run self-contained on handheld computers and smartphones with
Windows CE. A detailed description of the performance critical
tracking and rendering components are given. We also report on
the implementation of a client-server architecture for multi-user
applications, and a game engine for location based museum
games that has been built on top of this infrastructure. Details on
two games that were created, permanently deployed and evaluated
in two Austrian museums illustrate the practical value of the
framework and lessons learned from using it.

Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems - Artificial, augmented, and
virtual realities, K.8.0 [Personal Computing]: Games – General,
K.3.1 [Computing Milieux]: Computers and Education -
Computer Uses in Education

Keywords: Mobile augmented reality, wearable computing,
cultural heritage, augmented reality games

1 INTRODUCTION
The work reported here was sparked in 2002 when handheld
computing experienced a sudden significant increase in
processing power. Personal digital assistant (PDAs), which
previously had been designed to run simple organizer software,
were now marketed as handheld multimedia appliances and game
consoles. As part oft this trend, built-in cameras were quickly
adopted as a standard feature for cellphones and other handheld
devices.

Even before this new kind of hardware became available, some
researchers working on mobile Augmented Reality (AR) had
started replacing the cumbersome backpack plus head-mounted
display setups with Tablet PCs. An AR application can leverage

the tablet form factor to display a video stream from a camera
attached to the Tablet PC with real-time augmentations. This
“through-the-lens” approach towards AR is cheaper and more
convenient for a mobile user than a backpack solution. Tablet PCs
offer amble processing power, but compared to the
PDA/smartphone class they are not really designed for free-
handed operation and still too expensive for casual deployment.

Compared to Tablet PCs, PDAs and smartphones are aiming
for a different market. Price, weight and battery life are designed
for a large consumer base and mobile – rather than merely
portable – operation. Unmodified consumer devices are also
surprisingly robust and foolproof given their fragile appearance.
However, these desirable properties come at the price of restricted
computing capabilities compared to the PC platform. Achieving
sufficient performance for AR applications requires careful choice
of algorithms and optimized code.

In this paper we describe our work on Studierstube ES1, a
software framework for handheld AR developed over the past five
years specifically for ultra-lightweight devices. Earlier versions of
this framework have been described in [30] and [31]. This paper
consists of two main parts: The first part presents previously
undocumented details concerning the technical solution, while the
second part describes the design rationale, development process
and evaluation of a recently built large-scale application: A multi-
user treasure hunt game was developed and permanently deployed
in two museums in Austria. To our knowledge this application is
the largest application involving handheld AR to date.

The paper is organized as follows: In section 2 we discuss
related work and compare it to the solution presented in this
paper. Section 3 gives an overview of the software architecture of
Studierstube ES. Specific technical components are described in
the following sections: Section 4 gives details on the fiduciual
tracking, while section 5 presents the rendering engine. Section 6
gives an overview of the game design and game engine, followed
by details on the museum applications in section 7. Section 8
presents evaluation results, and section 9 draws conclusion and
gives an outlook to future work.

1 Embedded System

1 email: schmalstieg@icg.tugraz.at
2 email: wagner@icg.tugraz.at

2 RELATED WORK
The Augmented Reality application presented in this paper builds
upon a large body of previous research. The two main topics,
handheld AR and AR games, are described in the following.

2.1. Handheld Augmented Reality
Handheld devices seem to be a superior alternative for AR -
especially for untrained users in unconstrained and non-
supervised environments. They are more robust than HMDs and
due to the advent of mobile phones and PDAs users are
comfortable operating them. Even before the success of the
smartphones as mass-marketed items, pioneering projects started
using small displays for custom see-through devices. Amselem’s
work [1] and Fitzmaurice’s Chameleon [8] used small tethered
LCD displays for location based information. Rekimoto’s
NaviCam [25] used color-coded stickers to track objects in the
environment. Due to the tethered trackers in these early works, the
degree of mobility was rather limited. mPARD [24] is a variant
using analogue wireless video transmission to replace tethers.

The Transvision [26] project by Sony CSL introduced
handheld AR devices for a shared space. Researchers at HITLab
later improved this concept [23] with a better user interface and an
optical tracking solution re-using the camera needed for video
see-through.

From 2000 on, PDAs with wireless networking were
considered suitable for thin-client solutions outsourcing
computationally intensive tasks such as rendering, tracking and
application to a nearby workstation. The Batportal [13] used non-
mixed 3D graphics using VNC, while the AR-PDA project [10]
used digital image streaming from and to an application server.
Shibata’s work [28] aims at load balancing between client and
server - the weaker the client, the more tasks are outsourced to a
server. ULTRA uses PDA for augmenting “snapshot” still images
[21].

In 2003 we ported ARToolKit [14] to Windows CE and
consequently developed the first fully self-contained PDA AR
application [31]. This platform was used in a peer to peer game in
[25]. Meanwhile Möhring et al. targeted a Symbian smartphone
for mobile AR [22]. The scarce processing power of the target
platform allowed only a very coarse estimation of the object’s
pose on the screen. Later Henrysson ported ARToolKit to the
Symbian platform and created a two-player AR game [12] on
current-generation smartphones. Several of these projects involve
collaborative applications, but not for larger users group.

2.2. Pervasive Games and Augmented Reality Games
With availability of mobile devices to a generation that grew up
with video games, pervasive games are receiving increasing
attention. In contrast to mobile games, which can be played
independent of location, pervasive games are location based
services (LBS) that leverage the real world as part of the
gameplay. For example, coarse positioning technologies such as
WiFi cell id can be used as tactical features in gameplay.

MIT’s Mystery at the Museum [15] invites players to play a
detective investigating a crime scene. The iPERG project [17]
uses a pervasive computing environment including mobile
phones, PDAs, backpack setups and stationary PCs. Some of
these interfaces incorporate AR. Lancaster University’s Real
Tournament [34] is a fast multi-player LBS game that uses PDAs
to provide every player with live-updated contextual information.
Similar technology is used by mobile tour guides such as
CyberGuide [18], Lighthouse [6], and Phone Guide [9], which are
more educational. Storytelling for education in museums is

becoming more commonplace. Some museum interfaces already
rely on AR edutainment, such as Stapleton’s work [29] or Sweet
Auburn [19].

There are several multi user AR games reported in literature,
such as Shared Space [4] or AquaGauntlet [2], but most of them
are limited to a tabletop environment. Pervasive AR games
incorporating more users and multiple locations are more difficult
to design and implement, requiring some consideration about
authoring tools to create, test and manage the game content in a
reasonable way [11][16]. One of the most sophisticated tools to
address these needs is DART [20], but this tool requires
Macromedia Director and does not run on handheld devices. The
work presented in this paper goes one step further by describing
design and evaluation of a complete toolset for the creation of
location based multi-user AR experiences.

3 SOFTWARE ARCHITECTURE
As a foundation for Handheld Augmented Reality, a software
framework called Studierstube ES was developed since 2003. The
framework was originally intended to be compatible with the PC-
based Studierstube software framework2, but this requirement was
eventually relaxed in favor of optimized performance and
memory footprint for handheld devices. The Studierstube ES
framework (see Figure 2) is available for Windows CE and
Windows XP, targeting small form factor devices ranging from
smartphones to ultra-mobile PCs (see Figure 3). Experimental
versions also exist for Symbian and Linux.

3.1. Handheld device framework
All processing is done natively on the handheld device, so that
applications can run independently of any infrastructure and scale
to an arbitrary number of simultaneous users. Typical frame rates
on smartphones are in the order of 5-20 fps, depending on the
content and device. A server component running on a PC was
developed specifically for multi-user communication and content
management. Clients maintain a wireless networking connection
to the server if available, but it can run fully stand-alone too.

Hardware
(CPU, GPU, Display, Touchscreen, Buttons, Audio, Camera, Wifi, Bluetooth)

Hardware Abstraction
(OS, Windowing, Rendering, Sound, Video, User Input)

Studierstube ES

Studierstube ES
Application

Scene
Graph Tracking MultimediaGUI Networking

Studierstube ES
Application

Studierstube ES
Application

Muddleware
Client OpenGL ESARToolKitPlus

Figure 2: Studierstube ES component based framework design

2 http://www.studierstube.org

Figure 3: Smartphone, PDA and Tablet PC are used in the

Handheld AR project

The software framework is based on a component design, and
allows customizing the runtime environment to the needs of the
application and the capability of the handheld device. In
particular, memory footprint can be optimized to as little as 500K
for a basic system. However, an extensive set of components is
available. This component library includes not only AR specific
components such as the tracking and rendering toolkits described
in sections 4 and 5, but also components for networking,
multimedia playback (2D user interface widgets, Flash, 2D and
3D animation, audio, video), networking and scripting (mostly
through XML dialects).

Application code is managed through dynamically linked
libraries (DLLs), which can be loaded and unloaded at any time.
This allows to optimize memory usage and also simplifies code
maintenance in a distributed system by downloading code and
data from the server at startup. Only a small bootloader, which
can be provided on a memory card, must remain on the device.

3.2. Server
One of the characteristics of mobile computing is that
connectivity can change over time [3]. Consequently we have
designed a server platform that mediates communication among
clients and also stores transient as well as persistent client data. A
blackboard architecture was chosen for the server implementation
[33]. The server, called Muddleware, consists of three main
components (Figure 4): a memory mapped database, a networking
component communicating with clients and a controller
component that can be scripted with a finite state machine (FSM)
to enforce rules on the database. The memory mapped database is
organized hierarchically with an XML document object model,
and the XPath standard is used as a lightweight database query
and update language.

Database
File (XML)

Clients [1..n] Server

Muddleware
Client

Application Persistence
Service

XML Database

Read/Write

Muddleware
Controller

(State Machine)

Script Queries

Query Results

XML Queries

Script Queries

Query Results

Figure 4: Muddleware components

4 FIDUCIAL TRACKING
As a foundation for registering real and virtual objects, the
purpose of fiducial tracking is to find one or multiple markers in
the camera image and estimate the corresponding poses. The
black-on-white square fiducial markers detected by the
Studierstube Tracker are not fundamentally different from other
marker trackers developed for the PC like ARToolKit [1] or
ARTag [7]. However, the implementation of our tracker has been
tuned to provide the maximum tracking quality and performance
using the limited resources of handheld devices. While the tracker

started out as a modified version of the original ARToolKit code,
called “ARToolKitPlus” in [32], the current version constitutes a
complete re-implementation from scratch with more efficient
methods. The tracking pipeline consists of five basic steps:
thresholding, fiducial detection, rectangle fitting, pattern
checking, and pose estimation.

4.1. Thresholding
The first step in the image processing pipeline is to convert the
input image into a binary image to reliably detect the black and
white portions of the fiducial markers. In practice, inexpensive
cellphone cameras and variations in image brightness cause
severe problems for constant threshold values. Global
thresholding is too computationally expensive.

Instead, a heuristic that has proven effective is to use the
median of all marker pixels extracted in the last frame as a
threshold for current image. If this heuristic seems to fails as no
marker is found, the threshold is randomized for every new frame
until a new marker is detected. Empirical tests show that after a
marker gets lost it takes only a few frames to find a new, working
threshold.

Figure 5: Vignetting. Left: original camera image. Middle: constant

thresholding. Right: thresholding with vignetting compensation.

An additional problem in thresholding is that cellphone camera
often exhibit strong vignetting, i. e., a noticeable radial brightness
falloff (see Figure 5). Thresholding such images with an image-
wide constant value yields unusable results, as a marker close to
the border will be effectively hidden in the dark area. To prevent
this, vignetting compensation incorporates the radial brightness
into the per-pixel threshold value. The radial fall-off is determined
during camera calibration and is specified numerically rather than
using an image mask in order to minimize memory bandwidth
usage. Thus, vignetting compensation adds only a minimal
performance penalty during thresholding.

4.2. Fiducial Detection
The tracker detection system to find fiducial markers (see Figure
6) is based on simple edge following: As a first step all scanlines
are searched left to right for edges. A sequence of white followed
by black pixels is considered a candidate for a marker’s border.
The software then follows this edge until either a loop back to the
start pixel is closed or until the border of the image is reached. In
case of a closed loop, the contour is stored as a polygon and
considered for further processing. In case the border is reached,
the edge is discarded. All pixels that have been visited are marked
as processed in order to prevent following edges more than once.

Figure 6: Left: Source image; Middle: Threshold image;

Right: Three closed polygons as candidates for rectangle fitting.

4.3. Rectangle fitting
In this step, rectangles (more precisely, quadrilaterals after
perspective projection) need to be identified among the previously
identified polygons. Method based on edgel sorting, such as used
by ARTag, are robust against partial occlusion, but are too
computationally expensive for current handheld devices. Instead,
the rectangle fitting in the tracker relies on finding polygons with
exactly 4 corner points and mostly straight lines between corners.

Since a physical marker might not be perfectly flat and because
the radial distortion can warp the camera image considerably, it is
necessary to use a relaxed method instead of searching for
perfectly straight lines. Conventional line fitting is not suitable
since the polygon contour would have to be segmented into corner
points and candidate lines first.

Figure 7: Example for fitting a rectangle to a polygon.

Instead an iterative process searches for corners until the whole
contour has been searched or more than four corner points are
detected. Only if exactly four corners are detected the contour can
be a rectangular marker and is stored for further processing.

A first corner point c0 is selected as the contour point that lies
at the maximum distance to an arbitrary starting point x of the
contour (Figure 7, left). For a rectangle this operation always
detects a corner point and is robust against distortions. The center
of the rectangle is estimated as the centre of mass of all contour
points. A line is formed from the first corner point and the center
(Figure 7, middle). Further corner points c1, c2 are found on each
side of the line by searching for those points that have the largest
distance to this line. These three corners c0, c1, c2 are used to
construct more lines and recursively search for additional corners.
In the example (Figure 7, right), only one more point c3 is found.
The length of a line is used to determine the threshold for the
minimum distance of a new candidate corner point from the line.
Points closer than the threshold are not considered. The algorithm
converges if all contour segments have been searched or more
than 4 corner points are found. The corners of rectangles are
sorted in clockwise order. Finally candidate rectangles with an
area that falls below a threshold are suppressed.

4.4. Pattern Checking
After detecting quadrilateral polygons, these polygons need to be
checked to contain valid marker patterns. First a marker’s interior
region is resampled into a normalized arrays of pixels. For
perspectively correct unprojection, the homography matrix is
computed from the markers’ corner points, which are assumed to
form a rectangle. In contrast to the simple L2-norm template
matching of ARToolKit, which is too computationally expensive,
we use 2D bar code techniques with forward error correction -
either BCH (Bose, Chaudhuri, Hocquenghem) encoding or
DataMatrix. BCH codes rely on cyclic redundancy checks for
forward error correction. A 6x6 pattern in the markers yields 36
bits of raw information, 12bit (1/3 of the raw information) of
which are used to distinguish 412=4096 different markers, while
the remaining 2/3 of the raw information are used as redundancy
to correct for partly incorrectly observed patterns. Bar codes are
directly generated from the id, and no training phase like for
template matching is necessary.

Figure 8: Marker types. Left: Template markers; Middle: BCH-

markers; Right: DataMatrix markers.

DataMatrix3 codes are an ISO standard for 2D bar codes. Code
patterns can be up to 144x144 pixels and store up to 1558 bytes,
allowing to encode for example a complete URL or a small binary
data set. Such large patterns require higher image resolutions and
more time to decode successfully. However, after a successful
initial marker decoding, an application may choose to continue
tracking the marker rectangle at real-time frame rates without
decoding the marker pattern again. This is particularly useful as
BCH and DataMatrix markers (see Figure 8) can be mixed in the
same image.

4.5. Pose estimation
The final step in the marker tracking pipeline is the estimation of
the camera pose from the corner points. For a stable estimation,
the position of the corner points must be as accurate as possible.
First, sub-pixel accurate corner point estimation is performed
using a Harris corner detector, initialized with the original corners
from the rectangle fitting, which are only accurate to one pixel.
The resulting corners are unwarped using the intrinsic camera
parameters (calibrated offline using the Matlab calibration
toolbox) to compensate for radial distortion.

The tracker allows to choose from various pose estimation
algorithms. An initial approximation of the camera pose is derived
from the homography estimation, and used to initialize a non-
linear optimization. The first approach, direct optimization for
mimimal reprojection error is the fastest method, while the Robust
Planar Pose (RPP) estimator [27] systemtically avoids local
minima, but is more computationally expensive.

Besides tracking of independent markers, multi-marker sets
attached to a rigid body are supported. Multi-markers yield
improved stability of the pose estimation when multiple markers
are visible. Multi-marker tracking works by first estimating the
poses of all visible markers independently, then computing a
combined pose estimate by iteratively minimizing reprojection
error of all observed marker corners.

4.6. Performance considerations on embedded devices
Fixed point The lack of hardware floating point units is probably
the single most important performance issue for numerically
intensive algorithms on embedded devices. Floating point
emulation is not feasible for real-time applications, so all
computation needs to execute using fixed point arithmetic. The
limited precision implied by the use of fixed point implies to
choose only numerically well-behaved algorithms and carefully
optimize the computations to avoid exceeding the precision
bounds. This tuning was done through code instrumentation,
which enabled us to choose the required precision and range for
every variable and code fragment individually if necessary.
Moreover, many mathematical functions, such as polynomial
functions for lens undistortion, trigonometric functions and

3 http://datamatrix.kaywa.com

perspective divisions, were replaced by lookup tables and
interpolation.

Pixel formats Bandwidth on embedded devices is so scarce
that image format conversations incur a significant performance
penalty even for relatively low resolution images, such as VGA
(640x480). Fortunately, the most common format on embedded
devices is YUV12, which contains an 8bit luminance component
directly suitable for image processing. Other common format such
as RGB565 are converted on the fly using lookup tables
(assuming only a subset of the pixels must ever be examined), to
minimize the impact on performance.

4.7. Performance measurements
To test the tracker' performance for practical applicability,
benchmarks on several handheld devices were performed. These
tests compare tracking performance with different numbers of
visible markers, which is the only criterion affecting tracking
speed in practice. Contrary to expectation, we found that the size
of the marker does not influence the tracking speed, since the
edge following adds only very little to the overall calculation
time.

The tracking computation is primarily CPU bound and not
influenced much by the operating system. A number of Windows
CE based devices were chosen, and also compared to a 2GHz PC.
Table 1 lists the devices used in the test. All devices except the
PC employ an ARM9 compatible CPU.

Brand name OEM name CPU MHz
i-mate SP5 HTC Tornado TI OMAP850 200
HTC MTeor HTC Breeze Samsung S3C2442 300
HTC TyTN HTC Hermes Samsung S3C2442 400
Gizmondo - Samsung S3C2440 400
T-Mobile MDA Pro HTC Universal Intel XScale PXA270 520
Dell Axim X51v - Intel XScale PXA270 624
PC - Intel Core Duo 2000

Table 1: Performance characteristics of the devices used in the
tracking comparison

The following performance figures were obtained by using
either the Microsoft or Intel ARM compiler with full
optimization, whichever performed better. On the PC, native
floating point support was used. Table 2 compares average
tracking times for scenarios with one marker (M1) and multi-
marker arrangements with 4 markers (M4) and 10 markers (M10).

Device M1 M4 M10

i-mate SP5 13.3 66.4 234.1
HTC MTeoR 10.2 44.6 153.3

Gizmondo 8.5 34.5 122.7
HTC TyTN 8.3 34.9 128.1
MDA Pro 6.0 24.1 83.4
Dell X51v 5.1 20.7 69.8

PC 0.43 2.77 8.3

Table 2: Benchmarks performed on images with one, four and ten
markers (all measurements in ms). M4 and M10 were tracked with

a multi-marker set of 12 markers of which four and ten markers
were visible respectively.

As expected the tracking performance increases linearly with
the CPU clock. The tested ARM-powered devices process
31.12±1.76 frames per second at a normalized speed of 100 MHz.

5 RENDERING

5.1. Immediate mode rendering
Besides tracking, 3D graphics rendering is the second critical
enabling technology required to build a working AR system on a
handheld device. Unfortunately, dedicated graphics processing
units (GPUs) are only slowing becoming available on handheld
devices.

This can be attributed to increased cost and power
consumption, to which the handheld device market is particularly
sensitive. Those GPUs that are available on handhelds today are
tuned for highest performance and smallest transistor count, but
not for a rich feature set, full programmability or convenient
developer interface. Besides, the market demands that rendering
must also be possible using only the CPU.

This situation is reminiscent of the beginning of GPU
hardware on personal computers about a decade ago. The imposed
challenge is that we would still like to leverage modern graphics
algorithms and techniques rather than duplicating outdated
approaches from the past.

Graphics standards are a prerequisite towards this goal. The
most widely accepted 3D graphics standard on embedded devices
is OpenGL ES (embedded subset), followed by Microsoft’s
Direct3D Mobile (D3DM). Both standards target the same
embedded GPU hardware, but unlike D3DM, OpenGL ES is
available for multiple operating systems and highly optimized
software implementations exist.

While OpenGL ES constitutes a solid foundation for graphics
programming, it is significantly more restricted than OpenGL.
Existing OpenGL software cannot be trivially ported to OpenGL
ES because of the restricted feature set. Moreover, to support
software implementations on embedded CPUs, OpenGL ES uses a
16 bit fixed point format for all numeric operands. This requires
developers to take care in the modeling process as large models
can create numeric overflows.

The typical bottleneck of the graphics pipeline depends on the
level of GPU support. Current embedded GPUs such as the Intel
2700G or the nVidia GoForce 4500 accelerate only the pixel
stage, and the vertex stage, which must be computed in the driver
on the CPU, quickly becomes saturated. Consequently, it is
difficult to balance rendering in order to make the best use of both
a pixel-limited software renderer and a vertex-limited hardware
renderer. Moreover, texture upload to an embedded GPU is
notoriously slow due to the scarce bandwidth, which has a
noticeable performance impacts for video texturing used in AR
applications.

 Pure SW Mixed Pure HW

Vertex Stage Software Software Hardware

Pixel Stage Software Hardware Hardware

Typical Limits Pixels Vertices -

Framebuffer Access Yes No No

Fast Texturing No Yes Yes

Table 3: Comparison of embedded graphics implementations,
based on their support of vertex and pixel stage

An efficient graphics program therefore must implement
multiple render paths for making optimal use of the strengths of
each kind of renderer. 2D graphics, such as drawing video
background or user interface widgets, must be drawn as textures
when using hardware 3D – such operations are actually faster
when copying directly to the memory-mapped frame buffer of a

software renderer. Developers therefore face the challenge of
balancing the load imposed by their graphics content so that both
hardware and software rendering is possible.

5.2. Scene graph
Scene-graphs are the most common architectural pattern for high
level rendering engines. Unfortunately, there is a limited selection
of rendering engines for handheld devices, and no general-
purpose scene graph was available when the work on this project
started. We therefore investigated the porting of an existing scene-
graph for the PC platform, Coin3D, to Windows CE. After several
significant modifications, including the stripping of unneeded
features and introducing custom memory management, a working
prototype of Coin3D on Windows CE was completed and tested.
Unfortunately, while the library was fully functional it did not
meet our expectations. The minimal version still had a memory
footprint of over 10MB, which exceeds what embedded devices
can comfortably handle. Performance was also unsatisfactory due
to many built-in convenience features such double-dispatch graph
traversal or automatic event propagation on scene graph updates.

As a remedy a new custom scene graph was developed which
borrows many design ideas from Coin3D, but does not share its
overhead. This scene graph contains only the features that are
relevant for rendering on embedded devices. It retains many
important features such as reflection, fields and field connections,
but has a very small memory footprint, and the performance
overhead of traversal is negligible.

The scene graph library provides a wrapper for both OpenGL
ES and D3DM. It can therefore target all currently available
embedded graphics platforms, while offering important graphics
programming concepts that are painfully missing from the
underlying toolkits. For example, neither of the low-level graphics
libraries support stacks or queries for graphics state variables such
blending, depth sorting or transformation matrices. Stacks and a
corresponding separator group node are implemented in the scene
graph, which makes efficient modeling possible. Another
important abstraction is the geometry buffer node which passes
geometrical data to the underlying toolkit. It lets the scene graph
decide whether to store vertex data in system or video memory,
and thus hides the differences between specifying vertex buffers
in OpenGL ES and the rather inconvenient “Flexible Vertex
Format” in D3DM. In the absence of programmable shading
hardware, many special rendering effects can be scripted from
within the scene graph using multi-pass techniques.

Models are stored using either a custom XML based or a
compact binary file format. Efficient content creation is ensured
by providing a suitable conversion of models from Maya and

from the VRML file format. Skeleton animations from content
creation tools are converted to per-vertex keyframing for CPU-
friendly playback.

5.3. Performance evaluation
Native performance of Studierstube ES was recently evaluated
with a selection of smartphones. The main components competing
for computation time are tracking and rendering, but relative
performance is difficult to measure if a GPU is available and can
run concurrently with a CPU.

The devices in Table 4 were used in the benchmarks.

Device CPU MHz GPU
HTC Tornado TI OMAP850 200 none
HTC Excalbur TI OMAP850 200 none
Palm Treo700W Intel XScale 312 none
Motorola Q Intel XScale 312 none
Motorola Q9 TI OMAP2420 330 on CPU

Table 4: Devices used in the system benchmark

Figure 10: Test models rendered for benchmarking. Left: Textured

cube; Middle: Venus of Willendorf; Right: Model of a car.

The Treo was used with 312MHz and also overclocked with
520MHz to assess the influence of CPU speed. The Q9 was used
with and without the GPU activated to assess the influence of the
GPU. On all devices, capturing the video from the camera runs in
a separate thread that competes for processing time with the main
thread. To benchmark realistic application performance, we
adopted a strategy of adding increasing load to the application:

 Empty frame: no video, no tracking, no rendering
 Just video capture and conversion to RGB565
 Video rendering added
 Tracking of a single marker added
 Rendering of a textured cube added
 Rendering of a medium scale model (textured Venus statue,

2625 triangles)
 Rendering of a large scale model (Toyota car, 25652

triangles)

Fr
am

es
pe

rs
ec

on
d

(lo
g

2)

Fr
am

es
pe

rs
ec

on
d

Fr
am

es
 p

er
 s

ec
on

d
(p

er
 1

00
M

hz
)

Figure 9: Performance results. Left: Linear scale; Middle: Logarithmic scale; Right: Linear, normalized to 100Mhz.

Figure 9 shows the performance results. Most devices are
severely hurt by the task of video capturing and video rendering.
This shows the scarcity of memory bandwidth and also the effect
of video format conversion and texture upload if a GPU is used.
The differences induced by tracking again turn out to be
proportional to clock rate.

Rendering the cube and Venus (left and middle images in
Figure 10) model perform similarly, apparently dominated by
pixel fill rate. In contrast, the car model (right image in Figure 10)
demonstrates the effect of a GPU on the vertex state of the
pipeline – Excalibur and Tornado can no longer deliver interactive
speeds, while the Q9 with its vertex-acceleration delivers almost
the camera rate of 15fps.

6 GAME DESIGN AND AUTHORING

6.1. Physical affordances of handheld AR

The magic lens metaphor afforded by handhelds imposes very
specific constraints to interaction design. The device must be held
at a distance of about 50cm, with the camera normally tilted
downwards, to allow for prolonged use without significant fatigue
and also to let the user focus on the screen. The field of view
defined by the screen is therefore very limited. This implies that
in order to observe a physically large environment, the device
needs to be frequently moved or rotated. Ergonomic constraints
and the necessity to keep a line of sight to the display effectively
limit the type and amount of possible movements of the handheld.
While rotation and movement with the supporting arm are quick,
moving the device through physical walking is more disrupting
since it is often difficult to keep the screen in view while
physically navigating the environment.

A game design should therefore aim to minimize such physical
movements. Using a touchscreen or built-in mini-joystick allows
holding a device still while interacting. However, we have
observed that the enjoyment of physically navigating the
environment is key to the appeal of handheld AR games. In that

respect, fiducial markers are not only necessary evil but also
create affordances allowing a user to identify locations in a larger
environment, where AR interaction is possible. AR interaction in
the strict sense takes place by interacting with an augmented
video stream. However, since the handheld is so small, a lesser
form of AR interaction is also possible by presenting non-
registered content on the handheld after identifying a marker.

6.2. Game design

As a real-world application for the multi-user handheld AR
infrastructure described in sections 3-5, a location-based treasure
hunt game in a museum was developed. Museums are aiming to
make their exhibitions more attractive to high school students.
Students are typically visiting in scheduled groups, which allows
to manage the logistics of running the game. Working with a
museum allows researchers to recruit museum staff for assistance
with the game content, which requires knowledge about the
museum exhibits.

The overall goal was to link selected exhibits into an engaging
story-driven game. The objective is to solve a sequence of puzzles
and other tasks associated with the exhibits. Tasks range from
spatial interaction using handheld AR to more conventional
multiple choice questions.

We wanted to use the multi-user aspect of the game to raise the
motivation. Students are therefore divided into multiple teams.
Within a team, students work cooperatively to solve the tasks,
while every team competes with other teams for the highest score.

Moreover, creating unique content for each player increases the
work required for content creation enormously. A game of 10
players and 20 minutes active game play equals 200 minutes of
unique content. The size and number of teams can be varied to
make the creation of content more economical, by re-using
content across teams. This team organization together with the
game engine tools and interfaces to standard content creation
packages, described in the next section, made it tractable to create
a sizeable game with constrained resources.

entry / CLIENT_ShowDialog(BridalCoupleDialog,BridalCoupleDialog)

Initials Wedding Couple

Show flat iron
do / CLIENT_ShowActionAR(IronAR)

Wrong Answer
do / CLIENT_ShowDialog(Wrong,Wrong)

Ask for saving
entry / CLIENT_ShowDialog(Save,Save)

entry / CLIENT_ShowDialog(Intro,Intro)

Intro Text

Inventory Full
entry / CLIENT_ShowDialog(InventoryVoll)

Cancel, Save?
entry / CLIENT_ShowDialog(Abbrechen)

Cancel?
entry / CLIENT_ShowDialog(Abbrechen)

Save flat iron
entry / DB_InventoryStore(Iron)
do / CLIENT_StartAudio(right)

Hotspot inactiv
do / CLIENT_LeaveContext()

Start Hotspot?
do / CLIENT_ShowDialog(StartHotspot)
exit / CLIENT_ShowDialog()

Close Hotspot
exit / DB_CloseContext()

Check Inventory

Begin

End

Choices:
"U+E"
"N+K"
"I+H"

 [CLIENT_Action(OK)]

 [CLIENT_AudioFinished(right)]

 [CLIENT_Action(U+E)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(N+K)]

 [CLIENT_AudioFinished(Wrong)]

 [CLIENT_Action(OK)]

 [CLIENT_Action(Cancel)]

 [DB_PlayerRegistered()]

 [DB_InventoryFull()]

 [CLIENT_Action(OK)]

 [CLIENT_Action(OK)]

 [CLIENT_AudioFinished(Intro)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(I+H)]

 [DB_InventoryNotFull()]

 [CLIENT_Action(IronAR)]

 [DB_MarkerNotVisible()] [CLIENT_Action(Cancel)]

 [CLIENT_Action(OK)]

 [CLIENT_Action(Cancel)]

 [CLIENT_Action(Cancel)]

 [CLIENT_AudioFinished(Save)]

Figure 11 : Games usually start in an idle state. An approaching player is introduced via a dialog box and audio message. Here the user has to
answer a multiple-choice question (state “Initials Wedding Couple”). If the player answers correctly she is rewarded with an item. In this case,

a 3D model of a flat iron flies from the exhibit to the handheld and is placed in the player inventory.

6.3. Game engine
A game engine for treasure hunt games was devised, which plugs
into the Studierstube ES infrastructure. We designed the treasure
hunt games to resemble classic adventure games which require a
player to solve puzzles and find and apply items. These game
mechanics are rather simple and rely on the appeal of the real
world environment, which in case of a museum is full of
noteworthy and unusual items that can be leveraged for the game
play. The engine itself is set up to interpret script code which is
easy to write and debug even by non-experts, and special code
developed in C++ is only needed for very specific games.

The game engine consists of software components added to the
server and client part of the Studierstube ES architecture. The
server part is an extension of the Muddleware controller, capable
of executing multiple threads with one finite state machine, one
for each team and exhibit. Each FSM listens to specific elements
on the XML server, waiting for client activity at the exhibit. When
an exhibit is visited, the FSM starts sending actions to the client
by putting commands or state updates into the XML database and
waiting for reactions from the client. The game engine plug-in
contains pre-defined structures in the XML database, such as an
inventory of items the player has collected, and corresponding
convenience functions to manipulate the database from within the
FSM.

The game client runs as a loadable application on top of
Studierstube ES. At startup it retrieves a list of available exhibits
from the XML database. When the user approaches an exhibit, the
user interface and code module for the associated tasks is pushed
to the client. The game engine currently supports four different
types of tasks: simple 2D GUI elements, Flash animations,
scripted AR content (for example, use the magnifying lens to
discover something) or custom AR content programmed in C++.

Game logic and game state is normally kept in the XML
database controlled by the FSM. This makes the game robust
against client failure, since the server operation cannot be
permanently disrupted by client malfunction or battery failure.
However, we found it necessary to allow executing the FSM
driving the game logic on the client in cases where wireless
connectivity to the server is not possible. In these cases only the
score for a completed exhibit is synchronized with the server-side
database as soon as the client becomes online again.

6.4. Authoring tools
FSMs are imported in the XMI format, which is a common format
for describing state machines in commercial visual programming
editors, such as MagicDraw UML4. The runtime system can parse
the XMI file (an XML dialect), and can operate directly on the
resulting document object model. Figure 11 shows a state chart
developed for the game described in section 7. During several
months of content creation on this game, the combination of
various tools, most importantly MagicDraw and Maya for 3D
modeling proved to be very efficient despite the fact that our time
budget did not permit the development of a custom game editor.

Figure 12 shows the server inspector. This debugging tool uses
XPath to inspect and manipulate the XML database. Besides
browsing the game state, an operator can manipulate the current
states of ongoing games, restart individual exhibits or give items
to players. This is useful not only as a debugging aid but also for a
game master to control the game and assist player in case of
unexpected circumstances, which always must be expected in a
live game.

4 MagicDraw UML: http://www.magicdraw.com

Figure 12: Server user interface (team specific log history of state

transitions and events are hidden)

7 MUSEUM APPLICATIONS

7.1. Case study “medien.welten”
In 2006 a first field test for handheld AR in a real museum was
developed. It was designed for a target group of high school
students aged 12-16. The game was set in the exhibition
medien.welten situated at Technisches Museum Wien in Vienna,
Austria. This exhibition illustrates how different media were
preserved and transmitted since antiquity.

The game prototype focuses on three exhibits linked through
an espionage story set in World War II. The exhibits have to be
visited by the players in a certain order to achieve the game
objectives. Players first receive a briefing at a checkpoint
terminal, where the objectives are explained and the handhelds
(Dell Axim X51v) are handed out (Figure 13, left). A group of
players receiving one handheld usually consists of two or three
students. The checkpoint terminal and handhelds show a map of
the exhibition, highlighting the relevant task locations. The map
also indicates the current position of the players and lists already
solved and remaining tasks.

The first task is a live size radio direction finder used to detect
and record radio messages from mobile transceivers in the field.
The operator had to manually turn the antenna to home in on the
signal and then follow it to record it. A special electronic guide
was aiding this task by producing characteristic sounds when
turning the antennas near the exact signal direction.

Figure 13: Left: The game starts at the checkpoint terminal with an

introductory message. Right: Players try to orient their handheld
device to tune in on the incoming message at the radio finder

The radio finder game (Figure 13, right) uses AR to
demonstrate the homing task. The handheld has to be physically

moved around the exhibit to find and hold the exact signal
direction. For that aim, a virtual compass is superimposed onto
the lower platform of the exhibit, and sound indicates the
deviation from the exact signal direction. The sound depends on
the direction and the angle of deviation – intervals between beeps
get shorter when closer to the signal. When the players are close
enough to the exact signal direction, the characteristic beeps of a
Morse message are played. Once the players have found the right
position (which is slightly drifting over time), the handheld must
be kept in this position until a progress bar indicates that the entire
message has been received.

Figure 14: Left: Translating the Morse code at the Morse exhibit;
Middle: The Tangible interface of the Morse exhibit, an old-style
push button; Right: The virtual show case containing the Enigma

The next task presented to the players is that the received Morse
message must be decoded. To solve this task, the players must
visit the Morse exhibit, a specially designed hands-on exhibit
consisting of a computer terminal with a physical Morse
pushbutton (Figure 14, left and middle). Using the pushbutton, the
players must input the Morse code received earlier. The exhibit
translates correctly input Morse code into the corresponding text
on the terminal screen.

During the game, the handheld plays back the previously
recorded Morse code. Players can listen several times to the sound
sequence corresponding to a single character. Once they have
identified the combination of short and long beeps, one player
types them with the pushbutton and then reads the translated letter
from the display. The player operating the handheld uses the
virtual keyboard to enter the letter, and then the next Morse code
is presented. This process is intended to encourage the
collaboration between the players.

When the players have completed this task, they learn that the
translated message makes no sense, but looks like random letters.
This is because the message was encrypted with the Enigma
machine, and needs decoding. The players have to move to the
Enigma exhibit (Figure 14, right) to decrypt the message. The
exhibit shows a real Enigma embedded in a Virtual Showcase [5],
a mixed reality display combining real artifacts with projected
imagery through mirror optics. A trackball enables the visitors to
operate the virtually overlaid Enigma without touching the real
one.

For the game, the Enigma exhibit is switched to decryption
mode. The players have to begin by setting the day key on the
Enigma as instructed by their handheld. Then they decrypt the
message letter by letter. One player operates the Enigma while
another records the plain text on the handheld. The players learn
that this collaborative process resembles the way an Enigma was
actually operated in the field.

After solving the last task, the players return to the checkpoint,
where the results of their performance are displayed. The
checkpoint terminal shows which mistakes occurred and what
percentage of the message was revealed.

7.2. Integration of hands-on exhibits
The hands-on exhibits featured in medien.welten use tangible
interfaces to explain certain technologies. While they were
originally designed for stand-alone operation, they can also be set
to present a certain task when approached by a player. In that
way, the environment is responsive to the player beyond the
through-the-lens experience with the handheld, heightening the
illusion of a mixed reality environment. Figure 15 shows the
integration of hands-on exhibits and the checkpoint terminal into
the game infrastructure. All 2D interfaces on the exhibits, terminal
and handheld were implemented in Flash.

XML Database

Muddleware Client

Proxy

Flash Gateway

Muddleware Client

Flash Controller

Muddleware
Controller

Checkpoint
Terminal Map

Exhibit Software

Studierstube

Exhibit Controller

Muddleware
Client

Task Application
(AR / loadable)

Flash Gateway

Task Application
(AR / loadable)

PDA [1..n]

Flash Controller

Checkpoint Terminal

Hands-on Exhibit [1..n]

 Task Application
(Flash / loadable)

 Task Application
(Flash / loadable)

Figure 15: Integration of terminal PCs and hands-on exhibits

into the MARQ prototype developed for the Technisches Museum
Wien

Depending on the state of the game, Studierstube ES on the
handheld shows a 3D scene or delegates the interface control to
the Flash controller. The latter uses ActionScript to communicate
user input to the Muddleware server. The checkpoint terminal is a
PC hidden in a console, which usually runs the museum’s online
information system for visitors. For the game, the terminal runs
the server and a Flash application showing the team’s overview
map and game state.

Hands-on exhibits are also controlled by hidden PCs linked to
the museum network. The control software of these exhibits was
modified to allow externally selecting of the mode of operation
through the server. The hands-on exhibit presents the game
interface when a player approaches, while presenting a standard
interface for other visitors.

7.3. Case study “Expedition Schatzsuche”
A second, larger game, Expedition Schatzsuche was developed in
early 2007 for Landesmuseum Kärnten (Carinthia State Museum)
in Klagenfurt, Carinthia, Austria. Expedition Schatzsuche is now
permanently available there for booking by high school visitors.
Landesmuseum Kärnten focuses on traditional Carinthian folklore
and historical artifacts.

The game encompasses a selection of 16 exhibits and links
them into multiple story arcs. Like medien.welten, the objective of
the game is to solve a quest composed of puzzles and other tasks
associated with the exhibits. At the end of each story arc,
consisting of 3-4 exhibits, the players receive a piece of a treasure
map. Players are divided into teams to compete for the highest
number of tasks solved in a given time.

For Landesmuseum Kärnten, the Gizmondo (see middle image
in Figure 1) was selected as the handheld device. The Gizmondo
is a Windows CE based game console with a 400MHz ARM
CPU, 64MB RAM, GoForce 4500 GPU, a screen size of 320x240
pixels and Bluetooth. Its robustness and form factor make the
Gizmondo an ideal device for public deployment. A Bluetooth

network was installed in the museum to support networking of the
mobile devices.

The exhibits were selected by museum staff, who also wrote
explanatory texts and designed the tasks that the players have to
master. We found that players are generally unwilling to read on-
screen text, so all explanations were recorded with a professional
actor. This measure significantly improved the coherence of the
story arcs and the appeal of the game.

Since many of the historical artifacts, such as traditional
household appliances, are no longer familiar to the students, the
puzzles presented to the players are linked to the original purpose
of a particular exhibit. Several of the items look rather
unspectacular, so they are likely to be missed when exploring the
museum without a guided tour. In such cases an animation
overlaid on top of the item using AR inspires the understanding of
the students. Gameplay requires the students to answer questions
concerning exhibits, applying specific items they have “collected”
elsewhere or taking a picture of a specific item. A few tasks even
involve demonstrating dexterity or coordination, although these
tasks must be kept simple to avoid frustration.

All story arcs start at a checkpoint in the entrance area of the
museum, where a big flat screen shows a map of the museum and
the progress of the game. After the last piece of the map has been
delivered to the checkpoint, the handheld displays a map that
reveals the location of the secret treasure in the museum. In the
following we illustrate the game by describing two of the story
arcs.

Brauchtum (folklore) This story arc about traditions in
Carinthia incorporates three exhibits and focuses on wedding
customs. The first puzzle (Figure 17, left) involves deciphering
the initials of a bridal couple on a traditional belt. For a correct
answer, the player receives flat iron, which must be brought to the
second exhibit, a tailor’s workshop (Figure 17, middle). The
tailors happen to miss a flat iron, so the player can help out.

Gratefully the tailor rewards the player with a wedding suit. In the
next room the player finds a picture of a wedding rider (Figure 17,
right). The story continues by explaining the wedding rider’s
duties as a messenger inviting the wedding guests. The player can
assist by providing the wedding suit required by the rider, and is
rewarded with a piece of the treasure map.

Music This story arc contains four exhibits (see Figure 18) of
which two – the silent piano and the organ – are implemented
using custom AR interactions implemented in C++. The story
starts with a silent piano (Figure 18, left) that was used by novice
pianists to practice without disturbing others. The handheld device
invites the player to learn a short piece of music. First only one
note is played by highlighting it on the real keyboard, which the
user has to repeat. In the following steps more and more keys
have to be pressed, until the user can play a complete musical
sequence. As a reward the player receives a sheet of music. At the
Mandora (a bass lute, Figure 18, 2nd image) exhibit, the player is
asked to present some notes to hear a composition played on the
instrument. In return the user receives a “Stimmbogen” (crook),
which is used to modify the resonance characteristic of a horn. At
the “Wiener Horn” (Figure 18, 3rd image) the player learns that
the horn can play a large range of notes when applying different
crooks. After applying the crook the horn plays a song and the
user receives a pair of bellows. The bellows belong to an organ
shown in the same room. To play the organ (Figure 18, right
image), an assistant must pump the bellows to provide the
necessary air supply. The user is cast into the role of the assistant
and must keep the virtual bellows moving, or the music will stop.
This is done by selecting the bellows in turn and pressing an
action key on the handheld to pump. After providing air pressure
for a short piece of music, the player receives a part of the
treasure map.

Figure 17: Hotspots of sequence “Brauchtum. Left: the player retrieves the flat iron for finding out the initials of the wedding couple;
Middle: the player puts the iron into the tailors’ oven; Right: the player learns about the wedding rider and finishes the sequence.

Figure 16: Expedition Schatzsuche; Left: Virtual diamonds telling the state of a hotspot (green: free, yellow: in use, red: already solved);
Second: virtual questions marks use the same color codes as the diamonds; Third: Solving a task by taking a picture of the wanted item;

Right: map of the museum showing all hotspots and their availability.

8 EVALUATIONS
Both case studies reported in section 7 were evaluated through
supervised test runs with high school students. The evaluation
consisted of an upfront interview, to find out about users’ interests
and expectations, observation during the gameplay, logging data
from the game and another semi-structured interview conducted
after playing, concerning the acceptance of the game and personal
experiences of the players. The medien.welten game was tested by
eight groups from different schools (encompassing 19 students in
total, aged 12-15). The results were used in several iterations for
design improvements. The evaluation of Expedition Schatzsuche
was set up similarly. We observed two runs of six simultaneous
players each (overall six male and six female, all at age 12). Each
of the subjects had been given their own handheld to play the
game. Generally subjects had little or no prior experience with
handhelds. However, all of them were familiar with mobile
phones and some with portable game consoles.

Expedition Schatzsuche already incorporates design changes
based on lessons learned from the earlier medien.welten. In the
following we will discuss general observations as well as discuss
differences between the two game settings where it is relevant.

8.1. Gameplay and interface
The medien.welten game was limited to 15 minutes overall and

5 minutes per task. The average task duration is given in Table 5.
The time limit was not exceeded except for one group, which had
severe difficulties in navigating the exhibition space without help.
However, for most students the on-device overview map was
sufficient and was used extensively for localization of the
exhibits, “look, we are here – we have to go there.” However,
from observation we had the impression that the total time
permitted was rather too short, because of the requirement to find
the exhibits and comprehend the task. Consequently, no time limit
per exhibit was enforced in Expedition Schatzsuche, which
removed problems related to personal pace.

As Table 5 indicates, the task incorporating the Morse exhibit
seems to be more difficult to solve correctly than the other tasks.
This is emphasized by the high average time spent on this exhibit
and the higher error rate. Interestingly, the Morse task was found
to be most enjoyable. The two main reasons given by the subjects
were using the tangible interface in combination with the
handheld, and the sounds of real Morse signals.

The survey data suggests that the overall acceptance of the
game was fairly good, and it was perceived better by male
students than female students, probably due to their acquaintance
with portable game consoles. In contrast to the technical affinity
of male students, female students left the impression that they had
faster insight in understanding the tasks.

Quest Application Avg. duration Average Score
Radio Detection Finder 1:44 min 9 of 9

Morse Telegraph 3:01 min 7 of 9

Enigma 3:33 min 9 of 9

Mean 2:44 min -

Table 5: Result of statistical analysis from the logging data

The fact that typically only a teacher without AR experience is
available for supervision puts extraordinary requirements on the
robustness and ease of use of the handheld devices. We aimed at
making the user interface as intuitive as possible, and provide
detailed task descriptions at any time. Still it turned out that some
tasks need to be explained in more detail to be fully understood –
especially those employ unusual interaction mechanisms, in
particular AR.

One of the main results of the observation of medien.welten
was that the users’ motivation is high, if they are at ease with the
interface technology. However, frustration can quickly arise, if the
user feels uncomfortable or experience malfunctions.

8.2. Tracking and augmentation
An important lesson learned from medien.welten was that users

do not have experience with marker tracking and needed a certain
time for getting acquainted with the interface technology. For
Expedition Schatzsuche, players were more carefully instructed
about the tracking technology, and visual tracking feedback was
added in the form of a red frame that appears on the screen when
the tracking system detects a marker. These measures together
with the switch to the Gizmondo device which can be held steady
with two hands while pointing the device’s camera to an
instrumented exhibit noticeably improved the performance of the
students.

In contrast to the tracking itself, the interaction with the game
interface and the comprehension of the game tasks posed no
problems for the test subjects. The mechanism of activating an
exhibit by aiming at a marker and pressing a button was
intuitively accepted.

In the interviews the users rated playing the AR games in
Expedition Schatzsuche requiring dexterity as more difficult than
the multiple choice questions, which is backed up by our
observations. Players stated that they had no problem with playing
the “silent piano” after finding out “how to” and “what to do”.
However, operating the organ’s bellows demanded their full
attention. Consequently some players discontinued aiming the
camera at a marker while playing (which had no negative effect
except for intermittent augmentation).

Using the currently available marker tracking technology is not
trivial in a museum. Placement of markers is restricted, since they
cannot be directly attached to historical artifacts, yet they need to

Figure 18: Hotspots of sequence "Music": Left: playing the silent piano; Second: listening to the Mandora;
Third applying the "Stimmbogen" to the horn; Right: keeping the organ playing by pumping up the bellows.

be of reasonable size and in view of the camera. More tracking
problems are caused by the dim light and reflections from
windows and showcases. Many exhibits are very old and may
only be presented under restricted lighting conditions. Some
interesting areas in the exhibition could not be integrated due to
improper illumination or the inability of proper marker placement.
As computer vision on handheld and embedded devices matures,
pre-trained natural feature tracking that exploits the static scene
afforded by an exhibit should become feasible even on handheld
devices.

8.3. Enjoyment
The overall reactions to AR were very positive. Table 6 shows
scores on questions concerning enjoyment collected from the
medien.welten trial. The interviews revealed that subjects
demanded to have “more handhelds”, “more action”, “longer
messages to decode” and “more adventure” in the game. Only in
one case students were not convinced that the game should be
extended to the whole exhibition. As their main reason they
mentioned the complexity of the tasks, which turned out to be
caused by insufficient instructions.

Interview Question Assessment [1..5]

Experience with handhelds 1,29

Motivation by use of handhelds 4,29

Mark for the game 4,29

Extend game to whole exhibition 4,2

Table 6: Average values of interviews rating from 1 to 5(=best)

Likewise, AR animations were experienced as exciting and
interesting in Expedition Schatzsuche, leading to statements such
as “the exhibit with the flat iron was cool.” In particular the users
rated spatial interaction as highly motivating: “Not only
answering questions, but also playing … like the piano and the
organ” and “to learn and to play” [at the same time]; “…although
one is learning” and ”I haven’t known that the music instruments
are so old.” [referring to the oldest conserved Mandora in the
world]. The concept of story arcs was also found very motivating,
“the combination thing was very good” and [I liked] “…that you
have to move around and search…like a detective.”

Solving tasks by taking pictures of specific items also was
perceived as intuitive and easy to handle. When the players found
the right answers, audio explanations were given, which was
found to be highly satisfactory.

8.4. Collaboration
One aspect that worked unexpectedly well in medien.welten was
the cooperative use of a single handheld device by a group of 2-3
students. The players collaborated efficiently rather than
competing for the device as we had feared. While the device
sharing in medien.welten was a result of a short supply of devices,
in Expedition Schatzsuche we were able to provide a personal
device for every student. Even with this increased device
availability, users were collaborating voluntarily. They
spontaneously formed groups playing together, then split up again
and played individually. In one case, two users shared a device,
after another device had crashed due to hardware problems.

One problem we found was that when players formed groups
they often operated multiple devices simultaneously, which
resulted in playing multiple audio clips at the same time.
Especially voices were hard to understand in such a case. This

problem is specific to audio rendering and could possibly be
addressed using earphones.

9 CONCLUSIONS AND FUTURE WORK
In this paper we presented a complete handheld AR framework
and a multi-player game engine for treasure hunt games built on
top of it. The framework runs efficiently on low cost, off-the-shelf
devices with Windows CE. The presented system is currently
used in a real life project with a museum and a commercial
partner, who is planning to reuse the developed technology for
other museum games. Other applications for public venues such
as large conferences are currently under commercial development.

While the current framework is suitable for several real
applications, marker tracking is not suitable for other potential
areas where AR could be deployed. A next major step will
therefore be to develop natural feature tracking for handheld
devices. The low processing capabilities of mobile devices make
this a challenging endeavor. However, programmable GPU
features that are expected for the next generation of smartphones
could provide the additional computational resources that are
necessary for real-time natural feature tracking.

Another topic for future research are massive multi-user AR
applications. Massive multi-user online games for PCs are
extremely successful, and multi-user AR games could also be an
exciting opportunity. Yet a lot of research on innovative user
interface concepts for such scenarios will be required.

ACKNOWLEDGEMENTS
This project was funded in by part by Austrian Science Fund FWF
under contract No. L32-N04 and Y193. Further we want to thank
Mag. Erich Wappis, Mag. Nina Mayer and Mag. Ines Kuttnig of
Landesmuseum Kärnten for designing the content of “Expedition
Schatzsuche” and organizational assistance.

REFERENCES
[1] Amselem, D., A window on shared virtual environments.

Presence, Vol. 4, No. 2, pp. 130-145, 1995
[2] Aqua Gauntlet, Mixed Reality Lab Japan, ACM SIGGRAPH

2000 Emerging Technologies demo, http://www.mr-
system.co.jp/project/aquagauntlet

[3] Benford S., A. Crabtree, M. Flintham, A. Drozd, R. Anastasi,
M. Paxton, N. Tandavanitj, M. Adams, J. Row-Farr: Can you
see me now? ACM Trans. Comput.-Hum. Interact. 13(1):100-
133, 2006.

[4] Billinghurst, M., Poupyrev, I., Kato, H., May, R., Mixing
Realities in Shared Space: An Augmented Reality Interface for
Collaborative Computing, Proceedings of ICME 2000, pp. 1641-
1644, NY, USA, 2000

[5] Bimber O., B. Fröhlich, D. Schmalstieg, L. M. Encarnação:
The Virtual Showcase. IEEE Computer Graphics and
Applications 21(6):48-55, 2001.

[6] Brown, B., MacColl, I., Chalmers, M., Galani, A., Randell,
C., Steed, A., Lessons from the lighthouse: collaboration in a
shared mixed reality system, Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 577-
584, Florida, USA, 2003

[7] Fiala M.: ARTag, a Fiducial Marker System Using Digital
Techniques, In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR'05), 590-596, 2005.

[8] Fitzmaurice, G. W. Situated Information Spaces and
Spatially Aware Palmtop Computers. Communications of the
ACM, Vol.36, Nr.7, pp 38-49, 1993

[9] Föckler, P., Zeidler, T., Brombach, B., Bruns, E., Bimber, O.,
PhoneGuide: Museum Guidance Supported by On-Device
Object Recognition on Mobile Phones, Proceedings of
International Conference on Mobile and Ubiquitous Computing
(MUM'05), pp. 3-10, 2005

[10] Gausemeier, J., Fruend, J., Matysczok, C., Bruederlin, B.,
Beier, D., Development of a real time image based object
recognition method for mobile AR-devices, Proceedings of 2nd
international conference on Computer graphics, Virtual Reality,
visualisation and interaction in Africa, pp. 133-139, 2003

[11] Grimm P., Haller M., Paelke V., Reinhold S., Reimann C.,
Zauner J., AMIRE - Authoring Mixed Reality, First IEEE
International Augmented Reality Toolkit Workshop, Darmstadt,
Germany, 2002

[12] Henrysson, A., Billinghurst, M., Ollila, M. Face to Face
Collaborative AR on Mobile Phones. International Symposium
on Augmented and Mixed Reality (ISMAR’05), pp. 80-89, 2005

[13] Ingram, D., Newman, J., Augmented Reality in a Wide Area
Sentient Environment, Proceedings of the 2nd IEEE and ACM
International Symposium on Augmented Reality (ISAR 2001),
p. 77, New York, USA, 2001

[14] Kato H., M. Billinghurst: Marker Tracking and HMD
Calibration for a Video-based Augmented Reality Conferencing
System. Proc. 2nd IEE International Workshop on Augmented
Reality (IWAR 99), 1999.

[15] Klopfer, E., Perry, J., Squire, K., Jan, M., Steinkuehler, C.,
Mystery at the Museum - A Collaborative Game for Museum
Education, CSCL (Computer Supported Cooperative Learning)
pp. 316-320, 2005, Taipei, Japan, 2005

[16] Ledermann, F., Schmalstieg, D., APRIL: a high-level
framework for creating augmented reality presentations,
Proceedings of Virtual Reality, 2005 (VR2005), pp. 187-194,
187-194, Germany, 2005

[17] Lindt, I., Ohlenburg, J., Pankoke-Babatz, u., Prinz W.,
Combining Multiple Gaming Interfaces in Epidemic Menace,
Experience Report at International Conference for Human-
Computer Interaction (CHI'2006), 213-218, Montréal, Canada,
2006

[18] Long, S., Aust, D., Abowd, G. D., Atkeson, C., Cyberguide:
Prototyping Context-Aware Mobile Applications. Proceedings
of the CHI '96, pp. 293-294, NY, USA, 1996

[19] MacIntyre, B., Bolter, J.D., Moreno, E., Hannigan, B.,
Augmented Reality as a New Media Experience, International
Symposium on Augmented Reality (ISAR 2001), p. 197, New
York, NY, 2001

[20] MacIntyre, B., Gandy, M., Prototyping applications with
DART, the designer’s augmented reality toolkit. Proceedings of
STARS 2003, pp. 19-22, Tokyo, Japan, 2003

[21] Makri, A., Arsenijevic, D., Weidenhausen, J., Eschler, P.,
Stricker, D., Machui, O., Fernandes, C., Maria, S., Voss, G.,
Ioannidis N., ULTRA: An Augmented Reality System for

Handheld Platforms, Targeting Industrial Maintenance
Applications, Proceedings of 11 th International Conference on
Virtual Systems and Multimedia (VSMM'05), Ghent, Belgium,
2005

[22] Moehring, M., Lessig, C. and Bimber, O., Video See-
Through AR on Consumer Cell Phones, International
Symposium on Augmented and Mixed Reality (ISMAR'04), pp.
252-253, 2004

[23] Mogilev, D., Kiyokawa, K., Billinghurst, M., Pair, J., AR
Pad: an interface for face-to-face AR collaboration, CHI '02
extended abstracts on Human factors in computer systems, pp.
654-655, 2002

[24] Regenbrecht, H.T., Specht, R., A Mobile Passive Augmented
Reality Device – mPARD. Proceedings o ISAR, pp. 81-84,
Munich, Germany, 2000

[25] Rekimoto, J., Nagao, K. The World through the Computer:
Computer Augmented Interaction with Real World
Environments, User Interface Software and Technology (UIST
'95), pp. 29-38, 1995

[26] Rekimoto, J., TransVision: A Hand-held Augmented Reality
System for Collaborative Design, Proceedings of Virtual
Systems and Multi-Media (VSMM '96), pp. 18-20, Gifu, Japan,
1996

[27] Schweighofer G., A. Pinz: Robust pose estimation from a
planar target. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(12):2024–2030, 2006.

[28] Shibata, F., Mobile Computing Laboratory, Department of
Computer Science, Ritsumeikan University, Japan,
http://www.mclab.ics.ritsumei.ac.jp/research.html

[29] Stapleton, C.B., Hughes, C.E., Moshell, J.M., MIXED
FANTASY: Exhibition of Entertainment Research for Mixed
Reality, CM International Symposium on Mixed and
Augmented Reality (ISMAR 2003), pp. 354-355, Tokyo, Japan,
2003

[30] Wagner, D., Pintaric, T., Ledermann, F., Schmalstieg, D.,
Towards Massively Multi-User Augmented Reality on Handheld
Devices, Proceedings of the 3rd International Conference on
Pervasive Computing (PERVASIVE 2005), pp. 208-219
Munich, Germany, 2005

[31] Wagner, D., Schmalstieg, D., First steps towards handheld
augmented reality, Proceedings of the 7th International
Symposium on Wearable Computers (ISWC'2003), pp. 127-137,
NY, USA, 2003

[32] Wagner, D., Schmalstieg D., ARToolKitPlus for Pose
Tracking on Mobile Devices, Proceedings of 12th Computer
Vision Winter Workshop (CVWW'07), 2007

[33] Wagner, D., Schmalstieg D., Muddleware for Prototyping
Mixed Reality Multiuser Games, Proceedings of IEEE Virtual
Reality 2007 (VR2007), pp. 235-238, Charlotte, NC, USA, 2007

[34] Wu, M., Mitchell, K., McCaffery, D., Finney, J., Friday, A.,
Real Tournament – mobile context-aware gaming for the next
generation, The Electronic Library, Volume 22, Number 1, pp.
55-64, 2004

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

