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Abstract

In this work we investigate the phenomena of pattern formation and wave propa-
gation for a reaction-diffusion system with nonlinear diffusion. We show how cross-
diffusion destabilizes uniform equilibrium and is responsible for the initiation of
spatial patterns. Near marginal stability, through a weakly nonlinear analysis, we
are able to predict the shape and the amplitude of the pattern. For the amplitude,
in the supercritical and in the subcritical case, we derive the cubic and the quintic
Stuart-Landau equation respectively.

When the size of the spatial domain is large, and the initial perturbation is
localized, the pattern is formed sequentially and invades the whole domain as a
traveling wavefront. In this case the amplitude of the pattern is modulated in space
and the corresponding evolution is governed by the Ginzburg-Landau equation.

Key words: Nonlinear diffusion, Turing bifurcation, Pattern formation, Amplitude
equation, Quintic Stuart-Landau equation, Ginzburg-Landau equation, Traveling
fronts.

1 Introduction

The emergence of ordered structures (patterns) is a phenomenon frequently
observed in the physical world. Two different mechanisms which lead to pat-
tern formation are known: self-assembly and self-organization. Self-assembly is
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typical of spontaneous processes tending towards equilibrium. It is associated
with the minimization of a variational energy functional in a closed system
and the resulting pattern can survive indefinitely without external energy in-
put [32]. On the other hand self-organization implies a far from equilibrium
process, and is possible only in open system with an external energy source.
Prototype models of self-organization generated patterns are the reaction-
diffusion systems that, since the seminal paper of Turing [47], have attracted
a growing interest as they constitute an essential basis to describe morpho-
genetic mechanisms.

Turing suggested that in a reaction-diffusion system describing the interac-
tion between two species (or reactants), different diffusion rates can lead to
the destabilization of a constant steady state, followed by the transition to
a nonhomogeneous steady state. According to this result, a steady state is
Turing unstable if it is stable as a solution to the reaction system (without
diffusion terms), but unstable as a solution of the full reaction-diffusion sys-
tem [28,39]. This mechanism, known as diffusion driven instability, leads to
the pattern appearance.

Most of the reaction-diffusion systems used to predict the occurrence of pat-
terns assume that the diffusion of each species depends only on the gradients
of the concentration of the species itself. Nevertheless cross-diffusion terms
(together with self-diffusion terms) should be introduced when the gradient of
the density of one species induces a flux of another species, other than of the
species itself. Self- and cross- diffusion terms were originally introduced in the
context of population dynamics [37] and have now gained a renewed interest:
they have appeared in various models arising in diverse contexts like chemo-
taxis [34], ecology [26,45,52], social systems [18,51], turbulent transport in
plasmas [17,16], drift-diffusion in semiconductors [10,6,15], granular materials
[3,21] and cell division in tumor growth [43], to name a few. However most of
the papers where self- and cross- diffusion are considered focus on the mathe-
matical properties of the system rather than on the pattern formation process.
The importance of the cross-diffusion, relatively to pattern formation, is ex-
tensively discussed in [1,49] from both the experimental and the theoretical
point of view. In these papers the authors report many experiments of interest
to chemists where cross-diffusion effects can be quite significant: they obtain
the minimal conditions for pattern formation in the presence of linear cross-
diffusion terms, demonstrating that relatively small values of cross-diffusion
parameters can lead to spatiotemporal pattern formation provided that the
kinetics is sufficiently nonlinear.

The aim of this paper is to study the patterns admitted by the following
strongly coupled reaction-diffusion system, where both nonlinear self- and
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cross-diffusion terms are included:

∂u

∂t
=∇ · J1 + Γu(µ1 − γ11u− γ12v),

∂v

∂t
=∇ · J2 + Γv(µ2 − γ21u− γ22v) ,

(1.1)

and the fluxes J i have the following expression:

J1 =∇ [u (c1 + a1u+ bv)] ,

J2 =∇ [v (c2 + a2v + b2u)] .
(1.2)

In (1.1) u(x, t) and v(x, t) with x ∈ Ω, Ω ⊆ Rn are the population densities
of two competing species. The nonlinear diffusion models the tendency of a
species to diffuse (faster than predicted by the usual linear diffusion) towards
lower density areas. The parameters ai ≥ 0 and ci ≥ 0 are respectively the
self-diffusion and the diffusion coefficients, while the parameters b and b2,
the cross-diffusion coefficients, are both nonnegative being the species in a
competitive relationship.

The constants γij > 0 represent the competitive interaction coefficients and
the parameter Γ gives the relative strength of reaction terms (or, alterna-
tively, the size of the spatial domain and the time scale). Initial conditions
and boundary conditions must be added to the system (1.1). In this paper
we are interested in self-organizing patterns and we shall impose the homoge-
neous Neumann boundary conditions which impose the weakest constraint on
pattern formation. Moreover we shall treat the 1D case Ω = [0, 2π].

Equations (1.1) were introduced by Shigesada, Kawasaki and Teramoto in
[44] to model segregation effects, i.e. the possibility for a competing species
to create a spatial niche. This effect, for competing species, is ruled out when
cross- and self-diffusion are absent. In fact, when the diffusion is just the
classical linear diffusion, and the domain Ω is convex, it can be proved ([31], see
also [30] and references therein) that the only stable equilibrium solutions are
spatially homogeneous. Since then the mathematical properties of the system
(1.1) have been extensively studied, the main interest being on existence and
stability of non constant steady solutions (see e.g. [35,36]), on existence and
regularity of the solutions of the time dependent problem (see e.g. [8,9]), and
on numerical schemes [20,4,25,2,7]. See also the interesting model in [22] where
the system (1.1) is coupled with a transport law, and [19].

Recently it has been proposed a three-species model [30] with linear diffusion
that, in the appropriate limit [11], shows convergence to (1.1).

The conditions for Turing instability for the system (1.1) were derived in
[24,46,2]. In these papers it is shown that with a nonlinear diffusion of the
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type given in (1.1), the simple Lotka-Volterra kinetics is sufficient to generate
patterns. To the best of our knowledge no previous result which predicts the
form and the amplitude of the pattern for the given system has been obtained.
Our analysis will be mainly based on a weakly nonlinear analysis near equi-
librium; we shall see that near the onset the development of the instabilities
can be described in terms of the evolution in time of the amplitudes of the
unstable normal mode [33]. A perturbation scheme will be applied to obtain
the amplitude equation which takes into account the effect of the nonlinear
terms in the resulting pattern (a complete review of the method can be found
in [13]).

The plan of the paper is the following. In Section 2 we shall carry out a
linear stability analysis of the coexistence equilibrium showing how the cross-
diffusion is the key mechanism of pattern formation. In Section 3, through a
weakly nonlinear multiple scale analysis, we shall derive the Stuart-Landau
equation ruling the evolution of the amplitude of the most unstable mode.
We analyze both the supercritical and the subcritical case. In the last case, to
correctly describe the amplitude of the pattern, the weakly nonlinear analysis
has to be pushed up to fifth order to finally derive the quintic Stuart-Landau
equation. This equation is also able to describe the phenomenon of hysteresis
one can observe in the subcritical case. In Section 4 we shall address the process
of pattern formation when the size of the spatial domain is large. In this case
we show how the pattern invades the spatial domain as a traveling wavefront.
We shall derive the equation governing the amplitude of the pattern, the real
Ginzburg-Landau equation, whose solution gives, to a good approximation,
the shape and the speed of the traveling front.

For numerical simulation we have used an explicit (in time) spectral method
or the particle method derived in [25]. All the numerical results show a good
agreement with the solution prescribed by the weakly nonlinear expansion.

2 Turing instability

In this section we shall investigate, for the system (1.1), the possibility of
pattern appearance. Through a linear stability analysis we shall show that
the coexistence equilibrium is stable for the kinetic part of the system (1.1),
but unstable for the full reaction-diffusion system. The analysis of the other
equilibria can be found in [24].

The coexistence steady state:

(u0, v0) ≡
(
µ1γ22 − µ2γ12
γ11γ22 − γ12γ21

,
µ2γ11 − µ1γ21
γ11γ22 − γ12γ21

)
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is a stable equilibrium point if γ11γ22 − γ12γ21 > 0, which corresponds to
the weak interspecific competition case. In this paper we shall always assume
the stability of (u0, v0). Moreover, for the point (u0, v0) to be a biologically
significant steady state, the conditions µ1γ22−µ2γ12 > 0 and µ2γ11−µ1γ21 > 0
are imposed.

The linearized system in the neighborhood of (u0, v0) is:

ẇ = ΓKw+D∇2w , w ≡

u− u0

v − v0

 , (2.1)

where we have defined:

K =

−γ11u0 −γ12u0
−γ21v0 −γ22v0

 , D =

 c1 + 2a1u0 + bv0 bu0

b2v0 c2 + 2a2v0 + b2u0

.
(2.2)

Looking for solutions of system (2.1) of the form eikx+λt leads to the following
dispersion relation, which gives the eigenvalue λ as a function of the wavenum-
ber k:

λ2 + (k2 tr(D)− Γ tr(K))λ+ h(k2) = 0 , (2.3)

where
h(k2) = det(D)k4 + Γqk2 + Γ2det(K) , (2.4)

with:

q = γ11u0(2a2v0 + c2) + γ22v0(2a1u0 + c1) + bv0(γ22v0 − γ21u0)

+ b2u0(γ11u0 − γ12v0) .
(2.5)

In what follows we shall derive the condition for pattern formation (2.8), the
critical value for the bifurcation parameter (2.10), and the critical wavenumber
(2.7).

Spatial patterns arise in correspondence of those modes k for which Re(λ) > 0
(see e.g. [38]). Since (u0, v0) is stable for the kinetics one has that tr(K) < 0.
Moreover one has that tr(D) > 0. Therefore the only way to have Re(λ) > 0
for some k ̸= 0 in (2.3) is when h(k2) < 0. Thus, the condition for the marginal
stability at some k = kc is:

min(h(k2c )) = 0. (2.6)

The minimum of h is attained when:

k2c = − Γq

2 det(D)
, (2.7)

which requires q < 0. The first two terms on the right hand side of expres-
sion (2.5) are non-negative: it follows that the only potential destabilizing
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Fig. 2.1. Left: Plot of h(k2). Right: Growth rate of the k-th mode. A band of growing
modes is present.

mechanism is the presence of the cross–diffusion terms. The conditions on the
positiveness and stability of the equilibrium point (u0, v0) imply that only one
of the two following inequalities can be satisfied:

γ22v0 − γ21u0 < 0 or γ11u0 − γ12v0 < 0. (2.8)

Therefore when b has a destabilizing effect then b2 acts as a stabilizer and
vice versa. In what follows we shall choose the case γ22v0 − γ21u0 < 0 without
loss of generality and b as the bifurcation parameter. Since the graph of h(k2)
depends on b (see Fig. 2.1), from (2.6) one gets the bifurcation value of b (and
the corresponding value of k2c ). Defining the quantities α and β as:

α= v0(γ21u0 − γ22v0) ,

β= γ11u0(2a2v0 + c2) + γ22v0(2a1u0 + c1) + b2u0(γ11u0 − γ12v0) ,

so that q = −α b+ β and introducing in (2.6) b = β/α+ ξ one gets:

α2

4 det(K)
ξ2 − v0(2a2v0 + c2)ξ

−[v0β/α(2a2v0 + c2) + (2a1u0 + c1)(2a2v0 + b2u0 + c2)] = 0,

(2.9)

whose positive root ξ = ξ+ (this choice guarantees the condition q < 0) gives
the critical value of the parameter b:

bc = β/α + ξ+ . (2.10)

For b > bc the system has a finite k pattern-forming stationary instability.
The unstable wavenumbers stay in between the roots of h(k2), denoted by k21
and k22, which are proportional to Γ [38]. Hence, to have the possibility of the
pattern formation, Γ must be big enough so that at least one of the modes
allowed by the boundary conditions falls within the interval [k21, k

2
2].

The region in the parameter space where the pattern can develop (i.e. the
region where condition (2.8) is verified) is studied in Appendix A.
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Fig. 2.2. The parameters are µ1 = 1.2, µ2 = 1, γ11 = 0.5, γ12 = 0.4, γ21 = 0.38,
γ22 = 0.41, a1 = 10−4, a2 = 0.1, ci = 0.2, Γ = 49.75, b2 = 0.3, b = 6.5 > bc = 5.297.

In Fig. 2.2 we show the pattern which forms starting from an initial datum
which is a random periodic perturbation of the equilibrium (u0, v0). The pa-
rameters we have picked for this simulation give (u0, v0) ≈ (1.74, 0.83) while
the critical value of the bifurcation parameter is bc = 5.297 and kc = 3.2.

3 Weakly nonlinear analysis

The linear stability theory represents a useful first step in understanding pat-
tern formation, but it gives only a rough indication of the patterns we should
expect. Through the linear analysis we determine both the conditions on the
system parameters for the onset of instability to infinitesimal disturbances and
the length scale of the pattern formation 1/kc. Moreover the linear analysis
displays the important physical processes and shows how the cross-diffusion
is the key mechanism for the pattern formation.

Nevertheless the exponentially growing solutions obtained via the linear the-
ory are physically meaningless. To predict the amplitude and the form of
the pattern close to the threshold the nonlinear terms must be included into
the analysis, and we shall perform a weakly nonlinear analysis based on the
method of multiple scales. For a review see [50].

Since close to the bifurcation the amplitude of the pattern evolves on a slow
temporal scale, new scaled coordinates are introduced which are treated as
separate variables in addition to the original variables.

The solution of the original system (1.1) is written as a weakly nonlinear
expansion in the small control parameter ε, representing the dimensionless
distance from the threshold. Here we choose ε2 = (b− bc)/bc. We shall see how
the leading term of the nonlinear expansion of the solution is the product of
the basic pattern (the critical solution of the linearized system (2.1)) and a
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slowly varying amplitude (see [27,29]).

The slow scale is obtained from the linear analysis: for ε sufficiently small,
it is straightforward to verify that λ ∼ ε2 and, since the growth rate of the
perturbation is proportional to eλt, it follows that the characteristic time scale
of evolution T is O (ε−2). Near the bifurcation we separate the fast time t
and slow time T = ε2t and therefore the time derivative decouples as ∂t →
∂t + ε2∂T .

At this stage we shall not consider the possibility of spatially modulated pat-
terns and therefore, in our asymptotic expansion, we shall not include the
spatial slow scale. This will be done in Section 4.

Separating the linear part and the nonlinear (in fact quadratic) part, we can
recast the original system (1.1) in the following form:

∂tw = Lbw+
1

2
QK(w,w) +

1

2
∇2Qb

D(w,w), (3.1)

where w is defined in (2.1). The linear operator Lb is defined as:

Lb = ΓK +Db∇2, (3.2)

where K and Db are given in (2.2). Notice that here (for notational conve-
nience) we are making explicit the dependence on the bifurcation parameter
b. The action of the bilinear operators QK and Qb

D on the couple (x,y), where
x = (xu, xv) and y = (yu, yv) is defined as:

QK(x,y)=Γ

−2γ11x
uyu − γ12(x

uyv + xvyu)

−2γ22x
vyv − γ21(x

uyv + xvyu)

 , (3.3)

Qb
D(x,y)=

 2a1x
uyu + b(xuyv + xvyu)

2a2x
vyv + b2(x

uyv + xvyu)

 . (3.4)

Passing to the asymptotic analysis, we expand b and w as:

b= bc + ε2b(2) +O(ε4) , (3.5)

w= εw1 + ε2 w2 + ε3w3 +O(ε4). (3.6)
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Moreover the linear operator Lb can be expanded as:

Lb = Lbc + ε2 b(2)

 v0 u0
0 0

∇2 , (3.7)

while:

QK(w,w)= ε2QK(w1,w1) + 2ε3QK(w1,w2) +O(ε4), (3.8)

Qb
D(w,w)= ε2

Qbc

D(w1,w1) + b(2)

u0v0
0


+ (3.9)

ε3

2Qbc

D(w1,w2) + b(2)

u0wv
1 + v0w

u
1

0


+O(ε4).

Substituting all the above expansions into (3.1) and collecting the terms at
each order in ε, one gets a sequence of equations for the wi.

At the lowest order in ε we recover the linear problem Lbcw1 = 0 whose
solution, satisfying the Neumann boundary conditions, is given by:

w1 = A(T )ρ cos(kcx) , with ρ ∈ Ker(ΓK − k2cD
bc) (3.10)

where A(T ) is the amplitude of the pattern and it is still arbitrary at this level.
The vector ρ is defined up to a constant and we shall make the normalization
in the following way:

ρ =

 1

M

 , with M ≡ −Dbc

21k
2
c + ΓK21

Dbc
22k

2
c − ΓK22

, (3.11)

where Dbc

ij , Kij are the i, j-entries of the matrices Dbc and K.

At O(ε2) and at O(ε3) one gets the following linear equations:

Lbcw2=F , (3.12)

Lbcw3=G . (3.13)

The explicit expression of F and G is given in the Appendix B. Since F is
orthogonal to the kernel of the adjoint of Lbc , Eq.(3.12) can be solved right
away.
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This is not the case for the equation for w3. The solvability condition for this
equation gives the Stuart-Landau equation for the amplitude A(T ):

dA

dT
= σA− LA3, (3.14)

where the coefficients σ and L are explicitly computed in terms of the system
parameters. All the details are given in the Appendix B.

Since the growth rate coefficient σ is always positive, the dynamics of the
Stuart-Landau equation (3.14) can be divided into two qualitatively different
cases depending on the sign of the Landau constant L: the supercritical case,
when L is positive, and the subcritical case, when L is negative (see also the
discussion in the final part of Appendix B).

3.1 The supercritical case

If the coefficients σ and L, appearing into (3.14), are both positive, then

there exists the stable equilibrium solution A∞ =
√
σ/L, which represents the

asymptotic value of the amplitude A. Therefore, we are now able to predict
the amplitude and the form of the pattern. According to the weakly nonlinear
theory the asymptotic (in time) behavior of the solution is given by:

w = ερ

√
σ

L
cos (kcx) + ε2

σ

L
(w20 +w22 cos (2kcx)) +O(ε3) . (3.15)

In the above expression ρ is given in (3.11), while the w2i are the solutions of
the systems (B.5).

Clearly, in general, the above solution is not compatible with the Neumann
boundary conditions, that require kc to be integer or semi-integer. We there-
fore define k̄c as the first integer or semi-integer to become unstable when b
passes the critical value bc, and take as the weakly nonlinear approximation
the following expression:

w = ερ

√
σ

L
cos

(
k̄cx

)
+ ε2

σ

L

(
w20 +w22 cos

(
2k̄cx

))
+O(ε3) . (3.16)

In our numerical tests we have seen that the discrepancy between kc and
k̄c does not ruin the accuracy of the approximation. In Fig. 3.1 we show
the comparison between the stationary state (3.16) predicted by the weakly
nonlinear analysis and the stationary state (reached starting from a random
perturbation of the constant state) computed solving numerically the system
(1.1). On the left we picked ε ≈ 0.316. Please notice that we have chosen
b(2) = bc, meaning that the deviation from the critical value bc is measured
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Fig. 3.1. Comparison between the weakly nonlinear solution (dotted line) and the
numerical solution of (1.1) (solid line). The parameters are Γ = 80, ai = 10−4,
ci = 0.2 b2 = 0.3, µ1 = 1.0, µ2 = 1.2, γ11 = 1.0, γ12 = 0.3, γ21 = 0.93, γ22 = 1.0.
With this choice of the parameters one has bc ≈ 7.377, u0 ≈ 0.89, while kc ≈ 6.98.
The first admissible unstable mode is k̄c = 7 Left: ε2 = 0.1. Right: ε2 = 0.3.

relative to the size of bc. Therefore, for the aforementioned value of ε, one has
that b = 1.1× bc where, for the parameters chosen in the Figure, bc = 7.377.

On the right of Fig. 3.1 we show a similar comparison for a larger deviation
from the bifurcation value, having picked ε ≈ 0.548. The distance, evaluated in
the L1 norm, between the weakly nonlinear approximations and the numerical
solutions of the system is about 5.5 × 10−3 when ε ≈ 0.316, while it is ≈
2.7 × 10−2 when ε ≈ 0.548. This is consistent with the weakly nonlinear
solution being an O(ε3) approximation of the solution. A better approximation
of the amplitude A of the pattern can be obtained by using the quintic Stuart-
Landau equation (3.21) (the details of the analysis will be given in the next
section). In Fig. 3.2 we show, for the rather large deviation for equilibrium
ε = 0.707, a comparison between the numerical solution of the system (1.1)
and the weakly nonlinear approximation at O(ε3), which shows a significant
discrepancy from the solution, and the approximation at O(ε5) which, instead,
is still quite accurate.

3.1.1 Competition of modes away from threshold

For higher values of the bifurcation parameter other modes, beside the k̄c,
become unstable, see Fig. 3.3. The weakness of the approach based on am-
plitude equations (to any order of accuracy) to predict the amplitude of the
pattern far from equilibrium is the implicit assumption that, even for larger
deviations from the bifurcation value, when other modes different from k̄c have
a positive growth rate, k̄c remains the fastest growing mode and, ultimately,
the predominant mode in the solution.

In Fig. 3.3 (where we plot, for specific parameter values, the same quantity

11



0
0.5

0.7

0.9

1.1

1.31.3

 

 

2π

u

ε
2

= 0.5

Fig. 3.2. Comparison between the weakly nonlinear solution, with the amplitude
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solution of (1.1) (solid line). The parameter values are chosen as in Fig.3.1.
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Fig. 3.3. The unstable modes are the integers and the semi-integers (marked with
dots) for which h(k2) < 0. The critical mode k̄c is marked with a cross. The param-
eter values are the same of Fig. 3.1

h(k2) represented on the left of Fig. 2.1) one can see the unstable modes for
different values of ε2. For example, when ε2 = 0.3 one has that all integers
and semi-integers between 9/2 and 19/2 are unstable. And in fact one can see
that, far enough from the bifurcation value bc, there exist initial conditions
for which one observes the development of patterns with different shapes. For
each value of ε2 we have run a thousand simulations (for the case ε2 = 0.7 we
run four thousands simulations), with different randomly chosen initial data.
In Table 3.1 we report the percentages of the cases in which different shapes
have emerged. We now show how the linear theory can give some clues on
the wavelength of the emerging pattern (at least for values of ε that are not
exceedingly large).

The first factor to be considered is the value km maximizing the growth rate
λ(k2). Following the reasoning in [40] the value of km can be found by setting:

dλ+

dk2
= 0, (3.17)
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Table 3.1

k = 11/2 k = 6 k = 13/2 k̄c = 7 k = 15/2 k = 8

ε2 = 0.01 100%

ε2 = 0.1 26% 62% 12%

ε2 = 0.3 4.6% 37.6% 44.3% 13.2% 0.3%

ε2 = 0.7 0.1% 13.65% 42.725% 36.675% 6.825% 0.025%

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

ε

δ

Fig. 3.4. The curve dλ+/dk2 = 0 once substituted b = bc(1 + ε2) and k2m = k2c + δ.
The parameter values are chosen as in Fig.3.1.

where λ+ is the positive root of the dispersion relation (2.3). Substituting
b = bc(1+ε2) and k2m = k2c +δ in (3.17) one can obtain the analytic expression
of the curve which gives δ as a function of ε. In Fig. 3.4 we represent the
dependence of δ from ε, where all the other parameters are the same as in Fig.
3.1. In this case one can see that positive values of the parameter ε correspond
to negative values of δ, i.e. k2m always smaller than k2c . This could account for
the bias on low wavenumbers of Table 3.1.

On the other hand, when nonlinear effects become significant, one has to take
into account another important factor, other than the growth rate of each
mode, namely its initial amplitude. In fact, intermode suppression comes into
play: the growth of one mode tends to damp the growth of the others, as if
they were competing. This implies that a mode of sufficiently dominant initial
amplitude may extinguish modes with larger growth rates.

To describe the competition of the growing modes one can write a set of
coupled ODEs governing the dynamics of the amplitudes. The problem of the
derivation of these ODEs has been extensively addressed, in particular in the
context of fluid dynamics. A complete discussion on the different methods
developed for studying competing instabilities can be found in [12]. Here we
shall follow the approach presented by Segel in [41] and [42]. Starting from
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A1

Fig. 3.5. The phase plane. The competitive modes are k1 = 6 and k2 = k̄c. The
parameter values are the same of Fig. 3.1, ε2 = 0.7.

the full system (1.1), we derive the following ODE model that illustrates the
nonlinear interaction of the amplitudes A1 and A2 of two competing modes k1
and k2:

dA1

dT2
=σ1A1 − L1A

3
1 − Ω1A1A

2
2 , (3.18a)

dA2

dT2
=σ2A2 − L2A

3
2 − Ω2A

2
1A2 , (3.18b)

where the explicit expressions of the coefficients σi > 0 and Li,Ωi, with i = 1, 2
are given in Appendix D. In the experiment shown in Figures 3.5, 3.6 and
3.7 we consider the competition between two of the six modes admitted for
ε2 = 0.7, i.e. k1 = 6 and k2 = 7 (see Table 3.1). We see how the system (3.18a)-
(3.18b) is able to predict the final evolution of the pattern. In the considered
case, the system (3.18a)-(3.18b) admits no coexistence stable state and the
system can evolve only toward one of the two stable states (A1, 0) and (0, A2).
Therefore, this toy model for the intermode interaction predicts although the
amplitudes of the modes k1 and k2, one ultimately becomes extinct, the crucial
role being played by the initial conditions.

3.2 The subcritical case

For certain values of the parameters appearing in the Eqs. (1.1), we found
that the Landau coefficient L has a negative value. Therefore Eq. (3.14) is not
able to capture the amplitude of the pattern. This is a typical situation where
the transition occurs via a subcritical bifurcation. In this case, if one wants to
predict the amplitude of the pattern, one needs to push the weakly nonlinear
expansion at a higher order (for a general discussion on the relevance of the
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Fig. 3.6. Left: Initial condition u = u0 + ε(Ā1 cos(k1x) + Ā2 cos(k2x)), where
Ā1 = 0.403, Ā2 = 0.405 is in the basin of attraction of the equilibrium (0, A2).
Right: The comparison between the expected solution u = u0 + εA2 cos(k2x) (dot-
ted line) and the numerical solution of the system (1.1) (solid line).
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Fig. 3.7. Left: Initial condition u = u0 + ε(Ā1 cos(k1x) + Ā2 cos(k2x)), where
Ā1 = 0.184, Ā2 = 0.071 is in the basin of attraction of the equilibrium (A1, 0).
Right: The comparison between the expected solution u = u0 + εA1 cos(k1x) (dot-
ted line) and the numerical solution of the system (1.1) (solid line).

higher order amplitude expansions in the study of subcritical bifurcations, see
the recent [5] and references therein).

We introduce the multiple time scales T and T1 as follows:

t =
T

ε2
+
T1
ε4

+ · · · (3.19)

and the following expansion of the bifurcation parameter:

b = bc + ε2b(2) + ε4b(4) +O(ε5) . (3.20)

Performing the weakly nonlinear analysis up to O(ε5) one obtains the following
quintic Stuart-Landau equation for the amplitude A:

dA

dT
= σ̄A− L̄A3 + Q̄A5 . (3.21)

The details of the analysis and the explicit expression of the coefficients ap-
pearing in (3.21) are given in Appendix C.
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γ11 = 0.5, γ12 = 0.4, γ21 = 0.4, γ22 = 0.4, bc ≈ 4.4667. Left: Comparison between
the weakly nonlinear solution (solid line) and the numerical solution of (1.1) with
ϵ ≈ 0.1 (dotted line). Right: The corresponding bifurcation diagram.

In the subcritical case, (i.e. when the growth rate coefficient σ̄ > 0 and the
Landau coefficient L̄ < 0) and when Q̄ < 0, there exist two real stable equi-
libria representing the asymptotic values of the amplitude A. On the left of
Fig. 3.8 we show a comparison between the numerical solution of the system
(1.1) and the weakly nonlinear approximation.

On the right of Fig. 3.8 we show the bifurcation diagram for specific values of
the parameters: the origin is locally stable for b < bc and, when b = bc, two
backward-bending branches of unstable fixed points bifurcate from the origin.
These unstable branches turn around and become stable at some b = bs so
that in the range bs < b < bc two qualitatively different stable states coexist,
namely the origin and the large amplitude branches. The existence of different
stable states for one single value of the parameter allows for the possibility of
hysteresis as b is varied. In Fig. 3.9 we show a hysteresis cycle corresponding
to a periodic variation of the bifurcation parameter. Starting with a value of
the parameter above bc the solution jumps immediately to the stable branch
corresponding to a pattern whose amplitude is relatively insensitive to the
size of the bifurcation parameter. Decreasing b below the value bc the solution
persists on the upper branch and the pattern does not disappear. With a
further decrease of b below bs the solution jumps to the constant steady state.
To have the pattern formation one has to increase the parameter b above bc.

4 Traveling fronts

When the domain size is large a typical phenomenon one can observe is the
propagation of the pattern through the physical domain in the form of a
traveling wave: in this case the pattern is formed sequentially and the traveling
wavefront is the precursor to patterning [38].
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Fig. 3.9. A hysteresis cycle and the corresponding pattern evolution in the sub-
critical case. In the upper figure the variation in time of the bifurcation parameter
b = bc + 0.025 cos (ωt) with ω ≈ 10−6. The values of the other parameters are the
same as in Fig. 3.8.

To describe quantitatively this phenomenon one cannot ignore the (slow) mod-
ulation in space of the pattern amplitude, and one has to take into account
the slow and the fast spatial dependence of the solution. One can easily see
that, as typical for reaction diffusion systems [27], the characteristic length
scale of spatial modulation (that we shall denote with X) is ε−1.

The weakly nonlinear analysis of Section 3 must therefore be modified to
keep into account the dependence of the amplitude A on X. Separating the
fast x dependence and the slow X dependence, one can see that the spatial
derivative decouples as ∂x → ∂x + ε∂X while the diffusion operator decouples
as ∂xx → ∂xx + ε∂xX + ε2∂XX . At the lowest order ε we recover the linear
problem Lbcw1 = 0 and the solution is:

w1 = A(X,T )ρ cos(kcx) , (4.1)
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where ρ is given by (3.11). Pushing the asymptotic analysis (the details are
not reproduced here) up to O(ε3) one finds the following equation for the
amplitude A:

∂A

∂T
= ν

∂2A

∂X2
+ σA− LA3 , (4.2)

where σ and L are given by (B.8) and (B.9). The diffusion coefficient ν is
given by:

ν = −< 2kcD
bcw21 +Dbcρ,ψ >

< ρ,ψ >
, (4.3)

where ψ is given by (B.3).

The real Ginzburg-Landau (GL) equation (4.2) is able to capture the envelope
evolution and the progressing of the pattern as a wave, as shown in Fig. 4.1.
In the shown simulation, we have perturbed the equilibrium solution at the
left end of the spatial interval. The parameters are the same as in Fig. 3.1
with ε2 = 0.1, except Γ = 2400 which results in a k̄c = 38; we recall that to
take Γ larger by a factor 30 is equivalent to have a spatial domain larger by
a factor

√
30. After a transient, the solution of the system (1.1) assumes the

form of a solution of the GL equation (modulated by cos (2πk̄cx)), which is
shown by the dashed line.

Notice also that the solution of the GL equation we show in the Figure (which
is computed numerically imposing the Neumann boundary conditions), is very
close to the following exact solution of the GL equation in R:

A =
1

2

√
σ

L

(
1− tanh

(√
σ

ν

z − z0

2
√
2

))
, with z=x− ct, c = 3

√
σν

2
, (4.4)

where the parameters σ, L and ν, are given by (B.8),(B.9) and (4.3).

5 Conclusions

In the present paper we have investigated the process of pattern formation
induced by nonlinear cross-diffusion in a reaction-diffusion system with a sim-
ple kinetics of the competitive Lotka-Volterra type. We have determined the
regions of the parameters space where the conditions for the diffusion driven
instability are satisfied and the pattern emerges. Through a weakly nonlin-
ear expansion, we have predicted the amplitude and the form of the pattern,
deriving, both in the case of supercritical and subcritical bifurcation, the am-
plitude equations involving up to quintic order terms. In the parameters space
we have also numerically identified the curves across which the bifurcation
changes from supercritical to subcritical. Finally, we have considered the case
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Fig. 4.1. When the perturbation of the equilibrium solution is localized, the pattern
invades the whole domain in the form of a modulated progressing wave. The dashed
line is a numerical solution of the GL equation (4.2), which is very close (when the
front is distant from the boundaries) to the exact solution (4.4). The parameters
are the same as in Fig. 3.1 (Left), except Γ = 2400.

of spatially modulated patterns, deriving the corresponding real Ginzburg-
Landau amplitude equations. This has allowed us to describe the traveling
front enveloping a pattern which invades a spatial domain.

All the predictions of the weakly nonlinear analysis are in good agreement
with the numerical tests we have run, and both the cubic and the quintic
amplitude equations give a correct bifurcation diagram close to criticality.

Several aspects of the problem remain to be examined. When the domain is
two dimensional new phenomena occur. In fact, in this case degeneracy leads
to more complex structures like rhombi, hexagons or mixed-modes patterns
which may be predicted via the weakly nonlinear analysis [14], [23].

Moreover, experiments performed on real systems show deviations from the
ideal patterns like boundary effects or the formation of localized structures
(the so called defects). Far beyond the parameter regime where the amplitude
equation is valid, defects play an important role on the pattern formation and
the investigation of their dynamics is crucial to address the problem of pattern
selection. In fact, while close to onset the defect dynamics can be addressed
using competing amplitudes equation, far from threshold this approach fails:
in this one dimensional case, where the defects are fronts, pulses, sources and
sinks [48], the investigation of such topics would be of great interest.

Finally, non-stationary patterns should develop using a different form of the
kinetic term (for example Lotka-Volterra predator-prey) coupled with attrac-
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tive cross diffusion, of the type used e.g. in chemotaxis. This would cause the
homogeneous state to lose its stability via a Hopf bifurcation and oscillating
pattern would arise. These topics will be the subject of future work.
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A Pattern forming region in the parameter space

The goal of this Appendix is to give a geometric realization, in the parameter
space, of the condition (2.8) which ensures the possibility of the pattern for-
mation. First, to make the analysis simpler, and without loss of generality, we
consider the following non dimensional form of the system (1.1):

∂u

∂t
=∆(u(c1 + a1u+ bv)) + Γu (1− u− γ12v) ,

∂v

∂t
=∆(v(c2 + a2v + b2u)) + Γv (µ2 − γ21u− v) .

(A.1)

Second we observe that the condition (2.8) involves the coefficients of the
kinetics only. Therefore the parameter space to be considered is the three
dimensional space (γ12, γ21, µ2). In Fig. A.1 we show a two dimensional slice
{µ2 = const} of this space.

Third we observe that the conditions for the existence and the stability of the
coexistence equilibrium point:

(u0, v0) ≡
(
1− µ2γ12
1− γ12γ21

,
µ2 − γ21
1− γ12γ21

)
,

impose that

γ21 < µ2 and γ12 < 1/µ2 . (A.2)

The above condition, on the plane µ2 = const, corresponds to the region
bounded by the rectangle shown in Fig. A.1. Notice also that the line γ21 = µ2

corresponds to u0 = 0 while the line γ12 = 1/µ2 corresponds to v0 = 0.
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Fig. A.1. For fixed µ2 the pattern forming regions in the plane (γ12, γ21) are the two
hyperbolic sector P1 and P2.

We can finally impose the condition (2.8) which gives the two hyperbolic
sectors, denoted by P1 and P2, in Fig. A.1.

B Derivation of the Stuart-Landau equation in 1D

Taking into account the solution at the lowest order given by (3.10), at O(ε2)
we obtain the following equation:

Lbcw2 = F , (B.1)

with

F = −1

4
A2

∑
i=0,2

Mi(ρ,ρ) cos(ikcx), (B.2)

where Mi = QK − i2k2cQbc

D . By the Fredholm alternative, Eq.(B.1) admits a
solution if and only if < F,ψ >= 0, where with < ·, · > we have denoted the

scalar product in L2(0, 2π/kc), and where ψ ∈ Ker
{(

ΓK − k2cD
bc
)†}

. Since:

ψ =

 1

M∗

 cos(kcx), M∗ =
−Dbc

12k
2
c + ΓK12

Dbc
22k

2
c − ΓK22

, (B.3)

one immediately sees that the Fredholm alternative is automatically satisfied.
The solution of the equation (B.1) is then explicitly computed in terms of the
parameters of the full system:

w2 = A2
∑
i=0,2

w2i cos (ikcx)), (B.4)
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where the vectors w2i are the solutions of the following linear systems:

Liw2i = −1

4
Mi(ρ,ρ) , for i = 0, 2 (B.5)

with Li = ΓK − i2k2cD
bc .

Equating the coefficients at O(ε3) gives the following equation:

Lbcw3 = G, (B.6a)

where

G =

(
dA

dT
ρ+ AG

(1)
1 + A3G

(3)
1

)
cos(kcx) + A3G3 cos(3kcx) , (B.6b)

and

G
(1)
1 =

 b(2)k2c (Mu0 + v0)

0

 , (B.7a)

G
(3)
1 =−M1(ρ,w20)−

1

2
M1(ρ,w22), (B.7b)

G3=−1

2
M3(ρ,w22). (B.7c)

The solvability condition < G,ψ >= 0 for the equation (B.6a) leads to (3.14),
the Stuart-Landau equation for the amplitude A(T ) , where the expressions
of σ and L are given by:

σ=−< G
(1)
1 ,ψ >

< ρ,ψ >
, (B.8)

L=
< G

(3)
1 ,ψ >

< ρ,ψ >
. (B.9)

In the pattern-forming region, shown in Fig. A.1, it is straightforward to prove
that the coefficient σ is always positive. On the other hand, within the region
labeled P1, L can be positive or negative depending on the values of the system
parameters. We recall that if L is positive (negative) on has a supercritical
(subcritical) bifurcation.

The expression for L as a function of all the parameters is quite involved. It is
therefore hard to perform a general analytical study of the sign of the Landau
constant.
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Fig. B.1. Within the pattern forming region, the zones of subcritical (I and III)
and supercritical (II, dashed) bifurcation are drawn. The parameters are Γ = 50,
µ2 = 0.9, a2 = 0.01, b2 = 0.3, ci = 0.1. Left: a1 = 0.02. Right: a1 = 5.

Here we present a couple of examples where (keeping fixed all the other pa-
rameters, and using the non dimensional form of the system (A.1)) we draw,
in the space (γ12, γ21), the curves across which L changes its sign (see Fig.
B.1). These curves have been determined numerically. On the left of Fig. B.1
one can see that in the pattern forming region P1 there are two curves across
which L changes sign. If (γ12, γ21) are chosen in region II (dashed) one has the
supercritical bifurcation, while regions I and III correspond to the subcritical
case.

The effect of changing the values of the diffusion parameters is to shift upwards
the boundaries between the regions. In particular, on the right of Fig. B.1 we
show the effect of increasing the value of the parameter a1. A qualitatively
analogous phenomenon occurs when one increases the values of ci and a2.

In all cases we have considered we have always seen the same qualitative
picture: two subcritical bifurcation regions close to the boundary of the pattern
forming region, and one supercritical bifurcation region in between.

C The quintic Stuart–Landau equation

In this Appendix we give the details of the derivation of the quintic Stuart-
Landau equation (3.21).

Substituting the expansions (3.19), (3.20) and (3.6) into (3.1), the resulting
equations, up to O(ε3), are the same we have presented in Section 3.

Taking into account that (3.14) still holds for the amplitudeA(T, T1) (although
now the derivative with respect to T is a partial derivative), the solvability
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condition < G, ψ >= 0 for (3.13) is satisfied and the solution is:

w3 =
(
Aw31 + A3w32

)
cos (kcx) + A3w33 cos (3kcx) , (C.1)

where the expression for the vectors w3i, i = 1, 2, 3 can be computed solving
the following linear systems:

L1w31 =σρ+G
(1)
1

L2w32 =−Lρ+G
(3)
1

L3w33 =G3

where we have defined Li = ΓK − i2k2cD
bc and G

(1)
1 ,G

(3)
1 ,G3 are given in

formula (B.7).

At O(ε4) the resulting equation is:

Lbcw4 = H, (C.2)

where:

H =2A
∂A

∂T
w20 + A2H

(2)
0 + A4H

(4)
0 +(

2A
∂A

∂T
w22 + A2H

(2)
2 + A4H

(4)
2

)
cos(2kcx) + A4H4 cos(4kcx) ,

(C.3)

and

H
(2)
0 =−1

2
QK(ρ,w31),

H
(4)
0 =−QK(w20,w20)−

1

4
QK(w22,w22)−

1

2
QK(ρ,w22),

H
(2)
2 =−1

2
M2(ρ,w31) +

 4b(2)k2c (u0w
v
22 + v0w

u
22 +M/2)

0

 ,
H

(4)
2 =−1

2
M2(ρ,w32)−

1

2
M2(ρ,w33)−M2(w20,w20),

H4=−1

2
M4(ρ,w33)−

1

4
M4(w22,w22).

The solvability condition for (C.2) is automatically satisfied and the solution
is:

w4 = A2w40+A
4w41+

(
A2w42 + A4w43

)
cos(2kcx)+A

4w44 cos(4kcx) , (C.4)
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where the vector w4i, i = 1, . . . , 4, are the solutions of the following linear
systems:

ΓKw40 =2σw20 +H
(2)
0

ΓKw41 =−2Lw20 +H
(4)
0

L2w42 =2σw22 +H
(2)
2

L3w43 =−2Lw22 +H
(4)
2

L4w44 =H4

At O(ε5) the resulting equation is:

Lbcw5 = P , (C.5)

where:

P=

(
∂A

∂T1
ρ+

∂A

∂T
w31 + 3A2∂A

∂T
w32 + AP

(1)
1 + A3P

(3)
1 + A5P

(5)
1

)
cos(kcx)

+

(
3A2∂A

∂T
w33 + A3P

(3)
3 + A3P

(5)
3

)
cos(3kcx) + A5P5 cos(5kcx)

(C.6)

and
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P
(1)
1 =

 b(2)k2c (u0wv
31 + v0w

u
31) + b(4)k2c (u0M + v0)

0

 ,
P

(3)
1 =−M1(ρ,w40)−

1

2
M1(ρ,w42)−M1(w20,w31)−

1

2
M1(w22,w31)

+

 b(2)k2c
(
u0w

v
32 + v0w

u
32 + wv

20 +
wv

22

2
+M(wu

20 +
wu

22

2
)
)

0

 ,
P

(5)
1 =−M1(ρ,w41)−

1

2
M1(ρ,w431)−M1(w20,w32)

−1

2
M1(w22,w32)−

1

2
M1(w22,w33),

P
(3)
3 =−1

2
M3(ρ,w42)−

1

2
M3(w22,w31)

+

 9b(2)k2c
(
u0w

v
33 + v0w

u
33 +

1
2
wv

22 +
1
2
Mwu

22

)
0

 ,
P

(5)
3 =−1

2
M3(ρ,w44)−

1

2
M3(ρ,w43)−

1

2
M3(w22,w32),

P5 =−1

2
M5(ρ,w44)−

1

2
M5(w22,w33).

The solvability condition for (C.5) is

∂A

∂T1
= σ̃A− L̃A3 + Q̃A5, (C.7)

where the coefficients are given by:

σ̃ =− < σw31 +P
(1)
1 ,ψ >

< ρ,ψ >
,

L̃ =
< 3σw32 − Lw31 +P

(3)
1 ,ψ >

< ρ,ψ >
,

Q̃ =
< 3Lw32 −P

(5)
1 ,ψ >

< ρ,ψ >
.

(C.8)

Adding up (C.7) to (3.14) one gets the quintic Stuart-Landau equation (3.21)
with:

σ̄ = σ + ε2σ̃ , L̄ = L+ ε2L̃ , Q̄ = Q̃ε2 . (C.9)
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D Nonlinear behavior of two competing modes

Let us assume that both the modes k1 and k2 become unstable. Performing
the weakly nonlinear analysis, one can write the solution of the linear problem
at O(ε) in (3.10) as:

w1 =
2∑

l=1

Alρl cos(klx), where ρl =

 1

Ml

 , Ml =
−Dbc

21k
2
l + ΓK21

Dbc
22k

2
l − ΓK21

.

Upon the substitution of the above expression into (3.12), the vector F reads:

F=−1

4

2∑
l=1

A2
l

2∑
i=0
i ̸=1

Ml
i(ρl,ρl) cos(iklx) (D.1)

−1

2
A1A2 (Mp(ρ1,ρ2) cos((k1 + k2)x) +Mm(ρ1,ρ2) cos((k1 − k2)x)) ,

where Ml
i = QK − i2k2l Qbc

D ,Mp = QK − (k1+ k2)
2Qbc

D and Mm = QK − (k1−
k2)

2Qbc

D .

The terms in (D.1) identically satisfy the compatibility conditions and the
solution of (3.13) is then calculated:

w2 =
2∑

l=1

A2
l

2∑
i=0
i ̸=1

wl
2i cos(iklx)+ A1A2(w2p cos((k1+k2)x)+w2m cos((k1−k2)x)).

(D.2)

where the vectors wl
2i,wp and wm are the solutions to the following linear

systems:

Ll
iw

l
2i=−1

4
Ml

i(ρl,ρl),

Lpw2p=−1

2
Mp(ρ1,ρ2),

Lmw2m=−1

2
Mm(ρ1,ρ2),
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and the operators Ll
i, Lp and Lm are defined as follows:

Ll
i=ΓK − i2k2lD

bc ,

Lp=ΓK − (k1 + k2)
2Dbc ,

Lm=ΓK − (k1 − k2)
2Dbc .

At order ε3 the expression of the vectorG, which appears in the formula (3.13)
reads:

G =
2∑

l=1

(
dAl

dT2
ρl + AlG

(1)l
1 + A3

lG
(3)l
1 +

A2
1A

2
2

Al

Gl
1

)
cos(klx) +G∗ , (D.3)

where:

G
(1)l
1 = b(2)k2l

u0Ml + v0

0

 ,
G

(3)l
1 =−

(
Ml

1(ρl,w
l
20) +

1

2
Ml

1(ρl,w
l
22)
)
,

Gl
1=−

(
Ml

1(ρl,w
2/l
20 +

1

2
Ml

1(ρl,w2p) +
1

2
Ml

1(ρl,w2m)
)
.

and the expression of G∗ involves only terms orthogonal to ψ so we shall not
report it here.

By imposing the solvability condition to the equation (3.13), we obtain the
Landau equations (3.18a)-(3.18b) for the amplitudes A1(T2) and A2(T2). The
expressions for the coefficients appearing in these equations are given below:

σl =−< G
(1)l
1 ,ψl >

< ρl,ψl >
, (D.4)

Ll =
< G

(3)l
1 ,ψl >

< ρl,ψl >
, (D.5)

Ωl =−< Gl
1,ψl >

< ρl,ψl >
. (D.6)
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[20] G. Galiano, M. L. Garzón, A. Jüngel, Semi-discretization in time and numerical
convergence of solutions of a nonlinear cross-diffusion population model, Numer.
Math. 93 (4) (2003) 655–673.
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