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Abstract— Classical direct volume rendering techniques accu-
mulate color and opacity contributions using the standard volume
rendering equation approximated by alpha blending. However,
such standard rendering techniques, often also aiming at visual
realism, are not always adequate for efficient data exploration,
especially when large opaque areas are present in a dataset,
since such areas can occlude important features and make them
invisible. On the other hand, the use of highly transparent
transfer functions allows viewing all the features at once, but
often makes these features barely visible. In order to enhance
feature visibility, we present in this paper a straightforward ren-
dering technique that consists in modifying the traditional volume
rendering equation independently of any transfer function. Our
approach is fully automatic and based on a function quantifying
the relative importance of each voxel in the final rendering
called relevance function. This function is subsequently used to
dynamically adjust the opacity of the contributions per-pixel. As
will be shown by our comparative study with standard volume
rendering, this makes our rendering method much more suitable
for interactive data exploration at a low extra cost. Thereby, our
method avoids feature visibility restrictions without relying on
a transfer function and yet maintains a visual similarity with
standard volume rendering.

I. I NTRODUCTION

Traditional direct volume rendering techniques consist ininte-
grating opacity and color values along a viewing ray by using
a simple light transport model, called the volume rendering
equation, inspired by the physics of light traversing a participating
media (usually only absorption is considered, with no scattering).
Using this approach, direct volume rendering allows one to
display multiple values contributing to one pixel, unlike iso-
surface extraction methods, for which a single value is considered.
Therefore, volume rendering is widely used for the interactive
exploration of 3D datasets since it allows one to display all
data ”at once”. However, one major issue consists in defining
a transfer function which associates opacity and color values to
the data. Setting up this transfer function and in particular the
opacity function is an intricate task, since it generally requires
the expertise of the user and is deeply data dependent.

In order to address this issue, one can attempt to ease the gener-
ation of transfer functions, and keep the classical volume render-
ing equation. Numerous authors have attempted this [KMM∗01],
[RBS05], [KD98]. This can be done either by hand, which is,
however, an excessively time-consuming and painstaking process,
or automatically or semi-automatically, by introducing a specific
data analysis process. In either case, it cannot be excludedthat for
some datasets wrong decisions could be made when building the
transfer function. This has implications for the common volume
rendering techniques:
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• In the case of direct volume rendering, opaque features might
occlude some other parts of the dataset for some or even,
in the worst case, for all viewing directions. This could
make feature visibility in the dataset highly view-dependent.
Conversely, setting up a transfer function with insufficient
opacity might result in unintelligible pictures. Consequently,
classical volume rendering techniques, especially based on
the traditional volume rendering equation, might become
impractical for efficient data exploration.

• In the case of the additive blending technique, the pro-
duced pictures are often under or over saturated. Since this
technique uses a simple additive blending equation, over
saturation of pictures can happen very quickly and with
only a very limited number of contributions. On the other
hand, setting a low opacity for these contributions can result
in under saturated pictures which do not convey enough
information to be useful and is furthermore highly dependent
on the viewpoint.

In order to resolve the crucial issue of simultaneous visibility
of data features in a view-independent fashion, one can resort to
a volume rendering integral modification in the hope of avoiding
a potentially incorrect transfer function setup. By doing so, these
methods are trading visual realism for pictures providing abetter
understanding of the data. In particular, the advent of non-
photorealistic techniques has allowed a new range of visualization
clues to be added to the generated pictures, in particular inthe
context of volume exploration.

In a previous paper, we introduced such a method, that consists
in modifying the volume rendering integral to achieve better
visibility of the internal structures in datasets. It is view-dependent
and dynamically adjusts the volume rendering integral per-pixel,
thereby improving the resulting pictures by conveying more
dataset features at once. In order to identify empty areas, abinary
classification of the data was required. In this paper, we refine
this principle by further introducing a function calledrelevance
function that quantifies the relative importance of each voxel in
the final rendering. We experiment with different suitable alterna-
tives for this function, such as using the gradient and second order
derivative. As the approach is still automatic, no complex transfer
function setup is required. Unlike completely non-photo realistic
volume rendering techniques, our approach remains very close
to traditional volume rendering, thus providing pictures close to
usual visual realism. For example, we use a traditional surface-
based shading model. Yet it can be considered a non-photo
realistic method since it does not respect the actual physical light
transport equation. We have implemented our technique on the
GPU, and show that it can thereby reach interactive performance.

In the next section, we detail related works. In section 3, we
present our new volume rendering technique. We then study the
influence of differentrelevance functionsin section 4. In section 5,
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we make some adjustments to improve visual quality. We discuss
preintegration of our volume rendering equation in section6.
The implementation of our technique on the GPU is detailed in
section 7. We present results with various datasets and compare
our technique to other volume visualization methods in section 8.
Finally, we give concluding remarks in section 9.

II. RELATED WORK

In recent years, many non-photorealistic volume visualization
techniques have been proposed. These techniques trade picture
realism for greater data understanding.

Saito et al. [Sai94] propose a first non-photorealistic volume
visualization technique. They achieve non-photorealistic preview-
ing of volume fields using simple primitives such as points or
lines. Ebertet al. [ER00] use non-photorealistic feature enhance-
ment by modifying the color and transparency of the voxels.
Viola et al. [VKG04], [VKG05] introduce a technique called
importance-driven volume rendering. This technique uses pre-
defined priorities between structures in the dataset and then
renders accordingly: low priority structures can be occluded by
higher priority ones, while high priority structures cannot be
occluded by lower priority ones. However, this requiresà priori
knowledge of the dataset in order to segment and prioritize the
object features. Bruckneret al. [BGKG05] propose a model
for preserving contextual information while prioritizingrelevant
information according to real-time adjustable parameters. Kraus
[Kra05] introduces scale-invariant volume rendering. This tech-
nique integrates the data in data space instead of doing so in
physical space, and thereby achieves scale invariance for volume
visualization. By its design, this technique leads to the same color
and opacity for structures bearing the same density but different
thicknesses. Satoet al. [SSN98] modify the maximum intensity
projection scheme by selecting the first value above a threshold
on a given ray instead of the maximum value over the whole ray.
Hauseret al. [HMBG00] mix two well-known volume visualiza-
tion techniques, namely direct volume rendering and maximum
intensity projection, into a joint method. The dataset is first
segmented into two classes, and those classes are then rendered
using either one or the other technique. Csébfalviet al. [CMH∗01]
present a visualization technique which uses a gradient-based
voxel selection, and only renders the relevant voxels. Thisresults
in efficient visualization of contours in the dataset. Moraet al.
[ME04] explore order independent volume rendering and extend
existing maximum intensity projection (MIP) [MGK99], [ME05]
and X-ray techniques. Sunet al. [SRR04] propose to reduce noise
in confocal microscopy pictures using an adaptive technique.

In order to improve the quality of numerical integration, Engel
et al. [EKE01] propose a technique called preintegration. This
technique increases the visual quality of volume renderingby
pre-computing slabs of the volume rendering integral.

In the field of high dynamic range (HDR) volume visualization,
Ghosh et al. [GTH05] have developed a technique to achieve
volume rendering on high dynamic range displays. Yuanet al.
[YNCP05] visualize high dynamic range datasets on a standard
display system using two passes: first the data is rendered into a
high dynamic range buffer, and then the resulting image is tone
mapped into an image suitable for display.

Work has also been undertaken in order to improve the use
of transfer functions. Knisset al. [KMM ∗01] introduce multi-
dimensional transfer functions, which depend not only on the

data value, but also on the gradient magnitude. Roettgeret
al. [RBS05] automatically generate multi-dimensional transfer
functions and let the user choose among segmented parts of the
transfer function to highlight matching object parts. However,
setting up a transfer function can be complex for users. In order to
avoid this transfer function setup phase, a number of techniques
have been developed. Kindlmannet al. [KD98] generate transfer
functions in a semi-automatic fashion. Fujishiroet al. [FAT99]
analyze the topology of the data to create a suitable transfer
function. Fanget al. [FBT98] use an image-based selection tool
to ease the creation of transfer functions.

In the field of 2D imaging, the local histogram equalization
technique [GW92] enhances the contrast of a picture by perform-
ing histogram equalization in the neighbourhood of each pixel.

Even though locally adaptive techniques are widely used in
the image processing field, such techniques have been rarelyused
for visualization. Among all the techniques discussed above, very
few take advantage of view-dependent rendering to increasethe
amount of information in the picture. Those that do so usually
require the user to go through a complex data segmentation
and/or transfer function setup phase. Since this setup is view-
independent, it does not adapt to the current viewing conditions
in order to maximize visibility of internal structures. Further-
more, the complexity of the preprocessing phase usually makes
volume rendering unsuitable as a data exploration tool. In this
paper, our purpose is to move that complex phase further in
the visualization pipeline by dynamically and locally adjusting
the rendering at runtime. We also aim at dataset exploration,
and thus our algorithm should not require any complex setup,
and should be able to achieve interactive rendering. Finally, as
opposed to Kraus [Kra05], we want to be able to distinguish ob-
jects with different thicknesses and therefore thin objects should
not appear similarly to thick ones. Therefore, we introducea
new approach which is halfway between classical photo-realistic
volume visualization techniques and non-photorealistic volume
visualization techniques. It locally adjusts the opacity values of
the contributions, and thereby manages to keep a greater number
of features visible at the same time. Since opacity values are
computed on the fly, our method does not need any opacity
transfer function setup, but only a binary thresholding of empty
areas.

III. REFORMULATING VOLUME RENDERING USING A

RELEVANCE FUNCTION

The volume rendering technique we present in this section aims
at solving the visibility issues pertaining to volume rendering by
dynamically adapting the opacity of the fragment contributions at
a per pixel level. Our technique is based on the use of arelevance
functionquantifying the relative importance of each voxel in the
final rendering according to a given number of parameters. This
function is subsequently used to compute the voxel opacity,and
therefore removes the need for an opacity transfer functionsetup,
which can prove time-consuming for the user. Such a function
depends only on the data, and can be realized in various ways,
based on intrinsic signal properties like the scalar value,or the
local gradient. Let us now present our per pixel adaptive technique
in both contexts of DVR and additive volume rendering.
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A. Per-pixel adaptive DVR

Let C(x,y) represent the final pixel color at(x,y), s(i) the scalar
value of theith sample along a viewing ray cast from(x,y), c()
the color transfer function for scalars so thatc(s(i)) is the color
of the ith sample,τ() the opacity function so thatτ(s(i)) is the
opacity of theith sample, andL the length of the ray. The classical
direct volume rendering integral is then as follows:

C(x,y) =
∫ L

0
c(s(t))exp(−

∫ t

0
τ(s(u))du)dt (1)

It can be approximated by the following Riemann sum:

C̃(x,y) =
n−1

∑
i=0

c̃(s̃(i))τ̃(s̃(i))
i−1

∏
j=0

(1− τ̃(s̃( j))) (2)

Let us now define therelevanceof a contribution: we define
the relevance of a contribution as its importance relative to
other contributions. Figure 1 shows the simple case of a binary
relevancefunction whererelevantcontributions are samples that
fall within segmented parts of the datasets (shown in blue on
the figure). Letδ () be our classification function, so thatδ (i)

Fig. 1. Counting the relevant contributions (in bold) carried by a ray going
through a segmented dataset (in blue). Among the 22 samples, there are only
17 which are relevant.

is defined as greater than 0 when theith sample on the ray is
relevant, 0 otherwise. In order to keep all the structures that
project to a given pixel visible at the same time, we use the
same opacityτ̃0 for all the relevant contributions made to this
pixel timesδ (i), to account for a relevance weight:

C̃(x,y) =
n−1

∑
i=0

δ (i)c̃(s̃(i))τ̃0(1− τ̃0)
∑i−1

j=0 δ ( j)−1 (3)

In order to keep as many features as possible visible at once,we
want to computeτ̃0 that maximizes the opacity of the furthest
contribution over[0,1] on the screen. The total opacity for the
furthest contribution is then:

τ̃ f urthest(x,y) = τ̃0(1− τ̃0)
∑n−1

i=0 δ (i)−1 (4)

To maximize this function, we take its derivative and find its
zeroes:

dτ̃ f urthest(x,y)

dτ̃0
=

(

1−
n−1

∑
i=0

δ (i)τ̃0

)

(1− τ̃0)
(∑n−1

i=0 δ (i)−2) (5)

We are only interested in opacity values in]0,1[ since τ̃0 = 0
and τ̃0 = 1 respectively mean fully transparent and fully opaque:

(1−
n−1

∑
i=0

δ (i)τ̃0)(1− τ̃0)
(∑n−1

i=0 δ (i)−2) = 0 (6)

⇒ 1−
n−1

∑
i=0

δ (i)τ̃0 = 0⇒ τ̃0 =
1

∑n−1
i=0 δ (i)

(7)

In order to maximize visibility of the furthest contributions,
one should choose an opacityτ̃0 = 1

∑n−1
i=0 δ (i)

. We therefore end up

with the following rendering formula:

C̃(x,y) =
n−1

∑
i=0

c(s̃(i))
1

∑n−1
k=0 δ (k)

i−1

∏
j=0

(1−
1

∑n−1
k=0 δ (k)

) (8)

Note that there is no longer anyτ() opacity function in this
formula.

B. Per-pixel additive volume rendering

Let C(x,y), c(), δ () and τ() be defined as previously. The
additive blending volume rendering integral is as follows:

C(x,y) =
∫ L

0
c(s(t))τ(s(t))dt (9)

which can be approximated by a Riemann sum in the following
way:

C̃(x,y) =
n−1

∑
i=0

c(s̃(i))τ̃(s̃(i)) (10)

In order to avoid saturating colors at a given pixel in our adaptive
opacity technique, we want to average the values of therelevant
contributions gathered over a ray:

C̃(x,y) =
1

∑n−1
i=0 δ (i)

n−1

∑
i=0

c(s̃(i))δ (i) (11)

which can be rewritten as:

C̃(x,y) =
n−1

∑
i=0

c(s̃(i))δ (i)

∑n−1
j=0 δ ( j)

(12)

IV. RELEVANCE FUNCTIONS

In this section, we study the influence of the relevance func-
tion δ () on the final results, and we experiment with multiple
relevance functions using different parameters.

• The simplest choice forδ () consists in using a binary
function. That is,δ () is such thatδ (i) = 1 if the contribution
of the ith sample isrelevantand 0 otherwise according to the
segmentation depicted on figure 1. In practice, we simply
use a binary classification of the scalar value at each sample
s(i). This is a solution we have used in a previous paper
[MDM07].

• Another solution that we experimented with consists in
weighting the relevant contributions instead of considering
them as all being equal. A common assumption is to con-
sider regions of high variance, e.g. high gradient, as more
important than regions with low variance, e.g. low gradient. It
therefore makes sense to use the gradient value as a relevance
function. In this case, the relevance of a contribution is
defined asδ (i) = ‖∇s(i)‖.

• We have also tried to use a thresholding of gradient val-
ues, that is, the relevance function is defined asδ (i) =
{

1 i f ‖∇s(i)‖ > t

0 otherwise
wheret is a user-defined threshold.

• In a similar way to the first order gradient, we have con-
ducted experiments using the second order derivative or
Laplacian as a relevance criterion, that isδ (i) = ∆s(i) =
∇ ·∇s(i).
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• Feature boundaries are often considered important in
datasets. These can also be taken into account by our
relevance function by considering both the gradient and
second order derivative. Contributions have an increasing
gradient as they approach boundaries, while the Lapla-
cian crosses zero near a boundary. We have imple-
mented a simple boundary detection as follows:δ (i) =
{

1 i f ‖∇s(i)‖ > t1 and‖∆s(i)‖ < t2
0 otherwise

, where t1 and t2 are

user-defined thresholds.

Some of these techniques for choosing relevance functions are
fully automatic and require no user specific manipulation, some
others require minimal intervention like setting a threshold up
or defining a binary classification. We show various examplesof
these different functions in section 8.

V. M ETHOD ADJUSTMENTS

If the per-pixel volume rendering technique is used strictly as
described previously, it produces images that do not clearly depict
the object structures as shown in the second image of the top
row of Figure 2. In order to efficiently use this method, one has
to make some adjustments to it. The first of these adjustments
bounds the opacity values. In order to achieve visual continuity,
the second adjustment filters what we call therelevance map: the
sum of relevancevalues for each pixel. If the relevance function
δ (i) is binary, it represents a simple count of the number of
relevant contributions. Another adjustment is the addition of depth
cues through depth-based coloring and the last one consistsin
adding a local shading in order to improve the perception of
shapes. These last two adjustments produce pictures which have
some visual relationship with traditional volume rendering. We
now describe these adjustments in detail:

• When the opacity values are used as-is, our technique adjusts
even the lowest opacities to higher values, which gives false
visual clues. It occurs for instance when there are only few
relevantcontributions to a pixel, that is∑n−1

i=0 δ (s̃(i)) is small
and inverselyτ̃0 becomes high. We therefore decided to
add an upper bound̃τmax to τ̃0. This bound was determined
experimentally to be within the[0.1,0.2] range. The third and
fourth images of the top row of Figure 2 show̃τmax= 0.25
and τ̃max= 0.12, respectively.

• In order to avoid giving false information about the dataset,
spatial continuity should be ensured in screen space. How-
ever, when too few contributions are made to a single pixel,
it can result in discontinuities in the picture which look like
edges. To avoid this, we filter the relevance map using a
Gaussian blur. After rendering the relevance map, we run
it through a blurring filter that removes most of the high-
frequency data. The second pass is then done from that
same map. Thanks to that improvement, the noise from the
relevance map is successfully removed and internal structures
become clear as shown on the bottom left of Figure 2.
An alternate implementation of filtering is to render the
relevance map at a lower resolution during the first pass, and
stretch it using the card’s native bilinear filtering capabilities.
Using this functionality is faster, at the expense of less
accurate results as shown by the second and third images of
the bottom row of Figure 2 which show 2 times and 4 times
scaling, respectively. These pictures show that it is possible

to greatly improve the interactivity of our technique at the
expense of visual quality.

• In the case of additive volume rendering, the depth infor-
mation is lost since the blending method is commutative.
This means that two contributions, one on the back of the
dataset, and the other on the front, will have the same result
on screen. Therefore, it is primordial to restore the depth
information. In this purpose, we add depth-based coloring
of the fragment samples: as the samples get further from the
observer, we modulate their color proportionally to the depth
of the sample. This allows an increased depth perception in
the produced pictures as shown by the bottom right image
of Figure 2.

• In order to improve the perception of shapes it is also
important to add a local shading model, such as the Phong
one. This consists in replacing the colour ˜c(s̃(i)) with the
following formula:

c̃l = c̃(s̃(i))∗ (Ka +Kd ×
−→
L ·

−→
N +Ks× (

−→
R ·

−→
V )α)

where Ka,Kd and Ks are the Phong coefficients,α is the
specular exponent,

−→
L is the light vector, the normal

−→
N is

assimilated to the gradient of ˜s(i),
−→
V is the direction towards

the viewer and
−→
R the local reflection vector computed

according to the local gradient.

VI. PREINTEGRATION

Preintegration is an important feature for volume rendering.
It is possible to achieve preintegration in our context of per-
pixel additive volume rendering, provided the relevance function
depends on a single scalar parameter. In this section, we describe
how this can be done in the case of a relevance function depending
on the scalar value. Starting from the additive adaptive volume
rendering integral we have:

C(x,y) =

∫ L
0 c(s(t))δ (s(t))dt
∫ L

0 δ (s(t))dt
=

∑n−1
i=0 c̃(i)

∑n−1
i=0 δ̃ (i)

(13)

with

c̃(i) =
∫ L

n (i+1)

L
n i

c(s(t))δ (s(t))dt (14)

and

δ̃ (i) =
∫ L

n (i+1)

L
n i

δ (s(t))dt (15)

which can be approximated as follows by assuming a linear scalar
function s() over theith interval:

c̃(i) ≈
∫ L

n (i+1)

L
n i

c(s(i)(1− (t −
L
n

i))

+s(i +1)(t −
L
n

i))δ (s(i)(1− (t −
L
n

i))+s(i +1)(t −
L
n

i))dt

(16)

and

δ̃ (i) ≈
∫ L

n (i+1)

L
n i

δ (s(i)(1− (t −
L
n

i))+s(i +1)(t −
L
n

i))dt (17)

It is therefore possible to preintegrate the values of ˜c(i) andδ̃ (i) in
two separate tables and thus achieve preintegration in the context
of adaptive additive volume rendering. Figure 3 shows that doing
so greatly improves the quality of the pictures.
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Fig. 2. (a) Relevance map (representing the sum ofrelevantcontributions for each pixel), Pictures produced from: (b) naive implementation with̃τmax= 1
unfiltered (20.5 fps), (c)̃τmax = 0.25 unfiltered (20.5 fps), (d)̃τmax = 0.12 unfiltered (20.5 fps), (e)̃τmax = 0.12 Gaussian filtered (8.5 fps), (f)̃τmax = 0.12
bilinear with 2 times (24.5 fps) bilinear scaling, (g) 4 times (25.3 fps) bilinear scaling and (h) z-based coloring withτ̃max= 0.12 and Gaussian filtering (8.5
fps).

Note however that it is not convenient to preintegrate adaptive
direct volume rendering since the table would have 3 entries:
the two scalar values as with standard preintegration, and the
current opacity. This, in turn, would require a 3D texture to
store the preintegration table which implies a high video memory
usage. Preintegration of relevance functions using multiple scalar
parameters further increases the dimensionality requirement for
the tables. For example a table preintegrating a relevance function
that depends on both the gradient and the Laplacian would require
a 5 dimensions in the context of adaptive direct volume rendering.

Fig. 3. Our per-pixel modulated volume rendering technique without
preintegration (left) and with preintegration (right) using the same sampling
rate.

VII. I MPLEMENTATION

We have implemented per-pixel opacity modulation for volume
rendering on graphics hardware for voxel datasets. Our hardware
implementation is essentially a 2-pass raycasting-based approach
using 3D textures. It is depicted in figure 4 and works as follows:

• Initially, a criterion is chosen that allows discriminating
relevant voxels.

• In a first pass, the sum of therelevancevalues for each
screen pixel is computed using the previously chosen crite-
rion, thereby creating the relevance map. In order to sum the

relevance values at each pixel, this pass does a simple GPU-
based raycasting of the dataset into a frame buffer object.
As the accumulation is done within the fragment shader, full
accuracy is retained until the final storing phase.

• In a second pass, given the relevance map and the color
transfer function, the final rendering is produced. The frame
buffer object of therelevance mapis bound to a texture
and the dataset is rendered again as shown in Figure 5.
For each pixel, the fragment program first uses the fragment
coordinate information to retrieve the sum of the relevance
values. Then, a GPU-based raycasting is done through the
dataset. Again, full accuracy is retained throughout the
raycasting thanks to the use of internal floating point register
as accumulators.

VIII. R ESULTS

We have experimented per-pixel modulated volume rendering
with both DVR and additive volume rendering, using multiple
relevance functions. In all tests, the binary function usedis based
on the opacity function of the DVR rendering, and is 1 when
the opacity function is greater than zero, and 0 otherwise. All
thresholds have been set at 0.5.

Figure 6 shows pictures obtained using our technique with
different datasets. The first column uses the 256× 256× 128
bonsai dataset, the second and third ones use the 256×256×225
head dataset, and the fourth one the 128×128×128 bucky ball
dataset. Standard rendering is compared to our adaptive technique,
and multiple relevance functions are tested. For all these pictures,
a local lighting model was used, and a hand-tuned opacity
function was created for classical DVR and additive rendering.
As can be seen from these pictures, per-pixel modulated volume
rendering can significantly enhance details. In particular, borders
are made sharper when using a binary classification and DVR,
while the other features remain visible. The relevance functions



6

Fig. 4. Outline of our implementation.

allowing accurate border detection (namely the gradient value and
border detection functions), although simpler from an end user
point of view, allow visibility of most of the internal structures,
especially when combined with additive rendering. On the other
hand, the use of the second gradient alone is not sufficient to
correctly determine areas of interest inside the dataset, and leads
to missing most of the structures. This is exemplified by the
pictures from the bonsai dataset where not all leaves are visible,
or from the bucky ball dataset where this criterion fails to detect
most of the borders. In the case of additive volume rendering, per-
pixel modulated volume rendering also globally avoids saturating
pictures, but again keeps most details visible. This is shown on
the head dataset renderings, where the borders of the bones and
skin are more distinguishable than with the other approaches.
Notice that the bucky ball dataset is synthetic, and does notfeature
clear boundaries between the different densities. Nevertheless, our
technique is able to achieve good visibility of the internalstructure
of this dataset. One can also notice from figure 6 that our adaptive
method performs similarly or in some cases better than classical
volume rendering with a carefully hand-tuned opacity function,
while at the same time it requires less user intervention.

Figure 7 compares per-pixel modulated rendering with the
classical DVR technique using two opacity transfer functions and
different viewpoints, for the 379×229×305 knee dataset. DVR
is used with two opacity functions which are shown on top of
the figure: a naive opacity function (the opacity transfer function
is 0 everywhere except in the range[5,85] where it is 1) and
a hand-tuned opacity function that segments the skin and bones.
The per-pixel modulated technique uses the naive opacity function
as a binary classification. These pictures show that even though
it uses a naive transfer function, our technique is able to convey
most of the bone structure, similarly to what is obtained with a
hand-tuned transfer function and DVR. As can be seen on the left
column, DVR with a naive transfer function does not allow clearly
distinguishing the bone structure, whereas the adaptive approach
with this same naive function makes this structure visible,in a
way quite similar to the case of a hand-tuned transfer function.
Furthermore, figure 7 also shows that viewpoint changes do not

un i fo rm sampler2D t r a n s f e r _ f u n c t i o n ;
un i fo rm sampler2D re levance_map ;
un i fo rm sampler3D d a t a s e t ;
un i fo rm vec3 o b s e rv e r ;
un i fo rm vec3 s a m p l i n g _ d i s t a n c e ;
vo id main ( )
{

vec3 pos=gl_TexCoord [ 0 ] . xyz ;
f l o a t s c a l a r 1 ;
f l o a t s c a l a r 2 ;
vec4 r e s u l t = vec4 ( 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ) ;
vec3 p r o g r e s s i o n ;
vec3 s teps1 , s teps2 , s t e p s ;
vec4 f r a g _ c o l o r ;
vec4 da ta_samp le ;
i n t n r _ s t e p s ;
i n t i , j ;
f l o a t xc ;
f l o a t yc ;
f l o a t sum_re levance ;
f l o a t r e l e v a n c e ;

/ / compute t h e p r o g r e s s i o n v e c t o r i n s i d e t h e da ta
p r o g r e s s i o n . xyz=gl_TexCoord [ 1 ] . xyz−o b s e rv e r . xyz ;
p r o g r e s s i o n . xyz∗=( s a m p l i n g _ d i s t a n c e . xyz / l e n g t h ( p r o g r e s s i o n . xyz ) ) ;

/ / compute t h e number o f s t e p s i n s i d e t h e da ta
s t e p s 1 . xyz=abs ((1 .0− pos . xyz ) / p r o g r e s s i o n . xyz ) ;
s t e p s 2 . xyz=abs ( ( pos . xyz ) / p r o g r e s s i o n . xyz ) ;
i f ( p r o g r e s s i o n . x > 0 . 0 )

s t e p s . x= s t e p s 1 . x ;
e l s e

s t e p s . x= s t e p s 2 . x ;
i f ( p r o g r e s s i o n . y > 0 . 0 )

s t e p s . y= s t e p s 1 . y ;
e l s e

s t e p s . y= s t e p s 2 . y ;
i f ( p r o g r e s s i o n . z > 0 . 0 )

s t e p s . z= s t e p s 1 . z ;
e l s e

s t e p s . z= s t e p s 2 . z ;

n r _ s t e p s = i n t ( min ( s t e p s . x , min ( s t e p s . y , s t e p s . z ) ) ) ;

xc= g l_FragCoord . x∗%f ;
yc= g l_FragCoord . y∗%f ;
/ / l ook up t h e sum o f t h e r e l e v a n c e f u n c t i o n a t t h e c u r r e n t p i xe l
sum_re levance =( f l o a t ( t e x t u re 2 D ( re levance_map , vec2 ( xc , yc ) ) ;

da ta_samp le = t e x t u re 3 D ( d a t a s e t , pos . xyz ) ;
s c a l a r 2 = da ta_samp le . a ;
pos . xyz+= p r o g r e s s i o n . xyz ;

/ / r a y c a s t th rough t h e da ta
f o r ( j =0; j <256; j ++)
{
f o r ( i =0; i <256; i ++)
{

s c a l a r 1 = s c a l a r 2 ;
da ta_samp le = t e x t u re 3 D ( d a t a s e t , pos . xyz ) ;
s c a l a r 2 = da ta_samp le . a ;
f r a g _ c o l o r . rgba = t e x t u re 2 D ( t r a n s f e r _ f u n c t i o n , vec2 ( s ca l a r 2 , s c a l a r 1 ) ) ;
/ / f i n d t h e r e l e v a n c e number f o r t h i s f ragmen t
r e l e v a n c e = f r a g _ c o l o r . a ;
/ / modu la te t h e o p a c i t y o f t h e f ragmen t
f r a g _ c o l o r . rgba∗=r e l e v a n c e / sum_re levance ;

/ / accumu la te u s i n g a d d i t i v e b l e n d i n g
r e s u l t . rgba += f r a g _ c o l o r . rgba∗vec4 ( r e l e v a n c e∗s a m p l i n g _ d i s t a n c e ) ;

/ / s t e p i n t o t h e da ta
pos . xyz+= p r o g r e s s i o n . xyz ;

i f ( j ∗256+ i > n r _ s t e p s ) b reak ;
}
i f ( j ∗256+ i > n r _ s t e p s ) b reak ;
}

g l _ F ra g Co l o r . rgba = r e s u l t . rgba ;

}

Fig. 5. Shader code for the second pass of per-pixel modulatedadditive
volume rendering. A simple binary classification criterion isused.

impact visibility of features with our technique, as opposed to
DVR: for example the bones remain visible from all viewpoints.

Figure 2 shows the influence of applying a 3×3 Gaussian filter
on the relevance map: small features that look like edges because
of the adaptive opacity are successfully removed using thisfilter,
while the rest of the features is still visible. Table I showsthe
performance of our technique compared to the classical volume
rendering techniques. These measurements were conducted on a
Pentium D 3.4GHz machine with a GeForce 7950 GT graphics
card, and no preintegration was used. The classical DVR, additive
and all the adaptive methods were all realized using GPU-based
raycasting. Note that both DVR and additive volume rendering
lead to the same performance results, and changing the relevance
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function results in a measured performance variation of less than
10%. These measurements show that our technique impacts the
rendering interactivity only slightly, and maintain interactivity.
These results also demonstrate that replacing the filteringstage
by the combination of undersampling and bilinear filtering gives
a significant performance gain.

Classical Bilinear 2x Filter
Head 10.0 fps 7.4 fps 3.1 fps

Bonsai 15.8 fps 11.2 fps 4.6 fps
Bucky 23.2 fps 17.1 fps 7.0 fps
Knee 6.8 fps 5.2 fps 2.6 fps

TABLE I

PERFORMANCE OF THE CLASSICAL VS PER-PIXEL MODULATED VOLUME

RENDERING TECHNIQUES(NOT PREINTEGRATED).

IX. CONCLUSIONS

In the context of data exploration, non-photorealistic techniques
have shown that it is possible to increase the quality of the
visualization by showing more data features. In this paper,we
have introduced a new simple volume rendering technique that
manipulates the opacity values in a view-dependent fashionin
order to ensure maximal visibility of the internal data structures.
We have compared this technique to other widely used volume
rendering methods and hand-tuned transfer functions, and have
demonstrated its efficiency. Our technique results in better un-
derstanding of the objects features, and furthermore does not
require any complex opacity function setup. For some relevance
functions it does not require any user intervention, while others
require minimal user setup (either a binary classification or a
single threshold value). Our method also ensures good visibility of
the data features independently of the viewpoint, as opposed to the
classical DVR method. Moreover, since our technique has been
fully implemented on graphics hardware, we achieve interactive
performance, thereby making it efficient in the context of data
exploration, and allowing the user to use motion and interaction
in order to better understand the internal structures of thedataset.

However, we think a lot of extensions are possible. First, we
would like to extend the idea of per-pixel opacity to other volume
rendering algorithms, in particular when multiple techniques are
used at the same time (for example, DVR and isosurfaces). Sec-
ond, we would like to derive more complex opacity modification
functions, for example taking the depth position of the sample
into account. Finally, we would like to experiment combining
our technique with an automatic segmentation technique in order
to form a fully automatic volume exploration tool.

REFERENCES

[BGKG05] BRUCKNER S., GRIMM S., KANITSAR A., GRÖLLER M. E.:
Illustrative context-preserving volume rendering. InProceedings
of EuroVis(2005), pp. 69–76.

[CMH∗01] CSEBFALVI B., MROZ L., HAUSER H., KÖNIG A., GRÖLLER

M. E.: Fast visualization of object contours by non-photorealistic
volume rendering. InEurographics(2001), pp. 452–460.

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on Graphics hardware(2001), ACM Press, pp. 9–16.

[ER00] EBERT D., RHEINGANS P.: Volume illustration: non-
photorealistic rendering of volume models. InProceedings of
the IEEE Visualization conference(2000), pp. 195–202.

[FAT99] FUJISHIRO I., AZUMA T., TAKESHIMA Y.: Automating transfer
function design for comprehensible volume rendering based on
3d field topology analysis (case study). InVIS ’99: Proceedings
of the conference on Visualization ’99(Los Alamitos, CA, USA,
1999), IEEE Computer Society Press, pp. 467–470.

[FBT98] FANG S., BIDDLECOME T., TUCERYAN M.: Image-based trans-
fer function design for data exploration in volume visualization.
In VIS ’98: Proceedings of the conference on Visualization ’98
(Los Alamitos, CA, USA, 1998), IEEE Computer Society Press,
pp. 319–326.

[GTH05] GHOSH A., TRENTACOSTEM., HEIDRICH W.: Volume render-
ing for high dynamic range displays. InVolume Graphics(2005),
Kaufman A. E., Mueller K., Gröller E., Fellner D. W., Möller
T., Spencer S. N., (Eds.), Eurographics Association, pp. 91–98.

[GW92] GONZALEZ R. C., WOODS R. E.: Digital Image Processing.
Addison Wesley, 1992.

[HMBG00] HAUSER H., MROZ L., BISCHI G.-I., GRÖLLER E.: Two-level
volume rendering-fusing mip and dvr. InProceedings of the
IEEE Visualization conference(2000), pp. 242–252.

[KD98] K INDLMANN G. L., DURKIN J. W.: Semi-automatic generation
of transfer functions for direct volume rendering. InIEEE
Symposium On Volume Visualization(1998), pp. 79–86.

[KMM ∗01] KNISS J., MCCORMICK P., MCPHERSON A., AHRENS J.,
PAINTER J., KEAHEY A., HANSEN C.: Interactive texture-based
volume rendering for large data sets.IEEE Computer Graphics
and Applications 21, 4 (2001), 52–61.

[Kra05] KRAUS M.: Scale-invariant volume rendering. InProceedings
of the IEEE Visualization conference(2005), IEEE Computer
Society, pp. 295–302.

[MDM07] M ARCHESIN S., DISCHLER J.-M., MONGENETC.: Feature en-
hancement using locally adaptive volume rendering. InIEEE/EG
International Symposium on Volume Graphics(september 2007),
vol. to appear, IEEE/EG.

[ME04] MORA B., EBERT D. S.: Instant volumetric understanding with
order-independent volume rendering.Comput. Graph. Forum 23,
3 (2004), 489–498.

[ME05] MORA B., EBERT D. S.: Low-complexity maximum intensity
projection. ACM Trans. Graph. 24, 4 (2005), 1392–1416.

[MGK99] M ROZ L., GRÖLLER E., KÖNIG A.: Real-time maximum
intensity projection. InData Visualization. 1999, pp. 135–144.

[RBS05] ROETTGER S., BAUER M., STAMMINGER M.: Spatialized
transfer functions. InProceedings of EuroVis 2005(2005),
pp. 271–278.

[Sai94] SAITO T.: Real-time previewing for volume visualization. InVVS
’94: Proceedings of the 1994 symposium on Volume visualization
(1994), pp. 99–106.

[SRR04] SUN Y., RAJWA B., ROBINSONJ. P.: Adaptive image-processing
technique and effective visualization of confocal microscopy
images. InMicroscopy Research and Technique(2004), pp. 156–
163.

[SSN98] SATO Y., SHIRAGA N., NAKAJIMA S.: Local maximum intensity
projection (lmip): A new rendering method for vascular visual-
ization. Journal of Computer Assisted Tomography, Vol. 22, No.
6, November-December 1998(1998), 912–917.

[VKG04] V IOLA I., KANITSAR A., GRÖLLER M. E.: Importance-driven
volume rendering. InProceedings of the IEEE Visualization
conference(2004), pp. 139–145.

[VKG05] V IOLA I., KANITSAR A., GRÖLLER M. E.: Importance-driven
feature enhancement in volume visualization.IEEE Transactions
on Visualization and Computer Graphics 11, 4 (2005), 408–418.

[YNCP05] YUAN X., NGUYEN M. X., CHEN B., PORTER D. H.: High
dynamic range volume visualization. InProceedings of the con-
ference on Visualization 2005(2005), IEEE Computer Society,
pp. 327–334.



8
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Fig. 6. Comparison of the additive and adaptive volume rendering techniques using different relevance functions.
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DVR, naive transfer function DVR, user created transfer function Adaptive, naive transfer function

Fig. 7. Comparison of DVR (naive and hand-tuned transfer functions) with per-pixel modulated volume rendering (naive binary classification).


