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Abstract— Classical direct volume rendering techniques accu-
mulate color and opacity contributions using the standard volume
rendering equation approximated by alpha blending. However,
such standard rendering techniques, often also aiming at visual
realism, are not always adequate for efficient data exploration,
especially when large opaque areas are present in a dataset,
since such areas can occlude important features and make them
invisible. On the other hand, the use of highly transparent
transfer functions allows viewing all the features at once, but
often makes these features barely visible. In order to enhance
feature visibility, we present in this paper a straightforward ren-
dering technique that consists in modifying the traditional volume
rendering equation independently of any transfer function. Our
approach is fully automatic and based on a function quantifying
the relative importance of each voxel in the final rendering
called relevance function. This function is subsequently used to
dynamically adjust the opacity of the contributions per-pixel. As
will be shown by our comparative study with standard volume
rendering, this makes our rendering method much more suitable
for interactive data exploration at a low extra cost. Thereby, ou
method avoids feature visibility restrictions without relying on
a transfer function and yet maintains a visual similarity with

« Inthe case of direct volume rendering, opaque featurestmigh

occlude some other parts of the dataset for some or even,
in the worst case, for all viewing directions. This could
make feature visibility in the dataset highly view-depemide
Conversely, setting up a transfer function with insuffitien
opacity might result in unintelligible pictures. Consentig,
classical volume rendering techniques, especially based o
the traditional volume rendering equation, might become
impractical for efficient data exploration.

o In the case of the additive blending technique, the pro-

duced pictures are often under or over saturated. Since this
technique uses a simple additive blending equation, over
saturation of pictures can happen very quickly and with
only a very limited number of contributions. On the other
hand, setting a low opacity for these contributions canltesu
in under saturated pictures which do not convey enough
information to be useful and is furthermore highly deperiden
on the viewpoint.
In order to resolve the crucial issue of simultaneous Migjbi

of data features in a view-independent fashion, one cantréso
a volume rendering integral modification in the hope of awaid
a potentially incorrect transfer function setup. By doirg these
methods are trading visual realism for pictures providingetter

Traditional direct volume rendering techniques consisintie- understanding of the data. In particular, the advent of non-
grating opacity and color values along a viewing ray by usinghotorealistic techniques has allowed a new range of vizatain
a simple light transport model, called the volume renderingues to be added to the generated pictures, in particuldénen
equation, inspired by the physics of light traversing aipgrating context of volume exploration.
media (usua"y Only absorption is Considered, with no mmtg) Ina preViOUS paper, we introduced such a method, that dsnsis
Using this approach, direct volume rendering allows one {9 modifying the volume rendering integral to achieve bette
display multiple values contributing to one pixel, unliksoi visibility of the internal structures in datasets. It iswielependent
surface extraction methods, for which a single value isictemred. and dynamically adjusts the volume rendering integral peel,
Therefore, volume rendering is widely used for the intevact thereby improving the resulting pictures by conveying more
exploration of 3D datasets since it allows one to display afiataset features at once. In order to identify empty arebsaay
data "at once”. However, one major issue consists in definiassification of the data was required. In this paper, weneefi
a transfer function which associates opacity and coloreslio this principle by further introducing a function calleelevance
the data. Setting up this transfer function and in partictiee function that quantifies the relative importance of eachelax
opacity function is an intricate task, since it generallguiges the final rendering. We experiment with different suitabterma-
the expertise of the user and is deeply data dependent. tives for this function, such as USing the gradient and secoder

In order to address this issue, one can attempt to ease tee gefierivative. As the approach is still automatic, no comprexsfer
ation of transfer functions, and keep the classical voluergler- function setup is required. Unlike completely non-photalistic
ing equation. Numerous authors have attempted this [KBmy, volume rendering techniques, our approach remains vergeclo
[RBS05], [KD98]. This can be done either by hand, which id0 traditional volume rendering, thus providing picturdsse to
however, an excessively time-consuming and painstakioggss, usual visual realism. For example, we use a traditionalasesf
or automatically or semi-automatically, by introducingpesific Pased shading model. Yet it can be considered a non-photo
data analysis process. In either case, it cannot be excthdeéor  realistic method since it does not respect the actual palybght
some datasets wrong decisions could be made when building #nsport equation. We have implemented our technique en th

transfer function. This has implications for the commonwne GPU, and show that it can thereby reach interactive perfooma
rendering techniques: In the next section, we detail related works. In section 3, we

present our new volume rendering technique. We then stuely th
influence of differentelevance functions section 4. In section 5,

standard volume rendering.

|. INTRODUCTION
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we make some adjustments to improve visual quality. We discudata value, but also on the gradient magnitude. Roeteger
preintegration of our volume rendering equation in sectn al. [RBS05] automatically generate multi-dimensional transf
The implementation of our technique on the GPU is detailed fonctions and let the user choose among segmented part of th
section 7. We present results with various datasets and a@nmptransfer function to highlight matching object parts. Hoe®

our technique to other volume visualization methods inisad®. setting up a transfer function can be complex for users. dieoto

Finally, we give concluding remarks in section 9. avoid this transfer function setup phase, a number of tegles
have been developed. Kindlmaehal. [KD98] generate transfer
Il. RELATED WORK functions in a semi-automatic fashion. Fujishieo al. [FAT99]

In recent years, many non-photorealistic volume visutitzra analyze the topology of the data to create a suitable transfe

techniques have been proposed. These techniques tradmepir.IPnCtion' Fanget ?l' [FBT98] use an image-based selection tool
realism for greater data understanding. to ease the creation of transfer functions.

Saito et al. [Sai94] propose a first non-photorealistic volume [N the field of 2D imaging, the local histogram equalization
visualization technique. They achieve non-photorealisteview- technique [GW92] enhances the contrast of a picture by perfo
ing of volume fields using simple primitives such as points dRg histogram equalization in the neighbourhood of eaclelpix
lines. Ebertet al. [ER00] use non-photorealistic feature enhance- Even though locally adaptive techniques are widely used in
ment by modifying the color and transparency of the voxelghe image processing field, such techniques have been sety
Viola et al. [VKGO04], [VKGO05] introduce a technique called for visualization. Among all the techniques discussed abuery
importance-driven volume rendering. This technique uses pfew take advantage of view-dependent rendering to incréase
defined priorities between structures in the dataset and themount of information in the picture. Those that do so usuall
renders accordingly: low priority structures can be ocelliby require the user to go through a complex data segmentation
higher priority ones, while high priority structures camnioe and/or transfer function setup phase. Since this setup @a/-vi
occluded by lower priority ones. However, this requigegriori  independent, it does not adapt to the current viewing caordit
knowledge of the dataset in order to segment and prioritige tin order to maximize visibility of internal structures. Foer-
object features. Bruckneet al. [BGKGO05] propose a model more, the complexity of the preprocessing phase usuallyesiak
for preserving contextual information while prioritizinglevant volume rendering unsuitable as a data exploration tool.hia t
information according to real-time adjustable paramet&rsus paper, our purpose is to move that complex phase further in
[Kra05] introduces scale-invariant volume rendering. sTtech- the visualization pipeline by dynamically and locally astjng
nique integrates the data in data space instead of doing sothie rendering at runtime. We also aim at dataset exploration
physical space, and thereby achieves scale invarianceofome and thus our algorithm should not require any complex setup,
visualization. By its design, this technique leads to theesaolor and should be able to achieve interactive rendering. Binal
and opacity for structures bearing the same density bueréifft opposed to Kraus [Kra05], we want to be able to distinguish ob
thicknesses. Satet al. [SSN98] modify the maximum intensity jects with different thicknesses and therefore thin olgjesttould
projection scheme by selecting the first value above a thidshnot appear similarly to thick ones. Therefore, we introduce
on a given ray instead of the maximum value over the whole rayew approach which is halfway between classical photastaal
Hauseret al. [HMBGO0O0] mix two well-known volume visualiza- volume visualization techniques and non-photorealisttume
tion techniques, namely direct volume rendering and marimuvisualization techniques. It locally adjusts the opacigfues of
intensity projection, into a joint method. The dataset istfir the contributions, and thereby manages to keep a greatelerum
segmented into two classes, and those classes are theme@ndef features visible at the same time. Since opacity values ar
using either one or the other technique. Csébfahdl.[CMH*01] computed on the fly, our method does not need any opacity
present a visualization technique which uses a gradieseéeba transfer function setup, but only a binary thresholding wipgy
voxel selection, and only renders the relevant voxels. Téssllts areas.
in efficient visualization of contours in the dataset. Metaal.
[MEO4] explore order independent volume rendering and rexte
existing maximum intensity projection (MIP) [MGK99], [MBD
and X-ray techniques. Stwet al. [SRR04] propose to reduce noise
in confocal microscopy pictures using an adaptive techaiqu

In order to improve the quality of numerical integration,geh
et al. [EKEO1] propose a technique called preintegration. This The volume rendering technique we present in this sectims ai
technique increases the visual quality of volume rendebiyg at solving the visibility issues pertaining to volume reridg by
pre-computing slabs of the volume rendering integral. dynamically adapting the opacity of the fragment contiidmg at

In the field of high dynamic range (HDR) volume visualizationa per pixel level. Our technique is based on the userefevance
Ghoshet al. [GTHO5] have developed a technique to achieviinctionquantifying the relative importance of each voxel in the
volume rendering on high dynamic range displays. Yearal. final rendering according to a given number of parameterss Th
[YNCPO5] visualize high dynamic range datasets on a stahddunction is subsequently used to compute the voxel opaaity,
display system using two passes: first the data is rendetedain therefore removes the need for an opacity transfer funceiop,
high dynamic range buffer, and then the resulting image & towhich can prove time-consuming for the user. Such a function
mapped into an image suitable for display. depends only on the data, and can be realized in various ways,

Work has also been undertaken in order to improve the ubased on intrinsic signal properties like the scalar vaarethe
of transfer functions. Knis®t al. [KMM *01] introduce multi- local gradient. Let us now present our per pixel adaptivarepie
dimensional transfer functions, which depend not only oa thn both contexts of DVR and additive volume rendering.

Ill. REFORMULATING VOLUME RENDERING USING A
RELEVANCE FUNCTION



A. Per-pixel adaptive DVR In order to maximize visibility of the furthest contributis,

__ 1
LetC(x,y) represent the final pixel color ,y), (i) the scalar "¢ should chgose an opacﬁ(y— 7155 We therefore end up
value of theit" sample along a viewing ray cast from,y), ¢() With the following rendering formula:
the color transfer function for scalarso thatc(s(i)) is the color

of the ith sample,7() the opacity function so that(s(i)) is the Elxv) — nflc & 1= 1 8
=2 S o [ ssag) @

opacity of the!" sample, and. the length of the ray. The classical i

direct volume rendering integral is then as follows: . . o .
Note that there is no longer arg() opacity function in this

L t
C(x,y):/ c(s(t))exp(—/ 7(s(u))du)dt (1) formula.
0 0
It can be approximated by the following Riemann sum: B. Per-pixel additive volume rendering
e S a5 E(s)) [ 78 Let C(x,y), ), &() and 7() be defined as previously. The
oy = iZD CEMTED) JE!)(li 1(80)) @ additive blending volume rendering integral is as follows:
Let us now define theelevanceof a contribution: we define Cix,y) :/LC(s(t))r(s(t))dt ©)
0

the relevanceof a contribution as its importance relative to
other contributions. Figure 1 shows the simple case of arpinavhich can be approximated by a Riemann sum in the following
relevancefunction whererelevantcontributions are samples thatway:

fall within segmented parts of the datasets (shown in blue on ~ -1
the figure). Letd() be our classification function, so thai(i) Cxy) = i;C(S('))T(S(')) (10)
L In order to avoid saturating colors at a given pixel in ourtde

opacity technique, we want to average the values ofrétevant
contributions gathered over a ray:

< CY) = s Zi o())3(1) (1)
Yo 0(i) &
which can be rewritten as:
Fig. 1. Counting the relevant contributions (in bold) cedriby a ray going & _ L e(&i))a(i) 12
through a segmented dataset (in blue). Among the 22 samples,areonly (xy) = % n—1 5(j) (12)
17 which are relevant. =0 2j—00(
is defined as greater than 0 when tff& sample on the ray is IV. RELEVANCE FUNCTIONS

relevant 0 otherwise. In order to keep all the structures that In this section, we study the influence of the relevance func-

project to a given pixel visible at the same time, we use thgy, 5() on the final results, and we experiment with multiple
same opacityTp for all the relevant contributions made to this .ojeyance functions using different parameters.

pixel times (i), to account for a relevance weight: « The simplest choice fod() consists in using a binary

~ -1 . - s a(j)-1 function. That is,0() is such thad (i) = 1 if the contribution
Clxy) = % O(1)&(8(i))To(1 — To)*1=° @) of theit" sample iselevantand 0 otherwise according to the
= segmentation depicted on figure 1. In practice, we simply
In order to keep as many features as possible visible at ovee, use a binary classification of the scalar value at each sample

want to computelp that maximizes the opacity of the furthest (i), This is a solution we have used in a previous paper
contribution over[0,1] on the screen. The total opacity for the  [MDM07].

furthest contribution is then: « Another solution that we experimented with consists in
Fruthest % Y) = To(1— fo)z{‘;gaa)_l 4 ;/;/]eighting the r_elevant contributions instead o_f co_nsiw@ri
em as all being equal. A common assumption is to con-
To maximize this function, we take its derivative and find its  sider regions of high variance, e.g. high gradient, as more
zeroes: important than regions with low variance, e.g. low gradiént
therefore makes sense to use the gradient value as a retevanc

dTturthest(X, Y) _

n—-1
i (1_ Z;a(i)fo) (1_fo)(z=1;016(i)*2) (5) function. In this case, the relevance of a contribution is
To i&

defined asd(i) = ||Os(i)]|.
« We have also tried to use a thresholding of gradient val-
ues, that is, the relevance function is defined &g =
1 if||Os(i)|| >t

nt n-1 s 0 th .
(1- zo 3(i)To) (1 —Tp) 20 90)-2 = o (6) otherwise
i=l
1

We are only interested in opacity values]Mm1[ sincefp =0
and 7o = 1 respectively mean fully transparent and fully opaque:

wheret is a user-defined threshold.

- In a similar way to the first order gradient, we have con-
ducted experiments using the second order derivative or
o ix ~ 1 Laplacian as a relevance criterion, thatdgi) = As(i) =
=1-5 6()To=0=To= —F—— 7 plac '
iZO V1o 07 50 T50) % 0-0s(i).



o Feature boundaries are often considered important in

to greatly improve the interactivity of our technique at the

datasets. These can also be taken into account by our expense of visual quality.
relevance function by considering both the gradient and. In the case of additive volume rendering, the depth infor-

second order derivative. Contributions have an increasing
gradient as they approach boundaries, while the Lapla-
cian crosses zero near a boundary. We have imple-
mented a simple boundary detection as follovdgi) =
1 if||Os(i)|| >t and || As(i)|| < t2
0 otherwise
user-defined thresholds.

Some of these techniques for choosing relevance functimns a

, Wheret; andt, are

mation is lost since the blending method is commutative.
This means that two contributions, one on the back of the
dataset, and the other on the front, will have the same result
on screen. Therefore, it is primordial to restore the depth
information. In this purpose, we add depth-based coloring
of the fragment samples: as the samples get further from the
observer, we modulate their color proportionally to thettiep

of the sample. This allows an increased depth perception in
the produced pictures as shown by the bottom right image

fully automatic and require no user specific manipulaticome
others require minimal intervention like setting a thrdshap
or defining a binary classification. We show various examples
these different functions in section 8.

of Figure 2.

« In order to improve the perception of shapes it is also
important to add a local shading model, such as the Phong
one. This consists in replacing the coloe(§(T)) with the
following formula:

V. METHOD ADJUSTMENTS N N
G =C(8(i)* (Ka+Kgx L-N+Ksx (R-V)9)

If the per-pixel volume rendering technique is used striet
described previously, it produces images that do not gleepict
the object structures as shown in the second image of the top
row of Figure 2. In order to efficiently use this method, ons ha
to make some adjustments to it. The first of these adjustments
bounds the opacity values. In order to achieve visual caityin
the second adjustment filters what we call theevance mapthe
sum ofrelevancevalues for each pixel. If the relevance function VI
o(i) is binary, it represents a simple count of the number of ) o ) )
relevant contributions. Another adjustment is the additbdeptn ~ Preintegration is an important feature for volume rendgrin
cues through depth-based coloring and the last one corisistdt IS Possible to achieve preintegration in our context of-pe
adding a local shading in order to improve the perception §i*€l additive volume rendering, provided the relevancection
shapes. These last two adjustments produce pictures whigh ndepends on a single scalar parameter. In this section, vweildes

some visual relationship with traditional volume rendgriiwe NOW this can be done in the case of a relevance function dépend
now describe these adjustments in detail: on the scalar value. Starting from the additive adaptiveun

where Kg,Kg and Kiare the Phong coefficientsy is_)the
specular exponentL is the IighLvector, the normaN is
assimilated to the_)gradient ofi), V is the direction towards
the viewer and R the local reflection vector computed
according to the local gradient.

. PREINTEGRATION

even the lowest opacities to higher values, which givesfals
visual clues. It occurs for instance when there are only few
relevantcontributions to a pixel, that 5! &(§(i)) is small

and inverselyT, becomes high. We therefore decided tdvith

add an upper bouniiyax to Tp. This bound was determined
experimentally to be within thf9.1,0.2] range. The third and

fourth images of the top row of Figure 2 shdimax=0.25 gng

and Tmax= 0.12, respectively.
« In order to avoid giving false information about the dataset

« When the opacity values are used as-is, our technique adjuréatnderlng integral we have:

_ Joc(s)3(st)dt _ 75 E()

oY= e srdsn
. Li+1)
&)= [ ols(t)a(sit)a a4
~ L(i+2)
Si)= [ alsitdt (15)

n

spatial continuity should be ensured in screen space. How-

ever, when too few contributions are made to a single pixé@{hich can be approximated as follows by assuming a linedaisca

: th .
it can result in discontinuities in the picture which lookei Unctions() over thei™ interval:

edges. To avoid this, we filter the relevance map using a ¥ Livy L
Gaussian blur. After rendering the relevance map, we run €(i) %/Li e(s(i)(1—(t— i)
it through a blurring filter that removes most of the high- n

frequency data. The second pass is then done from that+s(i+1)(t—Ei))é(s(i)(l—(t—Ei))+s(i+1)(tfki))dt
same map. Thanks to that improvement, the noise from the n n n (16)
relevance map is successfully removed and internal stregtu

become clear as shown on the bottom left of Figure 2nd

An alternate implementation of filtering is to render the .
relevance map at a lower resolution during the first pass, ando(i) = L
stretch it using the card’s native bilinear filtering capiiess. " .
Using this functionality is faster, at the expense of ledsis therefore possible to preintegrate the values(ofandd(i) in
accurate results as shown by the second and third imagedwd separate tables and thus achieve preintegration indhiext
the bottom row of Figure 2 which show 2 times and 4 timesf adaptive additive volume rendering. Figure 3 shows tluangl
scaling, respectively. These pictures show that it is fdesi so greatly improves the quality of the pictures.

R+ L. . L.
B(s()(1~(t— ) +si+ 1)t~ _D)dt (17)



Fig. 2. (a) Relevance map (representing the sumetdvantcontributions for each pixel), Pictures produced from: (Bjve implementation wittmax= 1
unfiltered (20.5 fps), (C¥max= 0.25 unfiltered (20.5 fps), (dfmax= 0.12 unfiltered (20.5 fps), (€Jmax= 0.12 Gaussian filtered (8.5 fps), (fnax= 0.12
bilinear with 2 times (24.5 fps) bilinear scaling, (g) 4 tim&53 fps) bilinear scaling and (h) z-based coloring wiithx= 0.12 and Gaussian filtering (8.5

fps).

relevance values at each pixel, this pass does a simple GPU-
based raycasting of the dataset into a frame buffer object.
As the accumulation is done within the fragment shader, full
accuracy is retained until the final storing phase.

Note however that it is not convenient to preintegrate adept
direct volume rendering since the table would have 3 entries
the two scalar values as with standard preintegration, &ed t
current opacity. This, in turn, would require a 3D texture to

store the preintegration table which implies a high videormogy
usage. Preintegration of relevance functions using malspalar
parameters further increases the dimensionality requrenfor
the tables. For example a table preintegrating a relevamuetibn
that depends on both the gradient and the Laplacian wouldreeq
a 5 dimensions in the context of adaptive direct volume rende

In a second passgiven the relevance map and the color
transfer function, the final rendering is produced. The fsam
buffer object of therelevance maps bound to a texture
and the dataset is rendered again as shown in Figure 5.
For each pixel, the fragment program first uses the fragment
coordinate information to retrieve the sum of the relevance

values. Then, a GPU-based raycasting is done through the
dataset. Again, full accuracy is retained throughout the
raycasting thanks to the use of internal floating point tegis

as accumulators.

VIll. RESULTS

We have experimented per-pixel modulated volume rendering
with both DVR and additive volume rendering, using multiple
relevance functions. In all tests, the binary function useldased
Fig. 3. Our per-pixel modulated volume rendering techniqueheit on the Opac'ty fu_nCtl_on of the DVR rendering, and is 1_ when
preintegration (left) and with preintegration (right) ngithe same sampling the opacity function is greater than zero, and O otherwisé. A
rate. thresholds have been set ab0

Figure 6 shows pictures obtained using our technique with
different datasets. The first column uses the R5E6x 128
VII. I MPLEMENTATION bonsai dataset, the second and third ones use the 256x 225

We have implemented per-pixel opacity modulation for votumhead dataset, and the fourth one the ¥228x 128 bucky ball
rendering on graphics hardware for voxel datasets. Ourviee dataset. Standard rendering is compared to our adaptikaite,
implementation is essentially a 2-pass raycasting-bapptbach and multiple relevance functions are tested. For all théstenes,
using 3D textures. It is depicted in figure 4 and works as fedlo 3 |ocal lighting model was used, and a hand-tuned opacity

« Initially, a criterion is chosen that allows discriminagin function was created for classical DVR and additive remdgri

relevant voxels. As can be seen from these pictures, per-pixel modulatednelu

« In afirst pass the sum of therelevancevalues for each rendering can significantly enhance details. In particldarders

screen pixel is computed using the previously chosen critare made sharper when using a binary classification and DVR,
rion, thereby creating the relevance map. In order to sum thdile the other features remain visible. The relevance tions




Volume data : .
uniform sampler2D transfer_function;
uniform sampler2D relevance_map;
uniform sampler3D dataset;
uniform vec3 observer;
uniform vec3 sampling_distance;
void main ()

{
Relevance vec3 pos=gl_TexCoord[0].xyz;
. float scalarl;
funCt|on float scalar2;
vec4 result = vec4(0.0, 0.0, 0.0, 1.0);
vec3 progression;
vec3 stepsl, steps2,steps;
. vec4 frag_color;
Color transfer function vecs data_sample;
int nr_steps;
I | Relevance map int i.]:
float xc;
float yc;

float sum_relevance;
RGB Va|ueS float relevance;
I/l compute the progression vector inside the data
progression.xyz=gl_TexCoord [1].xymbserver.xyz;
progression.xyz=(sampling_distance.xyz/length(progression.xyz));

Final rendering

/Il compute the number of steps inside the data
stepsl.xyz=abs((1.8pos.xyz)/progression.xyz);
steps2.xyz=abs ((pos.xyz)/progression.xyz);

if (progression.x>0.0)

Opacity computation e e
else
. steps.x:s‘!epsz X5
Opacity values e

else
. . . . steps.y=steps2.y;
Fig. 4. Outline of our implementation. if (progression.z>0.0)

steps.z=stepsl.z;
else
steps.z=steps2.z;

nr_steps=int(min(steps.x,min(steps.y,steps.z)));

allowing accurate border detection (namely the gradiehtevand
border detection functions), although simpler from an esdru| ool Fraccoord .
point of view, allow visibility of most of the INternal SIS, | L ok a s o (s e e o e Gaypent #1
especially when combined with additive rendering. On tHBeDt| ... cample-texturesn (dataset, pos.xyz):
. .  ~ lar2=d le.a;

hand, the use qf the seconq grad|ent glone is not sufficien| s e e
correctly determine areas of interest inside the datasetleads | |,

X d ) K - yc;st thr(_)ugh the data
to missing most of the structures. This is exemplified by t GO S

pictures from the bonsai dataset where not all leaves aiblejs for(120ii <2881+

or from the bucky ball dataset where this criterion fails &tett scalarl=scalar2;
L. . data_sample=texture3D (dataset, pos.xyz);
most of the borders. In the case of additive volume rendepeg scalar2=data_sample.a; _
. . . frag_color.rgha=texture2D (transfer_function , vec2@dar2 ,scalarl));
pixel modulated volume rendering also globally avoids seing /I find the relevance number for this fragment
. . . .. . . relevance=frag_color.a;
pictures, but again keeps most details visible. This is show /I modulate the opacity of the fragment
. f lor.rgba=rel / I 3
the head dataset renderings, where the borders of the bouesg e-eenn TR TIEersnee T eevanee
skin are more distinguishable than with the other approgch R LR Ll L0 L LN D
Notice that the bucky ball dataset is synthetic, and doeeabtire 0 sep I e dme
clear boundaries between the different densities. Negks$ls, our i R e
technique is able to achieve good visibility of the interstalicture R e

of this dataset. One can also notice from figure 6 that ourtadap Ef (1 x256+i>nr_steps) break;

method performs similarly or in some cases better than icialss

volume rendering with a carefully hand-tuned opacity fimrct

while at the same time it requires less user intervention.
Flg.ure 7 compargs per-.plxel mOdUIated rendering \,Nlth tl’v—?ig. 5. Shader code for the second pass of per-pixel moduladeitive

classical DVR technique using two opacity transfer funwi@and yolume rendering. A simple binary classification criterioruised.

different viewpoints, for the 379 229x 305 knee dataset. DVR

is used with two opacity functions which are shown on top of

the figure: a naive opacity function (the opacity transfercion impact visibility of features with our technique, as oppbge

is 0 everywhere except in the rand® 85 where it is 1) and DVR: for example the bones remain visible from all viewpsint

a hand-tuned opacity function that segments the skin anédon Figure 2 shows the influence of applying & 3 Gaussian filter

The per-pixel modulated technique uses the naive opaaitstion  on the relevance map: small features that look like edgeausec

as a binary classification. These pictures show that evemgtho of the adaptive opacity are successfully removed usingfiltés,

it uses a naive transfer function, our technique is able tovep while the rest of the features is still visible. Table | shothe

most of the bone structure, similarly to what is obtainedhwat performance of our technique compared to the classicalnvelu

hand-tuned transfer function and DVR. As can be seen on the leendering techniques. These measurements were conduttad o

column, DVR with a naive transfer function does not allonaclg Pentium D 3.4GHz machine with a GeForce 7950 GT graphics

distinguishing the bone structure, whereas the adaptipeoagh card, and no preintegration was used. The classical DVRtieeld

with this same naive function makes this structure visiltbea and all the adaptive methods were all realized using GPé¢bas

way quite similar to the case of a hand-tuned transfer foncti raycasting. Note that both DVR and additive volume rendgrin

Furthermore, figure 7 also shows that viewpoint changes do nead to the same performance results, and changing thearelev

gl_FragColor.rgbha=result.rgba;

}




function results in a measured performance variation of tkan [FAT99]
10%. These measurements show that our technique impacts the
rendering interactivity only slightly, and maintain inéetivity.

These results also demonstrate that replacing the filtestage

by the combination of undersampling and bilinear filteringeg [FBT98]
a significant performance gain.
[ [ Classical[ Bilinear 2x [ Filter ]
Head 10.0 fps 7.4 fps 3.1 fps [GTHO5]
Bonsai || 15.8 fps 11.2 fps | 4.6 fps
Bucky || 23.2 fps 17.1fps | 7.0 fps
Knee 6.8 fps 5.2 fps 2.6 fps (GW92]
TABLE |
PERFORMANCE OF THE CLASSICAL VS PERPIXEL MODULATED VOLUME [HMBGOO]
RENDERING TECHNIQUES(NOT PREINTEGRATEE).
[KD98]
[KMM *01]

IX. CONCLUSIONS

In the context of data exploration, non-photorealistititéques
have shown that it is possible to increase the quality of ﬂfﬁraOS]
visualization by showing more data features. In this paper,
have introduced a new simple volume rendering technique tha
manipulates the opacity values in a view-dependent fashion [MDMO7]
order to ensure maximal visibility of the internal data stwures.

We have compared this technique to other widely used volume
rendering methods and hand-tuned transfer functions, @vé h[MEO04]
demonstrated its efficiency. Our technique results in batte
derstanding of the objects features, and furthermore dags fMEOoS)
require any complex opacity function setup. For some relega
functions it does not require any user intervention, whilkeos
require minimal user setup (either a binary classificationao
single threshold value). Our method also ensures goodilitigiof
the data features independently of the viewpoint, as ogptusthe
classical DVR method. Moreover, since our technique has bel@ai%4l
fully implemented on graphics hardware, we achieve intarac
performance, thereby making it efficient in the context ofada[srRR04]
exploration, and allowing the user to use motion and intevac

in order to better understand the internal structures ofititaset.

However, we think a lot of extensions are possible. First, wesnog;
would like to extend the idea of per-pixel opacity to othelwne
rendering algorithms, in particular when multiple techrég are
used at the same time (for example, DVR and isosurfaces). SR&GOM
ond, we would like to derive more complex opacity modificatio
functions, for example taking the depth position of the si@mp
into account. Finally, we would like to experiment combigin [VKGO3]
our technique with an automatic segmentation techniquedero
to form a fully automatic volume exploration tool.

IMGK99]

[RBS05]

[YNCPO5]
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Fig. 6. Comparison of the additive and adaptive volume rendetéchniques using different relevance functions.
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Fig. 7. Comparison of DVR (naive and hand-tuned transfertfans) with per-pixel modulated volume rendering (naive bjnelassification).



