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Abstract—MLI is an Application Programming Interface
designed to address the challenges of building Machine Learn-
ing algorithms in a distributed setting based on data-centric
computing. Its primary goal is to simplify the development of
high-performance, scalable, distributed algorithms. Our initial
results show that, relative to existing systems, this interface can
be used to build distributed implementations of a wide variety of
common Machine Learning algorithms with minimal complexity
and highly competitive performance and scalability.

I. INTRODUCTION

The recent success stories of machine learning (ML) driven
applications have created an increasing demand for scalable
ML solutions. Nonetheless, ML researchers often prefer to
code their solutions in statistical computing languages such
as MATLAB or R, as these languages allow them to code in
fewer lines using syntax that resembles high-level pseudocode.
MATLAB and R allow researchers to avoid low-level imple-
mentation details, leading to quickly developed prototypes that
are often sufficient for small scale exploration. However, these
prototypes are typically ad-hoc, non-robust, and non-scalable
implementations. In contrast, industrial implementations of
these solutions often require a relatively heavy amount of de-
velopment effort and are difficult to change once implemented.

This disconnect between these ad-hoc scripts and the grow-
ing need for scalable ML, in particular systems that leverage
the increasingly pervasive cloud computing architecture, has
spurred the development of several distributed systems for
ML. Initial attempts at such systems exposed a restricted set
of low-level primitives for development, e.g., MapReduce [1]
or graph-based [2, 3] interfaces. The resulting systems are
indeed significantly faster and more scalable than MATLAB
or R scripts. They also tend to be much less accessible to ML
researchers, as ML algorithms do not always naturally fit into
the exposed low-level primitives, and moreover, efficient use
of these primitives requires a fairly advanced knowledge of the
underlying distributed system.

Subsequent attempts at distributed systems have exposed
high-level interfaces that compile down to low-level primitives.
These systems abstract away much of the communication
and parallelization complexity inherent in distributed ML
implementations. Although these systems can in theory obtain
excellent performance, they are quite difficult to implement in
practice, as they either heavily rely on optimizers to effectively
transform high-level code into efficient distributed implemen-
tations [4, 5], or utilize pattern matching techniques to identify
regions that can be replaced by low-level implementations [6].
The need for fast ML algorithms has also led to the develop-
ment of highly specialized systems for ML using a restricted
set of algorithms [7, 8], with varying degrees of scalability.

Given the accessibility issues of low-level systems and
the implementation issues of the high-level systems, ML re-
searchers have yet to widely adopt any of the existing systems.
Indeed, ML researchers, both in academic and industrial envi-
ronments, often rely on system programmers to translate the
prototypes of their novel, and often subtle, algorithmic insights
into scalable and robust implementations. Unfortunately, there
is often a ‘loss in translation’ during this process; small
misinterpretation and/or minor errors are unavoidable and can
significantly impact the quality of the algorithm. Furthermore,
due to the randomized nature of many ML algorithms, it is
not always straightforward to construct appropriate test-cases
and discover these bugs.
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Fig. 1: Landscape of existing development platforms for ML.

In this paper, we present a novel API for ML, called
MLI,1 to bridge this gap between prototypes and industry-
grade ML software. We provide abstractions that simplify ML
development in comparison to pure MapReduce and graph-
based primitives, while nonetheless allowing developers con-
trol of the communication and parallelization patterns of their
algorithms, thus obviating the need for a complex optimizer.
With MLI, we aim to be in the top right corner of Figure 1,
by providing a development environment that is nearly on
par with the usability of MATLAB or R, while matching
the scalability of and approaching the walltime of low-level
distributed systems. We make the following contributions in
this work:

MLI: We show how MLI-supported high-level ML abstrac-
tions naturally target common ML problems related to data
loading, feature extraction, model training and testing.

Usability: We demonstrate that implementing ML algorithms
written against MLI yields concise, readable code, comparable

1MLI is a component of MLBASE [9, 10], a system that aims to provide
user-friendly distributed ML functionality for ML experts and end users.
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to MATLAB or R.

Scalability: We implement MLI on Spark [11], a cluster
computing system designed for iterative computation in a
large scale distributed setting. Our results with logistic re-
gression and matrix factorization illustrate that MLI/Spark
vastly outperforms Mahout and matches the scaling properties
of specialized, low-level systems (Vowpal Wabbit, GraphLab),
with performance within a small constant factor.

II. RELATED WORK

The widespread application of ML techniques has inspired
the development of new ML platforms with focuses ranging
from productivity to scalability. In this section we review a few
of the representative projects. It is worth nothing that in many
cases MLI is inspired and guided by these earlier efforts.

Systems like MATLAB and R pioneered high-productivity
numerical computing. By combining high-level languages tai-
lored to application domains with intuitive interfaces and
interactive interpreted execution, these systems have redefined
the way scientists and statisticians interact with data. From the
database community, projects like MADLib [12] and Hazy [13]
have tried to expose ML algorithms in the context of well
established systems. Alternatively, projects like Weka [14],
scikit-learn [15] and Google Predict [16] have sought to expose
a library of ML tools in an intuitive interface. However, none
of these systems focus on the challenges of scaling ML to the
emerging distributed data setting.

High productivity tools have struggled to keep up with
the growing computational, bandwidth, and storage demands
of modern large-scale ML. Although both MATLAB and R
now provide limited support for multi-core and distributed
scaling, they adopt the traditional process centric approach
and are not well suited for large-scale distributed data-centric
workloads [17, 18]. In the R community, efforts have been
made to run R on data-centric runtimes like Hadoop [19], but
to our knowledge none have obtained widespread adoption.

Early efforts to develop more scalable tools and APIs
for ML focused on specific applications. Systems like li-
blinear [20], Vowpal Wabbit [8], and Shogun [7] initially
focused on linear models, online learning, and kernel methods,
respectively. Others, like MLPack [21], started to develop en-
tire collections of learning algorithms optimized for multicore
architectures. These efforts lead to highly efficient systems for
specialized tasks, but do not directly simplify the design and
implementation of new scalable ML methods, and most are
not well-suited to distributed learning.

Various methods have leveraged MapReduce platforms like
Hadoop to develop distributed ML libraries. Mahout [1] does
not simplify the design and development of new ML methods,
and its reliance on HDFS to store and communicate inter-
mediate state makes it poorly suited for iterative algorithms.
SystemML [4] introduces a low-level algebra which it then
compiles to MapReduce jobs. This algebra exposes the op-
portunity for advanced optimization, but also complicates the
system, and SystemML also suffers from Hadoop’s limitations
on iterative computation.

Others have sought to generalize the MapReduce com-
putational model. Systems like DryadLinq [22] and Hyracks

[23] can efficiently execute complex distributed data-flow
operations and express full relational algebras. However, these
systems expose low-level APIs and require the ML expert
to recast their algorithms as dataflow operators. In contrast,
GraphLab [3] is well suited to certain types of ML tasks, its
low-level API and focus on graphs makes it challenging to
apply to more traditional ML problems. Alternatively, OptiML
[6] and SEJITS [24] provide higher level embedded DSLs
capable of expressing both graph and matrix operations and
compiling those operations down to hardware accelerated
routines. Both rely on pattern matching to find regions of code
which can be mapped to efficient low-level implementations.
Unfortunately, finding common patterns can be challenging in
rapidly evolving disciplines like machine learning.

III. MLI

With MLI, we introduce mild constraints on the computa-
tional model in order to promote the design and implementa-
tion of user-friendly, scalable algorithms. Our interface consists
of two fundamental objects – MLTable and LocalMatrix – each
with its own API. These objects are used by developers to
build Optimizers, which in turn are used by Algorithms to
produce Models. It should be noted that these APIs are system-
independent - that is, they can be implemented in local and
distributed settings (Shared Memory, MPI, Spark, or Hadoop).
Our first implementation supporting this interface is built on
the Spark platform.

These APIs help developers solve several common prob-
lems. First, MLTable assists in data loading and feature ex-
traction. While other systems [8, 1, 3, 2] require data to be
imported in custom formats, MLTable allows users to load
their data in an unstructured or semi-structured format, apply
a series of transformations, and subsequently train a model.
LocalMatrix provides linear algebra operations on subsets of
the fully featurized dataset. By breaking the full dataset into
row-wise partitions of the original dataset and operating locally
on those partitions, we give the developer access to higher level
programming primitives while still allowing them to control
the communication that takes place between nodes and reason
about the computational complexity of their algorithms.

As part of MLI, we also pre-define a set of common inter-
faces for Optimization, Algorithms, and Models to encourage
code reuse and to ensure a consistent external system interface.
In the remainder of this section we describe these abstractions
in more detail.

A. MLTable

MLTable is an object which provides a familiar table-like
interface to a developer, and is designed to mimic a SQL
table, an R data.frame, or a MATLAB Dataset Array. The
basic MLTable API is illustrated in Figure A1. An MLTable
is a collection of rows, each of which conforms to the table’s
column schema. Each column is of a particular type, optionally
has a name, and can be of the following basic types: String,
Integer, Boolean, and Scalar (floating point numeric data).
Importantly, any cell in the table can be “Empty” and this is
represented with a special value. The table interface, which
should be familiar to many developers, supports common
operations like relational joins, unions, and projections - as



well as map and reduce operations on rows which follow
similar semantics to other MapReduce systems.

Additionally, tables support batch operations on partitions
of the data, which enable parallel data-local operation on
multiple data items. While ML algorithms primarily expect
numerical data as input, we expose MLTable as an interface for
processing the semi-structured, mixed type data that are present
in real-world applications, and transforming this raw data into
feature vectors for model training. Given this interface, we are
able to load structured data into an MLTable, and then apply a
series of transformations to the data in parallel to produce input
that is suitable for a ML algorithm. By supporting common
data integration tasks out of the box in a straightforward and
consistent manner, we significantly decrease the amount of
time spent during data preparation and feature extraction.

Once data is featurized, it can be cast into an MLNumer-
icTable, which is a convenience type that most ML algorithms
will expect as input. The MLNumericTable interface is the
same as MLTable, but it guarantees that all columns are
numeric, and by convention each row will be treated as a single
feature vector.

An example of an end-to-end text clustering pipeline us-
ing MLTable is shown in Figure A2. This pipeline consists
of nGrams() computation on the raw text input data and
subsequent tfIdf() feature extraction. We then perform K-
means clustering on the resulting features to produce an output
model. This model could be used to make recommendations
or as input to downstream analytical processing.

B. LocalMatrix

At their core, many ML algorithms are concisely expressed
using linear algebra operations. For example, the update step
in stochastic gradient descent for generalized linear models
such as logistic regression, linear regression, etc. involves
computing the gradient of a weight vector with respect to a test
class and a training point. In the case of logistic regression, this
is ultimately the dot product of two vectors, (or a matrix/vector
multiplication in the case of mini-batch SGD), followed by a
vector/vector subtraction.

LocalMatrix provides these linear algebra primitives but
on partitions of data. The partitions of the data presented to
the developer are typically automatically determined by the
system. That is, we require programmers to develop algorithms
such that all operations can be performed locally and later
combined via global reduce operations. This re-assembles
to a large degree the shared nothing principle from distributed
computing and often leads to highly scalable algorithms. We
also considered exposing globally distributed linear algebra
operations, but explicitly decided against it primarily because
global operators would hide the computational complexity
and communication overhead of performing these operations.
Instead, by offering linear algebra on subsets (i.e., partitions) of
the data, we provide developers with a high level of abstraction
while encouraging them to reason about efficiency.

Aside from the semantic difference that operations are
performed on individual partitions, LocalMatrix is designed to
resemble a matrix in MATLAB, R, or most other numerical
programming environments. It supports indexing by rows,

columns, or slices of each. A LocalMatrix also supports
Matrix-Matrix and Matrix-Scalar algebraic operations, and
common linear algebra routines like matrix inversion.

C. Optimization, Models, and Algorithms

In addition to MLTable and LocalMatrix, we provide
additional interfaces called Optimizer, Algorithm, and Model.

Many models cannot be solved via closed form solutions,
and even when closed-form solutions exist, the computational
complexity of these solutions often increases super-linearly
with data size, as in the case with basic linear regression. As a
result, various optimization techniques are used to converge to
an approximate solution while iterating over the data. We treat
optimization as a first class citizen in our API, and the system
is built to support new optimizers. We refer the reader to our
reference implementation for Stochastic Gradient Descent in
Figure A4.

Finally, we encourage developers to implement their algo-
rithms using the Algorithm interface, which should return a
model as specified by the Model interface. An algorithm im-
plementing the Algorithm interface is a class with a train()
method that accepts data and hyperparameters as input, and
produces a Model. A Model is an object which makes pre-
dictions. In the case of a classification model, this would be
a predicted class given a new example point. In the case of a
collaborative filtering model, this might be recommendations
for an existing user in the system. Both interfaces are rather
simple, but crucially help to provide one common interface for
developers (and to the MLBASE system as a whole).

IV. EXAMPLES

To evaluate the design claims made in the earlier sections,
we evaluate MLI as well as competing ML systems on two
representative real-world problems, namely binary classifica-
tion and matrix factorization. When implementing algorithms
against MLI, we chose Spark as our first platform because it
is well-suited for computationally intensive, iterative jobs on
large datasets that are characteristic of large ML workloads.
Moreover, many large-scale ML systems, e.g, [8, 3] do
not emphasize fault tolerance. In contrast, Spark’s resilience
properties, due to automatic data replication and computation
lineage, are quite attractive in a distributed environments where
automatic recovery from node failure is a necessity. Given our
choice to build on top of Spark, it was natural for the first
implementation of our API to be in Scala.

Our experiments illustrate three attractive features about
MLI. First, we show that MLI yields concise and readable
code. In the interest of space, here we compare the code length
for comparable implementations of algorithms in MATLAB
and MLI in the Appendix. Second, we argue that MLI sup-
ports a wide variety of algorithms. Although we focus on two
problem settings, these examples demonstrate wide-ranging
functionality of MLI and in fact naturally extend to a diverse
group of ML algorithms, e.g., linear SVMs, linear regression,
and (L1, L2, elastic net)-regularized variants therein, simply
by changing the expression of the gradient function (and
adding a proximal operator in the case of L1-regularization).
Third, we demonstrate that the implementations written against
MLI are performant and scalable. We present performance



results comparing execution times of various systems on our
two examples. We further present extensive strong and weak
scalability results. Both sets of results show that the implemen-
tations in MLI match the scalability of low-level distributed
systems with performance within a small constant factor.

A. Binary Classification: Logistic Regression

Let X ∈ Rn×d be a dataset of n points with d features,
xi ∈ Rd be the ith data point, and define y ∈ {0, 1}n as
the corresponding set of binary labels. Logistic regression is
a canonical classification algorithm. The optimal parameter
vector w∗ ∈ Rd can be found by minimizing the negative like-
lihood function, f(w) = − log p(X|w). Taking the gradient of
the negative log likelihood, we have:

∇f =

n∑
i=1

[(
σ(w>xi)− yi

)
xi

]
, (1)

where σ(x) = 1/(1 + exp(−x)) is the logistic sigmoid func-
tion. Gradient descent (GD) is a standard first-order iterative
method to solve for w∗; at the tth iteration we move in the
direction of the negative gradient with step size controlled by
a learning rate, η, i.e., we set wt+1 = wt − η∇f . Stochastic
gradient descent (SGD) involves approximating the sum in
Equation 1 by a single summand.

Experimental Setup and Data: We run both strong and
weak scaling experiments on 1, 2, 4, 8, 16, and 32 machines.
All are Amazon m2.4xlarge EC2 instances with 68GB of
RAM and 8 virtual cores running in the us1-east region.
They are configured using the default Spark 0.7.0 AMI and
are running a recent version of Spark and Hadoop 1.0.4.
We compare our system to the latest version of Vowpal
Wabbit (VW) running on the same cluster, and MATLAB
running on a similarly configured (single node) machine. We
do not compare against Mahout for these experiments because
its implementation of Logistic Regression via SGD is very
communication intensive, and we feel that this implementation
would not provide a fair comparison for Mahout.

We run our weak scaling experiments on a training set of
up to approximately 200GB of featurized ImageNet [25] data
where each image is represented with 160K dense features,
yielding approximately 200K images total for the 32-node
experiment. The number of input points used is proportional
to the number of nodes in the cluster for the experiment. We
further note that this experiment only represents approximately
20% of the full ImageNet dataset. While we were able to train
a full classifier using our system in approximately 2.5 hours,
the preprocessing required to prepare the data for VW on the
full set of data was too onerous to complete the experiment.
In our strong scaling experiments, we train on 5% of this base
data for the same number of nodes.

Implementation: We have implemented logistic regression
via SGD. To approximate the algorithm used in VW [26] we
run SGD locally on each partition before averaging parameters
globally. We note, however, that there are several alternative
methods to implement SGD on top of MLI. Implementing
Logistic Regression in MLI is as simple as defining the form
of the gradient function and calling the SGD Optimizer with
that function. Additionally, the code that implements Stochas-
ticGradientDescent is both short and fairly interpretable.

Algorithmically, our implementation is identical to VW,
with one meaningful difference, namely aggregating results
across worker nodes after each round. VW uses an “AllRe-
duce” communication primitive to build an aggregation tree
when averaging together model parameters after each iteration.
It then uses the same tree to broadcast these results back to
workers. In contrast, we take a more traditional MapReduce
approach and average all parameters at the cluster’s master
node at each iteration, then broadcast the parameters to each
node using a one-to-many broadcast. As the number of ma-
chines increases, VW’s approach is theoretically more efficient
from the perspective of communication and parallelizes better
with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in
a ‘vectorized’ fashion, which leads to a significantly more
favorable runtime. We show MATLAB’s performance here as
a reference for training a model on a similarly sized dataset
on a single multicore machine.

Results: In our weak scaling experiments (Figures 2b, 2c),
we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but we expect that these would
be a one-time cost in a production environment.

From the perspective of strong scaling our solution which
is presented in the Appendix actually outperforms VW in raw
time to train a model on a fixed dataset size when using 16
and 32 machines, and exhibits better strong scaling properties,
much closer to the gold standard of linear scaling for these
algorithms. We are unsure whether this is due to our simpler
(broadcast/gather) communication paradigm, or some other
property of the system.

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M ∈ Rm×n

be some underlying matrix and suppose that only a small
subset, Ω(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U ∈ Rm×k and
V ∈ Rn×k, where k � n,m, such that M ≈ UV T .
Commonly, U and V are estimated using the following bi-
convex objective:

min
U,V

∑
(i,j)∈Ω(M)

(Mij − UT
i Vj)

2 + λ(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed, using a well-
known closed-form solution at each step [27].
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Fig. 2: Logistic regression experiments. (a) Lines of code. (b) Execution time for weak scaling. (c) Weak scaling.
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Fig. 3: ALS experiments. (a) Lines of code. (b) Execution time for weak scaling. (c) Weak scaling.

Experimental Setup and Data: We test both strong and
weak scaling experiments using 1, 4, 9, 16, and 25 machines
with the same specifications as in our previous experiments.
We run our weak scaling experiments on a training set of up to
approximately 50 GB of collaborative filtering data. This data
is created by repeatedly tiling the Netflix collaborative filtering
dataset. This allows us to maintain the sparsity structure
of the dataset, and increase the number of parameters in a
fixed manner. For weak scaling, the size of the dataset is
proportional to the number of machines used in the cluster for
the experiment. Thus, when running the largest experiment on
25 machines, we use a dataset that is 25x the size of the Netflix
dataset. In our strong scaling experiments, we trained on 9x
the Netflix dataset, changing only the number of machines.

For both strong and weak scaling experiments, we keep the
following parameters fixed. We run ALS for 10 iterations, use
a rank of 10, and set λ = .01. We do not calculate training
error or testing error for timing purposes, but note that ALS
methods from all systems achieved comparable error rates at
the end of 10 iterations.

Implementation: We implement ALS by updating the rows
of U or V in parallel across machines, and then broadcasting
the factors to each machine after each update. We distribute
both the matrix M and a transposed version of this matrix
across machines in order to quickly access relevant ratings.
Our reference implementation makes use of several features of

MLI, including support for CSR-compressed sparse represen-
tations of matrices, several linear algebra primitives, and heavy
use of MLTable functionality. Linear algebra methods such
as matrix transpose, matrix multiplication, and solving linear
systems are supported. LocalMatrix also supports important
access methods, such as the nonZeroIndices, which returns the
nonzero column indices for a given row.

We compare our system to the latest versions of Mahout
and GraphLab on the same cluster, and MATLAB running
on a similarly configured machine. In addition, we test a
version of ALS in MATLAB using mex, an interface that
allows MATLAB to call directly into C++/Fortran routines.
Comparing MLI to these other implementations, we see that
the MLNumericTable and LocalMatrix objects provide conve-
nient abstractions for patterns, thus resulting in concise code.
Indeed, Figure A9 shows that our implementation is about the
same length as the MATLAB code, while Figure 3(a) shows
the stark comparison in code length in comparison to Mahout
and GraphLab.

Results: In our weak scaling experiments for ALS (Figures
3b, 3c), we see that our system outperforms MATLAB and the
highly-optimized MATLAB-Mex, at even moderate levels of
data. Both MATLAB and MATLAB-Mex run out of memory
before successfully running the 16x or 25x Netflix datasets. We
remain within 4x of the highly specialized system GraphLab,
and maintain a similar scaling pattern. We outperform Mahout



both in terms of total execution time for each run and scaling
across cluster size.

We see similarly promising results with our strong scaling
experiments as illustrated in the Appendix - with MATLAB
running out of memory before completing on the 9x Netflix
dataset, and GraphLab outperforming MLI by less than a
factor of 4x.

C. Configuration Considerations

Although we ran all of our experiments on comparable
or identical hardware, different software systems varied dras-
tically in terms of ease of installation, configuration, and
executing code.

Vowpal Wabbit: To use VW in cluster mode, users must
carefully partition their datasets into equally sized compressed
files of training data, where the total number of files should
equal the number of map tasks that the user desires to
use concurrently on the cluster. Although VW uses Hadoop
Streaming to launch cluster tasks, it eschews the traditional
MapReduce paradigm in favor of AllReduce. To support this
new communication primitive, it must open a side-channel
TCP socket between map tasks to communicate incremental
results. The combination leads to a failure-prone system as
well as difficulty in data preparation.

Mahout: Mahout is fairly easy to set up on an already
existing Hadoop cluster, and its input file formats are rea-
sonably close to our own. However, in order to run Mahout
effectively on problems larger than the traditional Netflix
dataset, the user must take great care to tune job memory
configuration parameters correctly to ensure that jobs complete
in a performant manner.

GraphLab: While GraphLab performed very well in our
speed and scalability tests, it was rather difficult to set up and
integrate with an existing cluster with distributed data stored in
HDFS. In order to set up GraphLab, users must configure their
clusters with MPI, download, build and install GraphLab and
its required dependencies, and manually copy the software to
each machine on the cluster. If a single input matrix will not fit
into memory, it must be stored and loaded as multiple separate
files. This complicates preprocessing and requires developers
to take extra steps depending on their problem sizes.

MLI and Spark: Setting up and configuring our system
built on MLI and Spark is comparatively easy. Launching a
well configured cluster required a single command, and our
software ships with all its dependencies listed in SBT, and
can be compiled and run on a cluster simply by setting a few
environment variables and running one Scala program. New
algorithms can be easily added to the system as new Scala
classes, and driver programs are easily generated based on
examples in the existing library.

V. CONCLUSION

We have presented MLI, an API for building scalable
distributed machine learning algorithms. We have shown that
its components, MLTable and LocalMatrix, are useful primi-
tives for data loading and transformation as well as data-local
linear algebra operations. We have shown how these primitives
can be used to code two fairly different but representative

algorithms. We evaluated these algorithms in terms of both
ease-of-development and computational performance, based
on an implementation of MLI against Spark, comparing our
system with several existing ones. Our results show that we can
provide ML developers the tools to construct high performance
distributed ML algorithms without onerous programming com-
plexity. MLI is a foundational layer in our larger efforts with
MLBASE, a system designed to simplify large-scale ML.
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APPENDIX

Operation Arguments Returns Semantics
project Seq[Index] MLTable Select a subset of columns from a table.
union MLTable MLTable Concatenate two tables with identical schemas.
filter MLRow ⇒ Bool MLTable Select a subset of rows from a data table given a

functional predicate.
join MLTable, Seq[Index] MLTable Inner join of two tables based on a sequence of

shared columns.
map MLRow ⇒ MLRow MLTable Apply a function to each row in the table.
flatMap MLRow ⇒ TraversableOnce[MLRow] MLTable Apply a function to each row, producing 0 or

more rows as output.
reduce Seq[MLRow] ⇒ MLRow MLTable Combine all rows in a table using an associative,

commutative reduce function.
reduceByKey Int, Seq[MLRow] ⇒ MLRow MLTable Combine all rows in a table using an associative,

commutative reduce function on a key-by-key
basis where a key column is the first argument.

matrixBatchMap LocalMatrix ⇒ LocalMatrix MLNumericTable Execute a batch function on a local partition of
the data. Output matrices are concatenated to
form a new table.

numRows None Long Returns number of rows in the table.
numCols None Long Returns the number of columns in the table.

Fig. A1: MLTable API Illustration. This table captures core operations of the API and is not exhaustive.

1 def main(args: Array[String]) {
2 val mc = new MLContext("local")
3

4 //Read in table from file on HDFS.
5 val rawTextTable = mc.textFile(args(0))
6

7 //Run feature extraction on the raw text - get the top 30000 bigrams.
8 val featurizedTable = tfIdf(nGrams(rawTextTable, n=2, top=30000))
9

10 //Cluster the data using K-Means.
11 val kMeansModel = KMeans(featurizedTable, k=50)
12 }

Fig. A2: Loading, featurizing, and learning clusters on a corpus of Text Data.

Family Example Uses Returns Semantics
Shape dims(mat), mat.numRows, mat.numCols Int or (Int,Int) Matrix dimensions.
Composition matA on matB, matA then matB Matrix Combine two matrices row-wise or

column-wise.
Indexing mat(0,??), mat(10,10), mat(Seq(2,4), 1) Matrix or Scalar Select elements or sub-matrices.
Reverse Indexing mat(0,??).nonZeroIndices Seq[Index] Find indices of non-zero elements.
Updating mat(1,2) = 5, mat(1, Seq(3,10)) = matB None Assign values to elements or sub-

matrices.
Arithmetic matA + matB, matA - 5, matA / matB Matrix Element-wise arithmetic between ma-

trices and scalars or matrices.
Linear Algebra matA times matB, matA dot matB,

matA.transpose, matA.solve(v), matA.svd,
matA.eigen, matA.rank

Matrix or Scalar Basic and extended linear algebra sup-
port.

Fig. A3: LocalMatrix API Illustration



1 function w = log_reg(X, y, maxiter, learning_rate)
2 [n, d] = size(X);
3 w = zeros(d,1);
4 for iter = 1:maxiter
5 grad = X’ * (sigmoid(X * w) - y);
6 w = w - learning_rate * grad;
7 end
8 end
9

10 % applies sigmoid function component-wise on the vector x
11 function s = sigmoid(x)
12 s = 1 ./ (1 + exp(-1 .* x));
13 end

1 object LogisticRegressionAlgorithm extends NumericAlgorithm[LogisticRegressionParameters] {
2

3 def defaultParameters() = LogisticRegressionParameters()
4

5 def sigmoid(z: Double): Double = 1.0/(1.0 + math.exp(-1.0*z))
6

7 def train(data: MLNumericTable, params: LogisticRegressionParameters): LogisticRegressionModel = {
8 val d = data.numCols-1
9

10 def gradient(vec: MLVector, w: MLVector): MLVector = {
11 val x = MLVector(vec.slice(1,vec.length))
12 x times (sigmoid(x dot w) - vec(0))
13 }
14

15 //Run gradient descent on the data.
16 val optParams = StochasticGradientDescentParameters(
17 wInit = MLVector.zeros(d),
18 grad = gradient,
19 learningRate = params.learningRate)
20 val weights =StochasticGradientDescent(data, optParams)
21

22 new LogisticRegressionModel(data.toMLTable, params, weights)
23 }
24 }

1

2 object StochasticGradientDescent extends MLOpt with Serializable {
3

4 def apply(data: MLNumericTable, params: StochasticGradientDescentParameters): MLVector = {
5 var weights = wInit
6 val n = data.numRows
7 var i = 0
8

9 //Main loop of SGD. Calls local SGD and averages parameters.
10 while(i < params.maxIter) {
11 weights = data.matrixBatchMap(localSGD(_, weights, params.learningRate, params.grad)).reduce(_ plus _)

over data.partitions.length
12 i+=1
13 }
14 weights
15 }
16

17 def localSGD(data: LocalMatrix, weights: MLVector, lambda: Double, gradientFunction: (MLVector, MLVector)
=> MLVector): LocalMatrix = {

18 var localWeights = weights
19 for (i <- data.toMLVectors) {
20 //Compute the gradient and update the model.
21 val grad = gradientFunction(i, loc)
22 localWeights = localWeights minus (grad times lambda)
23 }
24 localWeights
25 }
26 }

Fig. A4: Logistic Regression Code in MATLAB (top) and MLI (middle, bottom).
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Fig. A5: Execution time for strong scaling for logistic regres-
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Fig. A6: Strong scaling for logistic regression
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Fig. A8: Strong scaling for ALS



1 function [U, V] = ALS_matlab(M, U, V, k, lambda, maxiter)
2

3 % Initialize variables
4 [m,n] = size(M);
5 lambI = lambda * eye(k);
6 for q = 1:m
7 Vinds{q} = find(M(q,:) ˜= 0);
8 end
9 for q=1:n

10 Uinds{q} = find(M(:,q) ˜= 0);
11 end
12

13 % ALS main loop
14 for iter=1:maxiter
15 parfor q=1:m
16 Vq = V(Vinds{q},:);
17 U(q,:) = (Vq’*Vq + lambI) \ (Vq’ * M(q,Vinds{q})’);
18 end
19 parfor q=1:n
20 Uq = U(Uinds{q},:);
21 V(q,:) = (Uq’*Uq + lambI) \ (Uq’ * M(Uinds{q},q));
22 end
23 end
24 end

1 object BroadcastALS {
2 def train(trainData: MLTable, k: Int, lambda: Double,
3 maxIter: Int): (LocalMatrix, LocalMatrix) = {
4 val ctx = trainData.context
5 val m = trainData.numRows
6 val n = trainData.numCols
7 val trainDataTrans = trainData.transpose
8 val lambI = LocalMatrix.eye(k) * lambda
9 // Initialize U and V matrices randomly

10 val U0 = LocalMatrix.rand(m, k)
11 val V0 = LocalMatrix.rand(n, k)
12 (0 until maxIter).foldLeft((U0, V0))((UV, iterNum) => {
13 val U = UV._1
14 val V = UV._2
15 // Broadcast V
16 val V_b = ctx.broadcast(V)
17 // Update U matrix
18 val newU = computeFactor(trainData, V_b, lambI)
19 // Broadcast U
20 val U_b = ctx.broadcast(newU)
21 // Update V matrix
22 val newV = computeFactor(trainDataTrans, U_b, lambI)
23 (newU, newV)
24 })
25 }
26

27 def computeFactor(trainData: MLTable, fixedFactor: Broadcast[LocalMatrix],
28 lambI: LocalMatrix): LocalMatrix = {
29 trainData.map(localALS(_, fixedFactor.value, lambI)).toLocalMatrix
30 }
31

32 def localALS(trainDataPart: MLRow, Y: LocalMatrix, lambI: LocalMatrix) = {
33 val tuple = trainDataPart.tuple
34 val Yq = Y.getRows(tuple.nonZeroIndices)
35 val resultMat = ((Yq.transpose times Yq) + lambI).solve(Yq.transpose times tuple.nonZeroProjection)
36 resultMat.toVector
37 }
38 }

Fig. A9: Matrix Factorization via ALS code in MATLAB (top) and MLI (bottom).
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