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Abstract Smartphones have been shipped with multiple

wireless network interfaces to meet their diverse commu-

nication and networking demands. However, as smart-

phones increasingly rely on wireless network connections

to realize more functions, the demand of energy has been

significantly increased, which has become the limit for

people to explore smartphones’ real power. In this paper,

we first review typical smartphone computing systems,

energy consumption of smartphone, and state-of-the-art

techniques of energy saving for smartphones. Then, we

propose a location-assisted Wi-Fi discovery scheme, which

discovers the nearest Wi-Fi network access points (APs)

using the user’s location information. This allows the user

to switch to the Wi-Fi interface in an intelligent manner

when he/she arrives at the nearest Wi-Fi network AP. Thus,

we can meet the user’s bandwidth needs and provide the

best connectivity. Additionally, it avoids the long periods

in idle state and greatly reduces the number of unnecessary

Wi-Fi scans on the mobile device. Our experiments and

simulations demonstrate that our scheme effectively saves

energy for smartphones integrated with Wi-Fi and cellular

interfaces.

Keywords Smartphone � Power consumption �
Access point discovery � Energy saving

1 Introduction

Smartphones are becoming increasingly intertwined with

people’s daily lives. They are now equipped with more

powerful processors, more memory, multiple network

interfaces, and more powerful operating systems, such as

Windows Phone, Google Android, Apple iOS, and so forth.

Furthermore, the cellular networks of smartphones have

grown from GSM networks to the current 3G networks,

which have greatly increased the bandwidth for

smartphones.

Today’s smartphones are capable to support a large

spectrum of applications from stock tickers to city-wide

social games [1]. There are many new innovative appli-

cations about using smartphones as mobile sensors to

recognize user state [2], sense urban space [3, 4], sense

location [5], monitor environment conditions [6], monitor

traffic [7], sense people’s health states [8], and so on.

However, many applications such as mobile gaming and

real-time location-based tracking applications [9] consume

significant battery energy because of the requirement of

continuous internet connection [10]. However, the

increased size of battery has not kept up with the increased

demand for energy. Advances in battery technology are

growing slowly and have not kept pace with rapidly

growing energy demands [11]. Thus, the power consump-

tion has become an important problem of the energy

management of smartphones. Furthermore, energy saving

for smartphones has become an urgent matter, which is

beneficial to extending smartphones’ standby time and

battery’s lifetime as well as reducing the number of times

of battery recharging.

Many wireless network technologies, such as Bluetooth,

Wi-Fi, and GPRS, have become popular in the market. Wi-

Fi and GPRS have different characteristics in terms of
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power, range and bandwidth [12, 13]. GPRS has low

transfer power efficiency,1 wide range, and low bandwidth.

On the contrary, Wi-Fi has high transfer power efficiency,

narrow range, and high bandwidth. However, Wi-Fi has

high power consumption in idle state and brings a high

overhead when scanning for new networks.

Mobile devices, such as smartphones, are equipped with

multiple network interfaces that have complementary

characteristics, as mentioned before. This brings a new

challenge to the choice the most suitable network interface

to connect to the network. Therefore, we should leverage

the complementary characteristics of these network inter-

faces to meet the user’s bandwidth needs, provide the best

connectivity and minimize the power consumption at the

same time. Many researchers (e.g., [14, 15]) have worked

on saving energy by reducing the energy costs of network

interfaces.

In this paper, we address this challenge by presenting a

simple scheme that discovers the nearest Wi-Fi network

access point (AP) using the user’s location information.

Thus, users can switch to the Wi-Fi network when they

approach it, which greatly reduces the number of unnec-

essary Wi-Fi scans on the mobile devices. As a result,

much energy can be saved.

Currently, many location sensing technologies, such as

GPS, GSM and ZigBee, have been developed for mobile

devices. GPS, GSM and ZigBee have widely different

characteristics in terms of power and accuracy (see

Table 1) [15, 16]. GPS has high positioning accuracy, but it

is power-demanding and can be used only in outdoors.

GSM is power efficient, but it is highly inaccurate. ZigBee

is energy efficient and has high positioning accuracy, but

mobile devices with ZigBee interfaces are still very scarce

and expensive. In addition, ZigBee is mostly used in

indoors. Assisted GPS (A-GPS for short) is the same as

GPS in terms of accuracy and cost less power, and only

used in outdoors. Considering energy-accuracy trade-off

and restrictions of different location sensors, we adopt

A-GPS in outdoors and ZigBee in indoors to get user’s

location information.

In terms of contributions, we make efforts in the fol-

lowing aspects. First, we review typical smartphone’s

sensing applications and systems. Second, we analyze and

test the energy consumption of smartphones. Third, main

approaches of energy saving for smartphones are summa-

rized. Finally, we propose a location-assisted Wi-Fi dis-

covery scheme that greatly reduces the number of

unnecessary Wi-Fi scans on mobile devices. Our simula-

tions and experiments demonstrate that it is effective.

The rest of the paper is structured as follows. Section 2

describes the ‘‘power’’ of smartphones: smartphones as

sensors in typical sensing applications and systems. The

‘‘power’’/energy consumption of smartphones and their

diverse wireless network interfaces are analyzed and tested

in Sect. 3. We summarize the main energy saving techniques

for smartphones in Sect. 4. Section 5 shows the key com-

ponents and operation workflow of our proposed system. In

Sect. 6, we evaluate the power consumption of our five

outdoor schemes, and the evaluation of five indoor schemes

is done in Sect. 7. We conclude the paper in Sect. 8.

2 Smartphones as sensors

Mobile phones not only serve as the key computing and

communication mobile device of choice, but also come

with a rich set of embedded sensors, such as accelerometer,

compass, GPS, gyroscope, microphone, and camera.

Recently, sensors have become much more prevalent in

mobile devices like smartphones. Smartphones serve our

life across a wide variety of domains, such as health

monitoring, social networking, environmental monitoring,

traffic monitoring, and human behavioral monitoring, and

give rise to a new area of research called phone sensing.

Many mobile phone sensing systems have been developed

in the literature. In this section, we survey these systems

according to their application domains, as outlined in

Table 2.

2.1 Health monitoring

Sha et al. [17] proposed a smartphone-assisted chronic

illness self-management system (SPA), which aided the

prevention and treatment of chronic illness. The SPA can

provide continuous monitoring on the health condition of

the user and give valuable in situ context-aware sugges-

tions/feedbacks to improve the public health. To address

the growing rate of sedentary lifestyles, Jarvinen et al. [18]

developed a system, called UbiFit Garden, which uses

small cheaper sensors, real-time statistical modeling, and a

personal mobile display to encourage regular physical

activity. It resides on the background screen or wallpaper

Table 1 Characteristics of various location sensing technologies

Sensor Average power

consumption (mW)

Approximate

accuracy (m)

GPS 400 10

GSM 60 400

ZigBee 1 5

1 Power efficiency: with the same power to use, the more data that

can be transferred under a scheme, the higher power efficiency it has.

Here we mean that, with the same energy consumption, GPRS

transfer less data than Wi-Fi, so the Wi-Fi has higher power efficiency

than GPRS.
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of a mobile phone to provide a subtle reminder whenever

and wherever the phone is used. UbiFit Garden relies on

the Mobile Sensing Platform (MSP).

2.2 Environmental monitoring

Mun et al. [21] presented the Personal Environmental

Impact Report (PEIR) that uses location data sampled from

everyday mobile phones to calculate personalized esti-

mates of environmental impact and exposure. It uses

mobile handsets to collect and automatically upload data to

server-side models that generate web-based output for each

participant. One feature that distinguishes PEIR from

existing web-based and mobile carbon footprint calculators

is its emphasis on how individual transportation choices

simultaneously influence both environmental impact and

exposure. NoiseTube [22] is a new approach for the

assessment of noise pollution involving the general public.

The goal of this project is to turn GPS-equipped mobile

phones into noise sensors that enable citizens to measure

their personal exposure to noise in their everyday envi-

ronment. Thus, each user can contribute by sharing their

geo-localized measurements and further personal annota-

tion to produce a collective noise map.

2.3 Traffic monitoring

Thiagarajan et al. [25] proposed a system, called VTrack,

for travel time estimation using this sensor data. It

addresses two key challenges: energy consumption and

sensor unreliability. VTrack performs map matching,

which associates each position sample with the most likely

point on the road map, and produces travel time estimates

for each traversed road segment. VTrack compiles a

database of historic travel delays on road segments. Neri-

cell [26] is a system that performs rich sensing by piggy-

backing on smartphones that users carry with them in

normal course. Nericell addresses several challenges

including virtually reorienting the accelerometer on a

phone that is at an arbitrary orientation, and performing

honk detection and localization in an energy-efficient

manner. The system could be used to annotate traditional

traffic maps with information such as the bumpiness of

roads, and the noisiness and level of chaos in traffic.

2.4 Human behavioral monitoring

EmotionSense [27] is a mobile sensing platform for social

psychological studies based on mobile phones. The key

characteristics of this system include the ability of sensing

individual emotions as well as activities, verbal and prox-

imity interactions among members of social groups. This

can be used to understand the correlation and the impact of

interactions and activities on the emotions and behavior of

individuals. Kwapisz et al. [28] described and evaluated a

system that uses phone-based accelerometers to perform

activity recognition, a task which involves identifying the

physical activity a user is performing. The activity

Table 2 Mobile sensing systems

Area System Type(s) of sensors Application(s)

Health monitoring SPA [17] Biomedical sensor, GPS Healthcare suggestions

UbiFit Garden [18] 3D accelerometer UbiFit garden’s interactive application

BALANCE [19] Accelerometer, GPS BALANCE

CONSORTS-S [20] Wireless sensor, MESI RF-ECG Healthcare service

Environmental

monitoring

PEIR [21] GPS Carbon impact, sensitive site impact, smog

exposure, etc

NoiseTube [22] Microphone, GPS Mobile sensing

MobGeoSen [23] Camera, GPS, microphone Sound level monitoring

Laemometer [24] Microphone, GPS Noise map creation and visualization

Traffic monitoring V-Track [25] GPS Detecting and visualizing hotspots, route

planning

NeriCell [26] Microphone, accelerometer, GSM radio,

GPS, camera

Bump, breaking and honking detection

Human behavioral

monitoring

Emotion sense [27] Microphone, accelerometer Emotion and speaker recognition

Activity recognition

[28]

Accelerometer Activity recognition

Social networking CenceMe [29] Microphone, camera, GPS, radio,

accelerometer, etc.

Bicycling, weight lifting, golf swing analysis

Party thermometer

[30]

Microphone, camera, GPS Party thermometer
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recognition model allows to gain useful knowledge about

the habits of millions of users passively just by having

them carry cell phones in their pockets. Applications of this

system include automatic customization of the mobile

devices behavior based upon a user’s activity and gener-

ating a daily/weekly activity profile to determine if a user is

performing a healthy amount of exercise.

2.5 Social networking

Miluzzol et al. [29] presented a system called CenceMe, a

personal sensing system that enables members of social

networks to share their sensing presence with their buddies

in a secure manner. Sensing presence captures a user’s

status in terms of his activity (e.g., sitting, walking,

meeting friends), disposition (e.g., happy, sad, doing OK),

habits (e.g., at the gym, coffee shop today, at work) and

surroundings (e.g., noisy, hot, bright, high ozone). Cen-

ceMe injects sensing presence into popular social net-

working applications, such as Facebook, MySpace, and IM

(Skype, Pidgin) allowing for new levels of connection and

implicit communication between friends in social net-

works. Party Thermometer [30] is a human-query appli-

cation, where queries are directed to users who are at

parties. In addition to location, (party) music detection is

also employed using the microphone sensor to establish the

users’ context more precisely.

3 Energy consumption of smartphones

To achieve our purpose of energy saving for smartphones,

necessary information about energy consumption of

smartphones, such as the composition of energy con-

sumption, the energy consumption of different parts of

smartphone, and so forth, is needed. We discuss the energy

consumption of smartphones in this section.

3.1 Energy consumption in operating mode

Anand et al. [31] evaluated the individual power con-

sumption of the main hardware components (e.g., proces-

sor, Wi-Fi interface, backlight) of iMate KJam

smartphones shipped with Lithium Polymer 1,250 mAh

battery, 128 MB memory, 195 MHz OMAP processor, and

Windows Mobile 5.0 operating system. Table 3 illustrates

the hardware component distribution of power consump-

tion. As we can see, the processor consumes most of the

power, followed closely by the Wi-Fi interface and the

GSM radio. The Bluetooth and backlight cause less power

consumption. However, Bluetooth is still a significant

cause of power losing because users typically keep it on

most of time.

Carroll and Heiser [32] discussed the significance of

the power drawn by different components, and analyzed

the energy impact of dynamic voltage and frequency

scaling of the device’s application processor. They depict

the power consumed by the display backlight over the

range of available brightness levels on Android-based

smartphones in operating mode. The minimum backlight

power is approximately 7.8 mW, and the maximum is

nearly 414 mW.

3.2 Energy consumption in sleep

For sake of energy saving, smartphones should power off

the radio interface and turn on the radio only when there is

on-going traffic. This saves energy for smartphones based

on the fact that wireless radios consume much less energy

in idle or suspend mode than in active or operating mode.

Zhang et al. [33] examined the energy consumption of the

Wi-Fi radio interface in idle state.

The measurement shows that Wi-Fi requires 1.4260 W

[34] to scan available networks and requires 0.890 W [35]

for active transmission. However, it only needs 0.256 W in

the idle state. The cell radio burns about 2–4 mAh in idle

state, and costs about 250–300 mAh of battery in active

state [31]. While Bluetooth consumes 0.01 W in idle state,

and it costs 0.12 W for scanning [13]. We can see that Wi-

Fi needs lowest power for data transfer among various

network interfaces. However, it consumes significant

energy in idle state and incurs a high overhead when

scanning. Smartphone costs 268.8 mW in the idle state

with backlight off, and consumes 68.6 mW in the sus-

pended state [32].

3.3 Power consumption of networks

We conduct a measurement on power efficiency of

enhanced data rate for GSM evolution (EDGE) and Wi-Fi

radio of ZTE V880 smartphone. As shown in Fig. 1a, with

the increase of bandwidth, sending data requires consid-

erable more energy than receiving. That is, the energy

efficiency of receiving is higher than sending in all the

Table 3 Energy consumption for typical use of smartphone

Component Average power

consumption percent (%)

CPU 35

GSM 25

Wi-Fi 25

Backlight 3

Bluetooth 7

Other 5
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cases, and the gap of energy efficiency between receiving

and sending is larger when using EDGE to transfer data.

As we can see from Fig. 1b, with the increase of

bandwidth, the energy efficiency of receiving becomes

higher than sending in all the cases when Wi-Fi is used to

transfer data. However, there is little increase in energy

efficiency when the bandwidth is near 50 KB/s, as shown

in the Fig. 1b.

4 State-of-the-art techniques for smartphone energy

saving

A lot of research efforts have been made on reducing

energy consumption of smartphones. Depending on the

component of smartphone considered, smartphone energy

saving methods can be mainly divided into the following

facets.

4.1 Battery modeling

Most smartphones use rechargeable batteries as their

mobile power sources, which need to take 1.5–4 h to be

fully charged [11]. To use batteries efficiently, we consider

them as extremely important resources for the operating

system and applications. Battery discharge behavior is

affected by various factors, such as discharge rate, tem-

perature [36], and number of charge cycles, etc.

Due to the nonlinearities of battery, it is essential to

understand battery discharge behavior, and features for

battery designers. Many researches have been done on

battery modeling to address this issue. Fuller et al. [37]

presented an electrochemical model to describe the charge

and discharge of battery. They use concentrated solution

theory to model the galvanostatic charge and discharge of a

dual lithium ion insertion (rocking-chair) cell. However, it

is slow to produce prediction of battery features, and pro-

vides limited analytical help for battery designers. Chi-

asserini and Rao [38] developed a stochastic battery model

to represent charge recovery processes. But they just con-

centrate on charge recovery, and cannot account their

model for other battery nonlinearities, temperature, and

capacity fading, to name a few.

Manwell and McGowan [39], proposed a kinetic battery

model to be used for charging and discharging. They

consider the apparent change in capacity as a function of

charge and discharge rates. The drawback of this model is

that it is not useful for the types of batteries used in mobile

computing [40]. Rakhmatov et al. [41] presented a diffu-

sion model for battery-aware scheduling algorithm in real-

time embedded systems. Briefly, battery designers and

programmers should choose different battery models

depending on their actual circumstances to better model

batteries.

4.2 Energy-efficient communications

Energy-efficient communications have been hot research

topic in recent years. Communication components may

enter standby or sleep modes to save power. Zhang et al.

[33] took advantage of idle state to save the energy con-

sumption of Wi-Fi radio interface. Although this will save

the energy consumption, it is hard to estimate the idle state

precisely. Shih et al. [42] suggested that systems com-

pletely turn off the radio interface and turn on the radio

only when there is on-going traffic. Nevertheless, this will

cause the user completely lose connection to the wireless

LAN. Rozner et al. [14] proposed NAPman, a network-

assisted power management for Wi-Fi devices, which can

leverage AP virtualization and a new energy-aware

Fig. 1 Consumed energy on ZTE V880 with different bandwidths and methods in use. a EDGE is in use. b Wi-Fi is in use
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scheduling algorithm to minimize Wi-Fi devices power

consumption.

Bluetooth’s energy consumption is very low. Pering

et al. [35] proposed a scheme that switches between

Bluetooth and Wi-Fi interfaces to save battery energy.

However, this scheme needs to modify the infrastructure.

Wu et al. [34] used the GSM signal to get the location

information to estimate the Wi-Fi network AP. The GSM’s

energy consumption is very small, but its positioning

accuracy is unsatisfactory. Blue-Fi [13] uses a combination

of Bluetooth contact-patterns and cell-tower information to

predict the availability of the Wi-Fi connectivity, and it

does not need any modification to the existing infrastruc-

ture. However, many mobile devices with Bluetooth radio

interfaces change their positions. Bluetooth has a much

lower range compared to other network technologies.

Therefore, mobile devices with Bluetooth cannot be used

for our problem.

Zhou et al. [15] utilized ZigBee radios to identify the

existence of Wi-Fi networks through unique interference

signatures generated by Wi-Fi beacons. They incur extra

fees to buy or employ ZigBee cards, even though they

detect Wi-Fi network APs with high accuracy, short delay

and little computation overhead.

There is an idea of using a separate low-powered radio

to wake up a high-powered radio. Like [42] Wake-on-

Wireless uses a low power radio to serve as a wake-up

channel for a Wi-Fi radio. However, it needs significant

modifications to existing mobile devices. While On-

Demand-Paging [43] builds on this idea to use the widely

available Bluetooth radios as the low-powered channel, it

also requires substantial infrastructure support in the form

of specialized APs that have both Wi-Fi and Bluetooth

interfaces. Cell2Notify [44] uses the cellular interface to

wake up the Wi-Fi interfaces on an incoming VOIP call

using specialized servers.

4.3 Energy-efficient computation

We describe two basic approaches, including putting pro-

cessor into sleep mode and computation offloading, to save

CPU’s energy in this section.

Brakmo et al. [45] present an energy reduction tech-

nique, called uSleep, for handheld devices, which is most

effective when the device’s processor is lightly loaded.

They try to put the processor in sleep mode rather than in

idle mode to save energy. However, it is not effective when

the device’s processor is highly loaded.

With computation offloading, the mobile device does

not perform the computation; instead, computation is per-

formed somewhere else, such as on a server, thereby

extending battery lifetime. Pathak et al. [46] designed and

implemented an event-tracing-based profiling tool, called

XRay. The tool identifies methods of an application that

can be offloaded to a remote server, and determines whe-

ther and when the methods are offloaded to server will save

energy. Needing a priori knowledge of input parameters

and network conditions is the drawback of the tool. Xian

et al. [47] performed offloading at the level of applications.

They execute the program initially on the mobile client

with a timeout, and offload the program to the server when

it is not completed after the timeout. However, many

applications that we cannot offload entirely are just fit for

offloading parts of applications to server. Kumar and Lu

[48] applied computation offloading from a remote server

to cloud platform. It is new to apply computation off-

loading in cloud, and more exploration needs to be done.

4.4 Energy-efficient mobile sensing

Mobile device-based sensing can provide rich contextual

information for mobile applications, such as social net-

working and location-based services. However, the sensors

on mobile devices consume too much energy. It will limit

the continuous functioning of the mobile applications on

mobile devices because of these devices’ limited battery

capacity. Consequently, energy-efficient mobile sensing [2,

16, 49–51] has become a hot topic in mobile computing.

Abdesslem et al. [49] proposed to use less energy con-

sumption sensors more often instead of more energy con-

sumption sensors. By choosing when to use more energy-

efficient sensors, it is possible to reduce the energy con-

sumption of mobile sensing applications. Constandache

et al. [16] proposed a location sensing adaptive framework

called EnLoc. The framework characterizes the optimal

localization accuracy for a given energy budget and

developed prediction-based heuristics for real-time use. By

taking into account the accuracy-energy trade-off of dif-

ferent location sensors available in mobile phones, EnLoc

selects the energy-optimal sensor and reduces energy

consumption. Kang et al. [50] proposed a scalable and

energy-efficient monitoring framework called SeeMon for

sensor-rich and resource-limited mobile environments. The

authors explored the hierarchical sensor management

concept which achieves energy efficiency by only per-

forming context recognition when changes occur during

the context monitoring. Priyantha et al. [51] designed a

novel system architecture called Little Rock at the hard-

ware level for energy-efficient sensing. They proposed to

add a low power microcontroller or an additional low

power core in the multi-core processor responsible for

managing sensors. This kind of modification enables

phones to enter a low power sleep state while the low

power sensor processor is continuously sampling and pro-

cessing sensor data. Wang et al. [2] presented a novel

design framework for an Energy-Efficient Mobile Sensing
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System (EEMSS). EEMSS uses hierarchical sensor man-

agement strategy to recognize user states as well as to

detect state transitions. By powering only a minimum set of

sensors and using appropriate sensor duty cycles, the

device energy consumption can be significantly reduced.

Energy-efficient mobile sensing has been studied for a

long time but there are still some unresolved issues.

Activity recognition needs more effective matching algo-

rithm to improve the recognition accuracy. With the

increasing number of sensors, how to manage them in an

energy-efficient manner is a problem. In addition, privacy

should be paid much attention to since much user infor-

mation in mobile sensing system might be used illegally.

4.5 Other energy saving approaches

There are many research efforts [52–54] focusing on

reducing the energy of display and memory. The code

involving graphical user interface (GUI) usually accounts

for 48 % of the total code of an application [55]. As GUI

always invokes display to show what the application does,

display also consumes a large amount of energy. Zhong

and Jha optimized GUIs for energy consumption in [52].

They present the first GUI energy characterization meth-

odology, improve GUI platforms, and design GUIs in an

energy-efficient way. However, the power consumption of

display is highly depends on users’ activity patterns that are

hard to predict. Therefore, it is difficult to save display’s

energy.

Aho et al. [54] reduced the number of memory operands

to save memory’s energy. They optimally allocate tempo-

raries and globally register for the most frequently used

variables during compile phase. Although this approach

can save energy, it incurs the overhead of longer compi-

lation time and compiler complexity, especially for com-

mercial software.

5 Location-assisted Wi-Fi discovery

5.1 System overview

This section presents the key components and operation

workflow of the proposed solution to improve the energy

efficiency of smartphones, see Fig. 2. Our system includes

three modules: rate monitor module, switching decision

engine module and switching module. On the mobile

devices, we use rate monitor module to measure cellular

data rates (both uplink and downlink) at a chosen interval

Tmeasure (see Table 4) periodically. Based on the collected

information, the switching decision engine module decides

whether the users need to switch to Wi-Fi network: if yes,

then it invokes the switching module to discover the

nearest Wi-Fi network AP, and users switch to Wi-Fi

network when they arrive at it. Below, we will describe the

three modules in detail.

Periodically measure the user’s
cellular data rate

Discover the nearest Wi-Fi network AP

Y

Start

Switch to Wi-Fi
network?

Calculate the time needed for user to 
arrive at the nearest Wi-Fi network AP

After the time tswitch, scan and connect to 
Wi-Fi network

End

N

Fig. 2 Workflow of the system

Table 4 List of notations

Variable Description

Tmeasure The data rate collect interval

Ruser The data rate of the user

Bt The threshold of bandwidth that is set by the user

Pnear The nearby Wi-Fi network AP’s location

Puser The user’s location

Latuser The latitude of the user’s location

Lonuser The longitude of the user’s location

Pap The nearest Wi-Fi network AP’s location

Latap The latitude of the nearest Wi-Fi network AP’s location

Lonap The longitude of the nearest Wi-Fi network AP’s location

d The distance between user and the nearest Wi-Fi

network AP

R The radius of the earth

vuser The speed of the user

tswitch The time needed for user to go from his/her location to the

nearest Wi-Fi network AP
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5.1.1 Rate monitor module

To adapt to condition changes, our system must monitor

the conditions of the mobile device and the wireless net-

work. Yan et al. [56] used available bandwidth, packet loss,

received signal strength, energy consumption, operator

requirements, user preferences, etc. to guide the selection

of the best network. Chamodrakas and Martakos [57]

proposed a novel network selection based on TOPSIS [58]

that takes into account both network conditions and user

preferences as well as QoS and energy consumption to

select the best network. In this paper, to simplify the sit-

uation and reduce unnecessary cost in those points, we just

use the data rate of the user to guide switching decision

making. Whenever some significant change happens (for

example, a large data rate of the user fluctuation occurs),

the switching decision engine decides whether to trigger

switching. This rate monitor module is designed to monitor

the data rate of users, which is used to guide switching

decision making for our system.

5.1.2 Switching decision engine module

To perform switching decision engine, our system

examines the data collected by rate monitor module. It

then decides whether to trigger switching module

according to user’s switching goals. If so, it decides what

level of Ruser to use on mobile device, that is, how much

bandwidth the user needs. We use a simple threshold-

based approach to decide whether to trigger switching

module. If the Ruser is more than or equal to the threshold

Bt, then the switching decision engine module triggers

switching module and switches to a wide bandwidth Wi-

Fi network. To adapt to the user preferences, the user can

set different thresholds and chooses the appropriate

threshold.

5.1.3 Switching module

In this module, our system decides when and how to switch

to Wi-Fi networks. Figure 3 shows the workflow of

switching module of our proposed system, and it is dis-

cussed below.

When the switching module is triggered, it takes four

steps to complete the switching process. In the first step, it

uses location sensors to get the user’s location. We use

different location sensors in different environments. As we

have already mentioned, considering energy-accuracy

tradeoff and restrictions of different location sensors, we

adopt A-GPS in outdoors and ZigBee in indoors to get

user’s location information. Thus, the switching module

consists of two submodules, that is, the outdoor switching

submodule and the indoor switching submodule.

In the second step, it finds the nearest Wi-Fi network

AP’s location Pap by calculating the distance between the

user’s location Puser and the nearby Wi-Fi network AP’s

location Pnear. In the third step, it calculates the distance

d between the user and the nearest Wi-Fi network AP.

In the last step, we assume that the user moves towards

the nearest Wi-Fi network AP at a constant speed vuser and

there are no obstacles between the user and the nearest Wi-

Fi network AP. We then use (1) to calculate the time

needed for the user to go from his/her location to the

nearest Wi-Fi network AP. After the time tswitch, the user

begins to scan and connect to the Wi-Fi network.

tswitch ¼ d=vuser ð1Þ

5.2 Outdoor switching submodule

Here, we describe an A-GPS assisted network switching

scheme (A-GPS switching for short) in outdoors. We will

compare the power consumption of this scheme with other

four schemes, which will be discussed later.

The operational workflow of this scheme is shown in

Fig. 4. Our system uses A-GPS to locate the user in out-

doors. Then, it discovers the nearest Wi-Fi network AP by

calculating the distance between the user’s location and the

nearby Wi-Fi network AP’s location and gets its location.

We can calculate the distance between user and nearest

Wi-Fi network AP using (2), and use (1) to calculate the

time needed to switch to Wi-Fi network. In (2), Latuser,

Lonuser, Latap and Lonap are expressed in radians, and the

Trigger  switching

Get the user’s location information

Find the nearest Wi-Fi network AP

After the time tswitch, scan and 
connect to WiFi

Calculate the switch time tswitch

Start

End

Calculate the distance d between 
the user and the nearest Wi-Fi

network AP

Fig. 3 Workflow of switching module
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units of d and R are kilometers. Finally, we start to scan

and connect to the nearest Wi-Fi network AP after the time

tswitch.

We assume that we already know the distribution of the

Wi-Fi network around the user, and this distribution is rel-

atively stable. In a nutshell, we discover the Wi-Fi network

by periodically scanning its signal. When a mobile device

discovers a Wi-Fi network, it logs this Wi-Fi network in a log

L, locally. The log entries are in the form of (Timestamp,

{Wi-Fi network}, Location, Range). Wi-Fi network is

identified by its SSID/BSSID, and location is identified by

Wi-Fi network AP’s location which is got by the Wi-Fi

sensors. Range represents how far the Wi-Fi network signals

reach. Given a user’s location, we check the log whether the

user is in the range of a Wi-Fi network: if yes, then we

consider the user can connect to the Wi-Fi network.

5.3 Indoor switching submodule

A ZigBee-assisted network switching scheme (ZigBee

switching for short) is presented in this submodule for

indoors. Figure 5 shows the workflow of this scheme. If

switching module is triggered, our system adopts ZigBee

to get the user’s location in indoors. Then, it calculates

the distance between the user’s location and the nearby

Wi-Fi network AP’s location to find the nearest Wi-Fi

network AP’s location. Thus, it can get the distance

between user and nearest Wi-Fi network AP. Finally, it

calculates the time needed for user to go from his/her

location to the nearest Wi-Fi network AP using (1). After

that, the user begins to scan and connect to the Wi-Fi

network.

6 Experiments for outdoor scenarios

In this section, we use the log L to evaluate five outdoor

schemes with appropriate thresholds and energy efficiency

for different users.

6.1 Experimental setup

The experiments are based on a scenario that a user lives in

a suburban school area, as shown in Fig. 6, where each

circle represents the approximate coverage area of each

network. We use ZTE X876 smartphone for our data

Get the user’s 
Information

Needed 
bandwidth > 
Threshold?

Trigger switching
Use A-GPS to get the user’s 

location information

Whether in the 
Wi-Fi range?

Find the nearest Wi-Fi network

Connect to Wi-Fi network

Start

After the time tswitch, scan 
Wi-Fi network

End

Calculate the time tswitch

Y

Y

N

N

Fig. 4 Workflow of A-GPS-assisted network switching scheme
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Connect to Wi-Fi network

Start
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Y
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Fig. 5 Workflow of ZigBee-assisted network switching scheme

d ¼ 2 arcsin
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2

r
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collection. It is a Google Android 2.2 smartphone with

integrated Wi-Fi interface and is capable of EDGE data

connectivity. It has a battery capacity of 1,500 mAh at 3.7

volts. We have implemented our system, called SwitchR.

The red circle represents a Wi-Fi network and the blue one

represents the user. We also developed other three software

tools, which will be discussed in the following three parts

to record our experimental data with minimal intrusion to

the normal smartphone operation.

6.1.1 Log collection

Our first software, called Log Collector, records the Wi-Fi

network around the user. We discover the Wi-Fi network

by periodically scanning its signal. We go around the

suburban school area, and when we discover a Wi-Fi net-

work, the Log Collector logs this Wi-Fi network in the log

L, locally. Therefore, given a user’s location, we can easily

know whether the user is in the range of a Wi-Fi network

by checking the log L.

6.1.2 Rate collection

We use the second software, called Rate Collector, to

measure different users’ data rates every 30 s, as shown in

Fig. 7a. As we can see from the figure, the data rate of the

user in a continuous 60 min experiment jitters seriously

and changes from 0 to 60 KB/s. When the experiment

starts, it begins to record user’s data rate periodically. The

first version of Rate Collector records user’s data rate every

10 s, which is too frequent to represent the user’s average

data rate.

6.1.3 Measuring phone power consumption

We have developed software based on our previous work

[59], called PowerUsage, to measure the power con-

sumption of our smartphone under controlled conditions.

We use battery interface provided by Google APIs to

record the current percent of the whole battery every

minute. We carried out an experiment to use it to get the

data from a 4-h time period between 13:15 and 17:15.

Figure 7b shows the remaining capacity of battery changes

from 97 to 43 % in the 4-h time period experiment.

6.2 Schemes for comparison

Here, we describe other four experimental schemes, which

are compared to the A-GPS switching scheme in this sec-

tion. Two switching schemes are considered. In the first

scheme, called GSM-assisted network switching scheme

(GSM switching for short), we use GSM to get the user’s

User

Wi-Fi AP

Wi-Fi AP

Wi-Fi AP

Cellular
Network(2G)

Fig. 6 Networks used in experiments

Fig. 7 a Data rate of the user in

a continuous 60 min.

b Remaining capacity of battery

in a 4-h time period experiment
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location. Then, we get the nearest Wi-Fi network AP in the

log L using the user’s location information. Therefore, we

can calculate the distance between user and nearest Wi-Fi

network AP, and the time needed to switch to Wi-Fi net-

work. In the second scheme, called scanning-assisted net-

work switching scheme (Scanning switching for short), we

do not use the user’s location information. When the

switching module is triggered, the user scans for Wi-Fi

networks. The user connects to Wi-Fi network when he or

she discovers one. We assume that the user moves towards

the nearest Wi-Fi network AP, that is, we measure the

lower bound of power consumption.

In addition, two non-switching schemes will also be

examined. In the first (non-switching) scheme, called

always use GPRS (GPRS non-switching for short), we do

not switch and always use GPRS to access the internet.

While in the second scheme, called always use Wi-Fi (Wi-

Fi non-switching for short), we always use Wi-Fi to surf

the internet and do not switch as well. Moreover, in these

two non-switching schemes, GPRS and Wi-Fi are always

available for us, and there is no need to switch between

networks.

To compare the five schemes, we divide users into four

categories according to their behaviors (see Table 5). We

will evaluate the five schemes in four thresholds (see

Table 6) for different users.

6.3 Energy consumption

We evaluate the energy consumption of five outdoor

schemes for different users under different thresholds.

Using the full battery capacity of the smartphone, we

measure the power consumption of different schemes

before the phone runs out of power (total capacity of

19,980 J).

Figure 8a shows the energy efficiency of five outdoor

schemes for the user U1 under different thresholds B1, B2,

B3 and B4. We observe that our A-GPS switching scheme is

close to other two switching schemes. Ideally, they are the

same in terms of energy efficiency because the user U1 does

not need switch from GPRS to Wi-Fi network. Our scheme

consumes a little more power than the best scheme of five

outdoor schemes because of the overhead of our system

itself and high power efficiency for data transfers of the Wi-

Fi network. As we can see from Fig. 8a, the user U1 does

not need high bandwidth. Thus, the bandwidth of GPRS is

enough for U1, and the user U1 does not need any threshold.

We plotted the energy efficiency of five outdoor

schemes for the user U2 under different thresholds B1, B2,

B3 and B4 in Fig. 8b. As we can see from the figure, our

scheme is the best among the three switching schemes

under the threshold B1. There are two reasons behind this.

First, A-GPS provides arguably the best combination of

energy and accuracy for location sensing compared with

GPS and GSM. Second, our scheme greatly reduces the

numbers of unnecessary Wi-Fi scans on the mobile devices

compared with other switching schemes. We observe that

the user U2 does not need switch to Wi-Fi network under

the thresholds B2, B3 and B4. Therefore, the three switching

schemes are close, and the appropriate threshold for the

user U2 is the threshold B1.

As shown in Fig. 8c, our scheme is always the best

among the three switching schemes. The reasons behind

this have been discussed previously. As we can see from

Fig. 8(c), the user U3 always switches from GPRS to Wi-Fi

network under the different thresholds. Our scheme also

consumes a little more energy than the best scheme of five

schemes due to the overhead of our system itself and

A-GPS. Figure 8c shows that the user U3 needs high

bandwidth, and the appropriate threshold for the user U3 is

the threshold B4.

The user U4 downloads a 50 MB file from the Internet.

Figure 8d shows the energy efficiency of five schemes for the

user U4 under different thresholds B1, B2, B3 and B4. In our

experiments, our scheme is always the best of three switch-

ing schemes. Because of many unnecessary Wi-Fi scans of

the scanning switching scheme, it wastes too much energy.

Due to the high inaccuracy of GSM positioning, the GSM

switching scheme also does many unnecessary Wi-Fi scans

on the mobile devices. This leads to its bad performance. Our

scheme also consumes a little more energy than the best

scheme, i.e., the Wi-Fi non-switching scheme. As we can see

from Fig. 8d, the user U4 needs very high bandwidth and the

appropriate threshold for the user U4 is also the threshold B4.

As shown in Fig. 9, the GPRS has a better performance

than the Wi-Fi network under the user U1. However, under

the users U2, U3 and U4, the Wi-Fi network has a much

better performance than the GPRS. We observe that there

Table 5 Various user characteristics

User Application(s) Bandwidth

U1 Text message Low

U2 Text message and web browsing Medium

U3 Text message and video streaming High

U4 Text message and file downloading Very high

Table 6 Different thresholds

Threshold Value (kb/s)

B1 5

B2 10

B3 15

B4 20

The power of smartphones 97

123



is an approximate exponential increase in the average

energy efficiency ratio of Wi-Fi to GPRS. It can be con-

cluded that Wi-Fi provides the best combination of band-

width and power efficiency for data transfers in the

examined scenarios.

7 Simulations for indoor scenarios

We use OMNeT?? to evaluate the five indoor schemes

with appropriate thresholds and energy efficiency for dif-

ferent users in this section.

7.1 Simulation setup

The simulations are based on a scenario that a user lives or

works in a building. We deploy several ZigBee nodes,

which are used to locate the user, in the building, and its

approximate positioning accuracy is set to 5 m. We also

randomly deploy forty Wi-Fi network APs in the rectangle,

of which the length is 2,000 m and width is 340 m, around

the building. The coverage area of each network is 100 m.

We assume that the user goes to the nearest Wi-Fi network

AP at a constant speed of 1 m/s, when he or she finds one.

We also use the ZTE X876 smartphone as the mobile client

for our simulations.

We will compare other four schemes, which are intro-

duced in Sect. 6.2, to the ZigBee switching scheme and

evaluate the energy consumption of five indoor schemes in

four thresholds (see Table 6) for different users (see

Table 5).

7.2 Energy consumption

We compare the energy consumption of five indoor

schemes for different users under different thresholds. The

results of simulations are shown in Fig. 10. As we can see

from the figure, the results of indoor simulations with

different bandwidths under different schemes are similar to

Fig. 8 Energy efficiency in experiments. a U1. b U2. c U3. d U4

Fig. 9 Average energy efficiency ratio of Wi-Fi to GPRS
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that of outdoor experiments. Consequently, we skip here

the detailed analysis for the sake of simplicity.

8 Conclusions

In this paper we have reviewed some typical smartphone

applications, and discussed the power consumption of

smartphones. We have conducted a measurement on power

efficiency of EDGE and Wi-Fi radio of ZTE V880 smart-

phone. We have also summarized basic techniques of

energy saving for smartphones. Furthermore, we have

proposed a location-assisted Wi-Fi discovery scheme that

uses user’s location information to discover the nearest Wi-

Fi network AP. We leveraged complementary character-

istics of Wi-Fi and GPRS to meet the user bandwidth needs

and minimize the power consumption of smartphones. The

proposed scheme allows the user to switch to the Wi-Fi

interface intelligently when he or she arrives at the nearest

Wi-Fi network AP. Thus, it considerably reduces the

number of unnecessary Wi-Fi scans on non-connected

state. Our experiments and simulations show that it effec-

tively saves energy for smartphones in certain scenarios.

However, we simply used the data rate of the user to

make switching decision. We did not take other factors,

such as network conditions and QoS, into account to select

the best network. Therefore, our switching decision making

procedure is not flexible enough to handle various condi-

tions. As we can see from our experiments, different users

have different appropriate thresholds. Thus, our system

must be adaptable to different users. Further research is

necessary in this regard. In addition, we will upload every

mobile device’s log L and offload the matching computa-

tions to the cloud computing platform in future work.
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