
Towards Understanding Bugs in Open Source Router
Software

Zuoning Yin and Matthew Caesar
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{zyin2, caesar}@cs.uiuc.edu

Yuanyuan Zhou
Department of Computer Science and

Engineering
University of California, San Diego

La Jolla, CA 92093
yyzhou@cs.ucsd.edu

ABSTRACT

Software errors and vulnerabilities in core Internet routers
have led to several high-profile attacks on the Internet infras-
tructure and numerous outages. Building an understanding
of bugs in open-source router software is a first step towards
addressing these problems. In this paper, we study router
bugs found in two widely-used open-source router implemen-
tations. We evaluate the root cause of bugs, ease of diagno-
sis and detectability, ease of prevention and avoidance, and
their effect on network behavior.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign

General Terms: Reliability

Keywords: Software errors, Internet routing, router soft-
ware, protocols

1. INTRODUCTION
The Internet is an extremely large distributed system,

comprising tens of thousands of competing ISPs, and hun-
dreds of millions of end-hosts. The ability of this system
to cope with such massive scales, to weather its continu-
ous churn, and to adapt to new applications and threats,
lies in the complex intertwining of systems and protocols
that make up its design. Unforeseen and poorly-understood
cross-dependencies between protocols and networks, the need
to support a vast array of policy configurations and ad-
vanced features, the need to operate in untrusted environ-
ments, and the need to interoperate with a wide variety of
other vendors and legacy code have caused Internet proto-
cols to become exceedingly complicated.

Much of the Internet’s complexity lies in software run-
ning on its constituent routers. Internet routers typically
run an operating system (e.g. Cisco IOS or JunOS), along
with a suite of protocol daemons which compute routes and
distribute information about network state. Unfortunately,
like any complex software, router software is prone to im-
plementation errors, which have led to a number of recent
high-profile vulnerabilities and outages [2, 12]. As one recent
example [5], on February 16th, a small ISP network (called
Supronet) performed a configuration change to shift traffic
from one of its links to another ISP. It modified the config-
uration by increasing the size of the AS Path (the AS Path
is a field of routing updates that store the list of ISP-level
hops used to reach the destination) in routing updates it
advertised out that link. The result was a particularly long

AS Path, which could be correctly handled by the MikroTik
routers deployed in Supronet. Unfortunately, Cisco routers
contained a bug that would cause them to reboot when re-
ceiving a long AS Path. Worse still, after rebooting, Cisco
routers would try to receive those “unexpected” updates
again and reboot again, triggering continuous oscillations.
While Supronet, which is in the Czech Republic, performed
this configuration change around midnight (to minimize im-
pact of accidental outages on their own local networks), it
was mid-day/early evening in east Asia and U.S. when the
fault occurred. The result was a hundred-fold increase in
instability, traffic loss, and outages affecting nearly every
country in the world. In general, the Internet was not de-
signed to be resilient to buggy protocols, and hence bugs in
router software can be devastating to network operation.

A bug characteristic study is usually the first step to un-
derstand the reliability issues in a particular software do-
main. Understanding software errors can support progress
on reliable designs and related tools to address those reliabil-
ity problems. There has been substantial work on studying
properties of bugs [25, 10, 21, 23] in traditional software
systems. Bug characterization studies [25] done by IBM in
the early 1990’s demonstrated the necessity of dealing with
memory bugs, which motivated many commercial and open-
source memory bug detection tools such as Purify [17] and
DIDUCE [16]. A study of operating system bugs by Chou et
al. [10] revealed that device drivers had substantially higher
error rates than the rest of the kernel, motivating work on
reliable device drivers such as Nooks [26]. There have also
been characteristic studies of concurrency bugs [23], moti-
vating new work on concurrency bug detection tools [22].

These characterization studies have shed light on the dif-
ferences in bug characteristics across different software do-
mains. Unfortunately, today we lack a characterization study
of bugs in router software. Router software possesses several
unique features as compared to traditional software. Router
software is highly distributed, running across a large num-
ber of routers and disjoint ISP networks. It is also highly
customizable, with rich configuration languages, which can
lead to a highly diverse set of execution paths and significant
implementation complexity. Router software also has ex-
tremely high requirements on availability and performance,
and is often tightly coupled with an operating system.

A bug characterization study of routers may lead to deeper
understanding of the kinds of bugs they suffer from, how
they affect network-wide performance and operational con-
siderations, how well current diagnosis and recovery schemes

ACM SIGCOMM Computer Communication Review 35 Volume 40, Number 3, July 2010



react to the bugs, how future router designs can be made ro-
bust to bugs, and may shed light on bugs occurring in other
kinds of distributed systems. As a first step towards this
goal, we propose a taxonomy of bug properties, and use it
to perform a characteristic study of router bugs found in two
widely-used open-source router implementations: Quagga [4]
and XORP [15]. We leveraged static code analysis tech-
niques [1, 20] coupled with manual classification of bugs in
publicly available Bugzilla repositories to study the nature
of router bugs. To make our study more general, we also
evaluate bug and vulnerability reports on Cisco IOS. Fi-
nally, to understand complexity in the data plane of soft-
ware routers, as well as inter-router communication within
the control plane, we also study bugs in the Linux IP stack.

To the best of our knowledge, this paper is the first to
characterize bugs in router software. We analyze common
programmer errors that lead to router bugs, the effect bugs
have on network operation, the efficacy of troubleshooting
and working around bugs in live networks, and what com-
ponents of router code are most prone to bugs. We give
a taxonomy of router bugs, which characterizes the trigger
condition, the impact to routing, and the efficacy of various
detection and recovery schemes to a bug. We then make a
number of observations on the origin, effect, detection and
prevention of router bugs.

Roadmap: We first analyze two representative router soft-
ware bugs in Section 2. We then describe our methodology
for classifying bugs in Section 3. After that, we present the
results of our characteristic study in Section 4, and conclude
in Section 5.

2. EXAMPLE ROUTER BUGS
We start by describing two example bugs to show how

we classify the properties of the bugs, and to motivate the
categories we use to taxonomize router bugs.

Timer rollback causes wrong routing state: In the
OSPF routing protocol, each link state update is tagged with
the time it is advertised. This time is used to ensure con-
sistency of routing databases: if two updates for the same
link are received, the most recent one is used to be added
to the local router’s link-state database. According to bug
report # 134 in Quagga’s Bugzilla database, resetting the
router’s local time to an earlier time caused data packets
to be lost. By inspecting the source code, we found that
in Quagga versions prior to 0.98.6, this time was stored as
the difference from the last-advertised wall-clock time, and
hence resetting the system clock to an earlier time caused
the advertised time in updates to become negative. Since
the time was stored as an unsigned value, it could over-
flow and become very large. Since such large values could
not be overwritten by later updates, these advertisements
got “stuck” in router topology databases. From this infor-
mation, there are several bug properties that immediately
follow. Since routing messages can be lost, we know this
problem would affect both control and data planes of the
network, as it could cause router state to become incon-
sistent with network topology, and cause data packets to be
lost. Since OSPF areas re-advertise messages at area bound-
aries, the scope of the problem would be contained within a
single OSPF area, as such times are filtered at area bound-
aries. This problem was located in Quagga’s timer code,
and was fixed by having Quagga use “time since startup”
instead of wall-clock time, when computing this value.

Control/data-plane inconsistency after interface flap:
Some routing protocols require state on either side of peer-
ing sessions to be maintained in a consistent fashion. Ac-
cording to a bug report for Cisco IOS version 12.4, a very
fast session flap can cause this state to become inconsis-
tent, leading to lost routes. The report indicates the route
can be lost when multiple conditions exist (a) an interface
goes down for a very short period time (less than 500ms)
(b) OSPF runs a shortest path calculation during this pe-
riod and removes routes via that adjacency (c) the router’s
neighbor does not notice the flap, and believes the session
remains up (d) the link-state advertisement damping is acti-
vated, and the damping timer does not expire until after the
500ms period. When these conditions hold, the local router
drops routes traversing the link (since it ran the shortest-
path computation while the interface was down), but does
not advertise a new route (since the interface is up when it
checks to see if a new advertisement is necessary), leading to
a mismatch between how packets are forwarded (data plane)
and the set of routes advertised by routers (control plane).

3. METHODOLOGY

3.1 Taxonomy
We classify bugs along five dimensions: (i) Root cause:

This category helps us to understand the underlying fac-
tors that lead programmers to introduce errors in router
software. This dimension is defined similarly to that of tra-
ditional software where bugs are usually classified into one
of the subcategories of memory, concurrency and semantic
bugs. For concurrency bugs, our definition is restricted to
bugs that manifest at a single instance and doesn’t include
bugs that manifest during the interaction across multiple
devices. We define a semantic bug as an inconsistency with
the original design requirements or the programmers inten-
tion [21]. (ii) Trigger condition: This category studies
what kind of inputs or events lead to buggy behavior. Study-
ing this may give insights into ways to avoid or work around
bugs at runtime. Those inputs or events could be routing up-
dates, configuration changes, shell inputs, status changes of
interfaces, etc. (iii) Effect: This category studies the effect
the bug has on router level and network-wide behavior. We
start by studying the particular end-result the bug has on
router behavior. Next, we study whether the bug could be
exploited by an attacker. Then, we study the scope of effect,
and determine whether the bug affects the control plane, the
data plane, or if it leads to a control/data plane inconsis-
tency. (iv) Code location: Next, we study the particular
location in the code base which contains the bugs. Doing
this may give insights into which parts of router software are
most prone to bugs. Given router software is commonly de-
composed into several well-defined modules, we performed
this task by classifying bugs according to which of these
modules they appeared in. (v) Operational issues: Fi-
nally, we study how difficult it is to detect and work around
the bug, in terms of what sorts of traces must be collected
from the network to isolate the bug, and whether a sim-
ple or previously-proposed model of router/network behav-
ior (rcc [13], FIB-RIB consistency checks, watchdog timers)
can detect the problem. We also study the localizability of
the bug, in terms of whether the bug can be isolated to a sin-
gle router, area, or ISP, and taxonomize various techniques
operators can use to work around the bug at runtime.

ACM SIGCOMM Computer Communication Review 36 Volume 40, Number 3, July 2010



3.2 Router software
Unfortunately, vendors of commercial router software are

(understandably) reticent to share their source code with
us, limiting our abilities to comprehensively study these
code bases. Hence, we instead focus on open-source router
software. In particular, we study two diverse implemen-
tations (Quagga and XORP) which differ in their internal
design, in an attempt to characterize bug features that are
general across router software, as opposed to being biased
to a particular implementation. Moreover, studying open
source router software is becoming more interesting in its
own right, as it is becoming more widely used in commer-
cial routers [6] and third-party routing systems [11]. It also
allows us to leverage static code analysis techniques, as well
as allowing us to study the exact structure of the imple-
mentation errors in the code base. However, we expect our
study to shed light on closed-source routers as well, since
the open-source routers we studied are similar: they run the
same well-specified protocols, use similar configuration lan-
guages and interfaces, and similar internal data structures
and modules [9]. Furthermore, Quagga and XORP hit on
many of the different configuration interfaces and implemen-
tation decisions used by various vendors, and hence collec-
tively represent a wide space of router designs. For example,
XORP processes updates in an event-driven fashion (similar
to Juniper), while Quagga uses a timer to stage processing
(similar to Cisco [27]). Also, XORP’s configuration language
is similar to Juniper’s, while Quagga’s is similar to Cisco’s.
We compare our results across the two routers, as well as
investigating differences arising from their implementation
structure and design decisions. To validate the generality of
our results to closed-source router software, we also study
a portion of bugs in Cisco IOS. To evaluate generality to
security-related bugs, we also study security advisories on
Cisco IOS posted on the NANOG mailing list. Finally, to
characterize bugs arising in software router data planes, we
characterize bugs from the IP stack [3] in the Linux kernel.
We were unable to acquire bug samples from Juniper, as
their bug database was not open.

3.3 Bug sources
To perform our characterization study of bugs, we need a

set of bug “samples” to analyze. Finding bugs in software
is in itself a highly challenging problem. To avoid this prob-
lem, we manually read each bug report from the Bugzilla
repository, studied the affected region in source code, and
used this information to classify and summarize the bug.
Manual analysis requires substantial effort, as compared to
using automated scripts to collect bug statistics based on
the prevalence of keywords. However, using manual analy-
sis allows us to derive more precise and richer information
about the bugs we studied. We also supplement our study
with static code analysis tools such as Coverity Prevent [1]
and CPMiner [20] to evaluate effectiveness and accuracy of
static analysis in discovering router software bugs.

After compiling our list of bugs from these sources, we
then performed several steps to refine the list. First, we
filtered out reports marked as NEW, UNCONFIRMED, or
INVALID, since these bugs almost always had insufficient or
incorrect information. Next, we manually removed trivial
bugs from the list which did not affect router operation.
These bugs included, for example, typos in documentation
and compile errors. By doing the above steps, we eliminated

around 63% of bug reports from Quagga, XORP and the
Linux IP stack. We then randomly select 210 bugs (80 from
Quagga, 80 from XORP and 50 from Linux IP stack) as
a representative subset for detailed inspection. To ensure
this number of bugs was representative, we also apply the
taxonomy on smaller randomly chosen subsets of bugs (30
and 50), and achieved similar results (within a factor of 3.6%
and 2.1% across all categories).

Bug set # sampled Open src? Taxonomy

Quagga 80 Yes Full
XORP 80 Yes Full
Cisco IOS 104 No Partial
Linux IP stack 50 Yes Partial
Cisco Vulnerabilities 50 No Partial

Table 1: Our bug sources

Since we did not have access to Cisco IOS source code,
we used a more limited taxonomy for those bugs, including
only effect, trigger condition and workaround. We chose
to study the latest stable (mainline) release train, version
12.4. To reduce the number of bugs to a tractable amount,
we selected non-trivial bugs (bugs with severity level 1 or 2
assigned to it by Cisco engineers) with keywords “OSPF” or
“BGP” in either the title or body of bug reports. We then
performed manual classification on each of the resulting 104
bugs. We also studied router vulnerabilities by selecting all
Cisco Security Advisories posted on the NANOG mailing list
from Jan 03 2005 through Sep 31 2008. We then randomly
selected 50 bugs from those vulnerabilities. Therefore, we
studied 364 bugs from Quagga, XORP, Cisco IOS and the
Linux IP stack with our taxonomy.

3.4 Limitations
Performing a characterization study of router bugs presents

a number of challenges. Given the rich variety of bug fea-
tures, and the difficulty in isolating them, we must rely on
manual classification. Therefore, inevitably, our study has
some limitations.

First, we do not have access to commercial code. To
deal with this, characterizations of traditional software focus
their efforts on open-source counterparts, with the motiva-
tion that open-source implementations are becoming more
widely used [11, 6]. We do study some bugs from Cisco
routers with a partial taxonomy, however we remain unable
to directly study commercial code. Second, for represen-
tativeness, we select bugs randomly from the Bugzilla bug
databases with the goal to provide an unbiased sample of
bugs that have been detected and fixed by the implementers.
However, characteristics of unreported bugs are not visible
from the bug databases. We deal with this partially by using
static analysis to collect information about memory errors
directly from source code. However, our study may not re-
flect characteristics of unfixed/unreported bugs of types not
detectable by these tools. Finally, though we examine ev-
ery possible piece of information we have about the bug, we
cannot claim our taxonomy is complete.

Overall, our conclusions cannot be applied to all router
software. However, we believe the main results of our study
could give insights on a large class of existing router soft-
ware. In addition, most of the characteristics we observe
were consistent across both Quagga and XORP, along with
substantial similarity to Cisco IOS bug reports, indicating
the validity of our methodology to some degree. We do not

ACM SIGCOMM Computer Communication Review 37 Volume 40, Number 3, July 2010



Figure 1: Root cause of bugs.

emphasize any quantitative characteristic results, and read-
ers should view our findings together with our methodology
and selected applications.

4. RESULTS
Here, we present the results in the five dimensions men-

tioned in Section 3.1.

4.1 Root Cause
Overall (Figure 1), we found that most bugs (72%) are

due to semantic errors. Of these bugs, the majority (78%)
were caused by missing cases, where the programmer over-
looked a necessary step of the protocol. Next, we found that
21% of bugs were due to memory errors, 3% of which were
caused by memory leaks, and 16% were due to invalid mem-
ory accesses (e.g., dereferencing an invalid pointer). With
respect to concurrency bugs, we found a total of 6%, with
2% arising from deadlocks and 4% arising from data races.
We found that concurrency bugs are fairly rare, since most
protocol-specific execution occurs only within a single pro-
cess. All concurrency bugs found were due to interactions
between the router software and the kernel.

4.2 Trigger
We consider a bug to be triggered by an event or input, if

the event could cause the code containing the bug to be ex-
ecuted, with the particular inputs to that code causing the
bug to generate incorrect behavior. We classify a routers in-
puts into several categories, and count the number of bugs
that are triggered by each (Figure 2): receipt of routing
updates (39%, 46% of which were sensitive to the precise
ordering or timing of these updates), timer expiry events
(22%), commands entered at the vty shell (52%), changes
made to the configuration file (63%), failure/repair of in-
terfaces (12%), operating system events (such as resetting
the system clock, 3%), and heavy update load (7%). These
percentages do not sum to one because many bugs can be
triggered by multiple different kinds of inputs. For exam-
ple 52% of bugs triggered by routing updates could also be
triggered by configuration file changes. Cisco IOS has sim-
ilar results, but has more bugs triggered by configuration
changes (92%). We found in many cases multiple specific
configuration commands had to be simultaneously present
at a single router (32%), or across multiple routers (14%).

4.3 Effect
As shown in Figure 3, we found the majority (58%) of

bugs are non-fail-stop bugs: routers kept running but began
behaving incorrectly. 39% of bugs caused the router to stop
running (crash, hang or deadlock). 81% of bugs affect both
control plane and data plane. Cisco IOS bug reports also
show a similar trend. The results show that most router
bugs do not cause fail-stop failures. We also roughly char-

Figure 2: Trigger condition of bugs.

acterized security vulnerabilities introduced by Quagga and
XORP bugs, by counting how many bugs could be exploited

by a remote attacker. We found that for 26% of bugs, their
symptoms could be made worse by the existence of a single
compromised router within the network. In the Cisco IOS
bug list, only 6% of bugs were vulnerabilities. For complete-
ness, we also study bugs in the software router’s data plane
(the Linux IP stack). Overall, we found that most bugs
(82%) in the Linux IP stack would affect the data plane of
a software router. Nearly half of the bugs we studied (48%)
will cause the kernel to stop running.

4.4 Code Location
We counted the number of bugs falling into each of the

logical components of the source code as a means to analyze
code location (as shown in Figure 4). We observed that 75%
of bugs are related to the handling of protocol, policy and
configuration, demonstrating the complex challenge of cor-
rectly implementing these features. For Linux IP stack, a
substantial number of bugs are related to security- and filter-
related functions such as Netfilter (16%) and IPSec (16%).
To further understand the relative frequency of bugs across
modules, we studied the complexity of those components in
the router software. More specifically, we count the number
of Lines of Code (LoC) that made up each component (Fig-
ure 4). Over half (50%) of the code implements interfaces to
human operators (parsing configuration files, the vty termi-
nal and logging). Interestingly, we find that the number of
lines of code is not a good indicator of the likelihood of con-
taining a bug. For example, policy-related logic comprises
4% of code yet comprises 28% of bugs, indicating policy-
related code may be more prone to bugs than other parts
of router code. To address this, future router and network
designs may wish to focus on reducing policy and proto-
col complexity, for example by simplifying policy configu-
ration [15, 7] or automating protocol implementation [14].
Besides, we observe that a significant amount of bugs re-
side in the interaction between different protocols (route re-
distribution). While recent work [19] finds that route re-
distribution, which translates routing information between
different protocols, performs a highly crucial function and
is often used to achieve ends not possible with traditional
routing protocols, our results indicate that this glue logic is
also particularly prone to router bugs, with 10% of bugs in
Quagga, 18% in XORP and 20% in Cisco are associated with
route redistribution code. In addition, a sizable amount of
bugs were discovered due to their causing an interoperability
problem between different vendors (e.g., the Supronet bug
mentioned in Section 1). One reason for these bugs may be
due to insufficient testing of interactions across protocols as
well as insufficient testing of router implementations across
different vendors.

ACM SIGCOMM Computer Communication Review 38 Volume 40, Number 3, July 2010



Figure 3: Effect of bugs on the network.

4.5 Operational Issues

Detection: Some bugs cause behavior that is clearly in-
correct, for example bugs that cause crashes, making them
easy to detect. However, other bugs may require more ad-
vanced forms of detection or domain-specific knowledge of
network policies or protocol operation in order to be de-
tected. To analyze this, we assumed network software run-
ning at a router could be instrumented with a simple model

of correct behavior. This model consists of a simple set
of invariants that router outputs should obey given their
inputs, that would catch some (but not all) incorrect be-
havior. We then manually determined, for each bug sam-
pled, whether the simple model can detect the bug from
its manifestation. We found 45% of the examined bugs can
be detected by incorporating several simple data-plane and
control-plane checks into router behavior. More specifically,
a sizable amount (13%) of bugs could be detected by adding
some simple sanity checks into router software: 4% could be
detected by checking consistency between the FIB and RIB,
9% could be caught by a simple watchdog timer which de-
tects if the router is hung or unresponsive. Also, 32% could
be caught by detecting that a crash has occurred.

Next, we evaluated the ability of a network operator to
detect the bug by appropriate placement of vantage points.
We found that if vantage points are placed correctly, 55% of
bugs could be detected by solely observing control messages
from routing protocols. However, 27% of bugs could not be
detected by such means and required operators to look at
router logs.

Next, we applied two static analysis tools [1, 20] to multi-
ple versions of the two software router. Doing this may shed
insights on the sorts of bugs that would be detected with
more widespread use of static analysis tools, and to evalu-
ate what sorts of bugs were overlooked by contributors to the
Bugzilla databases. Static analysis tools are typically writ-
ten to target certain classes of errors; for example, Coverity
Prevent primarily detects memory access violations, while
CPMiner detects copy-paste errors. Hence, these tools de-
tected no semantic bugs when we applied it to router code.
Coverity Prevent has some concurrency checkers but they
are not effective in detecting real concurrency bugs in our
study.

First, we manually cross checked defects found from static
analysis of memory errors against the Bugzilla bug reposito-
ries. We selected the bug reports which describe a memory
bug and have a patch available. With this criterion, we
found 12 memory bugs from Quagga Bugzilla. However,
Coverity Prevent reported none of these bugs even though
it reported many memory defects which are not reported by
Bugzilla. Second, focusing on the memory defects, we found

Figure 4: Code location of bugs.

that the Coverity Prevent had a false positive rate of 60%-
96%, but accurately reported on average 99 non-trivial mem-
ory defects. We further analyzed the memory bugs missed
by Coverity Prevent. We find that most of them only man-
ifest under a particular interleaving of messages and events.
We also tried CPMiner [20], but found nearly all defects
reported by it were false positives. This may be because
open source router software are smaller than large-scale soft-
ware like Mozilla and Linux, and contains fewer modules, re-
ducing the frequency with which code would be copied and
pasted. While static analysis tools are still very helpful for
router code, it is difficult for them to detect bugs manifesting
under complex interleavings of messages and events.

In addition, all concurrency bugs we found are due to
the interaction between kernel and routers. For example,
when Quagga’s bgpd process (BGP daemon) installs a route
into the kernel’s routing table, it enters a queue. One par-
ticular bug (# 268) allowed route withdrawals and adver-
tisements to get reordered within the queue, due to a race
between the kernel and bgpd. This in turn caused routes
to be leaked (since reordering a withdrawal with a previ-
ous route advertisement could prevent the route from ever
getting withdrawn). While Coverity Prevent contains tech-
niques to localize concurrency problems, they were not effec-
tive in detecting the concurrency bugs in our study. This is
also true for other modern concurrency bug detection tools.
The fundamental reason is that all these tools only consider
concurrency bugs that manifest across threads, they can-
not detect concurrency bugs that manifest across processes
(e.g., between the OS and applications). Considering the ex-
istence of many such bugs, new concurrency bug detection
tools should be developed to address this scenario.

Diagnosis: Once a network is determined to contain a bug,
network operators may wish to narrow down on the bug’s
location within the network. To evaluate this, we studied
how well a single buggy router could be isolated within a
typical ISP’s network topology. Here, we assume that van-
tage points are placed randomly in the network, which can
send data-plane probes and observe control updates. We
found that 51% of bugs could be deterministically localized
to a single router. However, a sizable amount of bugs could
not: 22% of bugs could not be localized to a single router,
and could only be localized to a set of routers within the
ISP.

Once the bug has been isolated, a key challenge lies in
reproducing the bug, because the state of router software is
determined by a distributed computation, which may only
arise due to certain orderings of network events, or only af-
ter running for long periods of time. We found that 41% of
bugs required some form of interactions with other routers
to be reproduced, while the remaining 59% could be repro-
duced at a single router being fed with routing updates.
In addition 17% of bugs required specific routing updates

ACM SIGCOMM Computer Communication Review 39 Volume 40, Number 3, July 2010



or specific update orderings/timings to trigger the problem.
These bugs are more challenging to reproduce. In addition,
we found that a fairly large fraction of bugs (17%) are non-
deterministic. Such bugs are especially difficult to localize,
as the bug may not manifest every time.

Workaround: Most bugs can be “worked around” by
network operators using simple manual techniques. After
discovering a bug, and while waiting for the router vendor
to repair it, the ISP may wish to temporarily work around
the problem, to minimize damage the bug causes. Since
bug reports often do not contain sufficient information to
determine how to avoid the bug, and hence the percent-
ages we give represent lower bounds. We found that 9%
of bugs could be avoided by rolling back to an earlier ver-
sion of router software, 6% could be avoided by changing
the operating system on which the software router was run-
ning, 37% could be avoided by using the techniques of net-
work virtualization [18] to change to a different function-
ally equivalent protocol at a low overhead (e.g., changing
from OSPF to IS-IS), 18% could be avoided by restarting
the operating system, 15% could be avoided by restarting
the daemon, and 24% could be avoided by modifying the
configuration in a functionally-equivalent way (in fact, even
more could be worked around with a non-functionally equiv-
alent change: for 54% of the Cisco bugs we studied, develop-
ers documented a configuration-change workaround). Again
these percentages sum to a number larger than one because
some bugs can be worked around in several alternative ways.
Therefore, networks and configuration techniques should be
designed to simplify workarounds. Network operators may
be able to speed reaction by maintaining “fallback” configu-
rations for use during times of errors. Developing automated
techniques to automatically determine semantic-equivalent
or semantic-similar configurations may be a useful research
direction.

Moreover, future routers may be designed to perform run-

time adaptation [24, 8], where the router automatically de-
tects the problem and modifies its execution environment
to avoid the bug. Here, we count how many bugs could be
avoided by simple forms of runtime adaptation: 6% could
be avoided by dynamically resizing internal buffers (e.g., to
mitigate buffer overruns), 14% could be avoided by skipping
particular configuration commands in the configuration file,
2% could be avoided by performing an automatic garbage
collection procedure, 4% could be avoided by disabling as-
sertions, 1% could be avoided by disabling logging.

5. CONCLUSION
To the best of our knowledge, this paper presents the first

characteristic study of router bugs. We provide a method-
ology for classifying bugs based on a combination of static
analysis and manual classification, a taxonomy of bugs with
an emphasis on their network-specific properties, and present
results for 364 bugs collected from two widely-used open-
source software routers, Cisco IOS, and the Linux IP stack.
Our results show that router bugs have particularly drastic
consequences for network operation, commonly leading to
outages and harming correctness of forwarding. Bugs are
also challenging to detect and diagnose, though once they
are detected they can often be temporarily worked around
via simple configuration changes. For future work, we plan
to apply the insights of this study towards designing more
reliable router software. Moreover, we plan to extend the

scope of our study by considering other sorts of network
equipment, such as DNS servers.

6. REFERENCES
[1] Coverity prevent.

http://www.coverity.com/html/coverity-prevent.html.

[2] The internet outage and attacks of october 2002.
http://www.isoc-chicago.org/internetoutage.pdf.

[3] Linux kernel tracker. http://bugzilla.kernel.org/.

[4] Quagga software. http://www.quagga.net.

[5] Reckless driving on the internet. http://www.renesys.com/blog/
2009/02/the-flap-heard-around-the-worl.shtml.

[6] Vyatta (open-source router vendor). www.vyatta.com.

[7] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens,
D. Meyer, T. Bates, D. Karrenberg, and M. Terpstra. Routing
policy specification language (rpsl). June 1999.

[8] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory
safety for unsafe languages. In PLDI, June 2006.

[9] J. Boney. Cisco IOS in a Nutshell. O’Reilly Media, Inc., 2005.

[10] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems errors. In SOSP, October
2001.

[11] J. V. der Merwe, A. Cepleanu, K. D’Souza, B. Freeman, and
A. Greenberg. Dynamic connectivity management with an
intelligent route service control point. In SIGCOMM Workshop
on Internet Network Management(INM), September 2006.

[12] J. Duffy. BGP bug bites juniper software. In Network World,
December 2007.

[13] N. Feamster and H. Balakrishnan. Detecting BGP
configuration faults with static analysis. In NSDI, May 2005.

[14] T. G. Griffin and J. L. Sobrinho. Metarouting. In SIGCOMM,
August 2005.

[15] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and
P. Radoslavov. Designing extensible IP router software. In
NSDI, May 2005.

[16] S. Hangal and M. Lam. Tracking down software bugs using
automatic anomaly detection. In ICSE, May 2002.

[17] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Usenix, 1992.

[18] E. Keller, M. Yu, M. Caesar, and J. Rexford. Virtually
eliminating router bugs. In CONEXT, December 2009.

[19] F. Le, G. Xie, D. Pei, J. Wang, and H. Zhang. Shedding light
on the glue logic of the internet routing architecture. In
SIGCOMM, August 2008.

[20] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for
finding copy-paste and related bugs in operating system code.
In OSDI, December 2004.

[21] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have
things changed now? An empirical study of bug characteristics
in modern open source software. In ASID, October 2006.

[22] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. Popa, and
Y. Zhou. MUVI: Automatically inferring multi-variable access
correlations and detecting related semantic and concurrency
bugs. In SOSP, October 2007.

[23] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes –
a comprehensive study on real world concurrency bug
characteristics. In ASPLOS, March 2008.

[24] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating
bugs as allergies – a safe method to survive software failures. In
SOSP, October 2005.

[25] M. Sullivan and R. Chillarege. A comparison of software defects
in database management systems and operating systems. In
International Symposium on Fault-Tolerant Computing, 1992.

[26] M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. In SOSP’03.

[27] R. Teixeira, A. Shaikh, T. Griffin, and G. M. Voelker. Network
sensitivity to hot-potato disruptions. In SIGCOMM, August
2004.

ACM SIGCOMM Computer Communication Review 40 Volume 40, Number 3, July 2010


