
GPU-based PostgreSQL Extensions for Scalable
High-throughput Pattern Matching

Grant Scott
Center for Geospatial Intelligence

University of Missouri
Columbia, Missouri, USA

Email: GrantScott@missouri.edu

Matthew England,
Kevin Melkowski

and Zachary Fields
Department of Computer Science

University of Missouri
Columbia, Missouri, USA

Derek T. Anderson
Dept. of Electrical and Computer Engineering

Mississippi State University
Mississippi State, MS, USA

Email: anderson@ece.msstate.edu

Abstract—Numerous fields require large-scale pattern match-
ing to achieve a variety of computational goals. Herein, we present
novel graphics processing unit (GPU) extensions that facilitate
high-throughput pattern matching in a PostgreSQL database. We
have developed an extension framework to perform data block
processing of large pattern data sets, using a stream process-
ing design that results in global k-nearest neighbor matches.
This framework was specifically designed to support pattern
matching on GPU from within the database environment. This
approach avoids the necessity of storing an entire data set onto
GPU hardware, which facilitates significant scale-up of pattern
databases. This provides enormous potential to incorporate or
exploit auxiliary (meta)data as part of the pattern matching
process; as well as pipelining the results into traditional relational
algebra expressions. By pipelining pattern matching results into a
relational expression, the power of the database can be leveraged
to build result sets based on various parameterized correlations
between the query pattern(s) and the results. In this preliminary
work, we have integrated GPU-based high-throughput p-norm
metric functions into the database server. This allows one to
design heterogeneous data processing techniques that combine
large-scale content-based image retrieval (CBIR) with traditional
data processing capabilities of the database such as relational,
spatial, or text search. We present timing characteristics for
various pattern sizes and metric combinations, as well as address
the balancing of database and GPU parameterization. Our
feature vector datasets range from 18 to 85 GB in database table
storage size, reaching 100 million 128 dimensional vectors. We
are able to efficiently execute global top k searches from within
the database.

Keywords—Pattern matching, heterogeneous data, graphics
processing unit (GPU), PostgreSQL, high-throughput computing
(HTC), high-performance computing (HPC)

I. INTRODUCTION

Numerous fields require large-scale pattern matching to
achieve a variety of computational goals. The specifics of
matching patterns are highly varied, ranging from indexing to
pruning to brute-force matching. Scalability is often a concern
as content and pattern databases are growing increasingly
larger, into the terabyte-scale. This growth is driven by many
factors, such as increased database members (e.g., quantity of
images) as well as increasing numbers of measurements and
measurement encoding sizes.

High-performance solutions to large-scale pattern match-
ing problems often utilize distributed systems or computing

clusters and network programming. These are typically com-
posite hardware-software solutions, which utilize a combi-
nation of distributed hardware, networking technologies, and
software to achieve robust, scalable pattern matching. Map-
Reduce architectures (e.g., Hadoop) are a common approach to
achieve scalable pattern matching. In both [1] and [2], Hadoop
facilitates searching large time series sets. String patterns
and regular expressions are matched using Hadoop in [3].
However, distributed approaches such as these incur increased
overhead from networking and management of the reductions.
Additionally, these approaches often rely on uniquely cus-
tomized indexing or partitioning data structures to facilitate
scalable pattern matching. However, relying on customized
data structures and distributed platforms presents limitations
when considering integration with other data or metadata. For
instance, it is difficult to utilize image metadata of any nature to
reduce the content-based image retrieval (CBIR) search space
in such designs.

The aforementioned approaches are often necessary for
pattern matching against large data sets to overcome the
processor, storage, and/or memory limitations of a single
machine. Often the true limitation is a scalability requirement
that simply cannot be achieved by a particular solution without
significantly increasing the hardware resources. In contrast to
customized distributed architectures or data structures, open
source database management systems, such as PostgreSQL,
already support large datasets and use of heterogeneous re-
striction criteria, e.g., relational attribute filtering with spatial
constraints. Additionally, PostgreSQL is naturally scalable as
both a data storage and processing framework. However,
database management systems are not traditionally equipped
for high-throughput numerical computations, such as needed
for large-scale pattern matching.

General purpose programming on graphics processing units
(GPGPU) represents a promising composite hardware-software
solution for pattern matching problems. GPGPU programming
has been leveraged against various problems related to pattern
matching and retrieval, e.g., [4]–[8]. Various research efforts,
such as [9]–[11], to list a few, have utilized GPU hardware
to perform descriptor matching, a common task in CBIR
applications. GPGPU techniques have been used in closely
related domains such as classification [12] and string matching
[13]. Unfortunately, one of the common drawbacks of many
existing GPU-driven pattern matching approaches is the need

1: procedure PGPATTERNSTREAMMATCH(Q,D,k)
2: . Q query pattern
3: . D pattern data set
4: . k desired result size
5: Build SPI cursor to pull pattern stream
6: repeat
7: Fetch cursor block of size X
8: Score ← pattern match function
9: for Each row of block do

10: Load ID fields into structure
11: Load match-score into structure
12: Push structure into k-sieve
13: end for
14: until End of Cursor
15: Unpack k-sieve into Tuple Store
16: end procedure

Fig. 1. PostgreSQL pattern stream matching algorithm that leverages the
server programming interface (SPI). This algorithm returns a table expression
for subsequent database operations. The cursor block size, X , is configured
to optimize the performance of the database.

to materialize the entire database onto the GPU.

In [14], the authors highlight the need to augment GPU
memory with fast persistent memory, such as modern solid
state drives (SSD). This is increasingly necessary as the growth
in size of the pattern databases is out pacing the growth of GPU
memory. Similarly, the authors of [15] saw the importance of
being able to process massive amounts of data on the GPU.
They investigate kernel splicing and scheduling to illustrate
the importance of using smaller chunks of data and calling a
GPU kernel several times. Using this approach, the authors
achieved a 7-23% increase over copying all of the data at
once then computing with a single kernel invocation. Similar
experience has motivated our approach herein, whereby we
address scalability of pattern matching data sets as well as
maximization of throughput.

In this paper, we present novel GPU-based stream process-
ing extensions for the PostgreSQL database which facilitate
high-throughput pattern matching to generate global k-nearest
neighbor matches. This framework is designed to support pat-
tern matching on a GPU from within the database environment;
wherein the results are a table expression, which can be utilized
in subsequent relational algebra operations. Furthermore, we
use the database’s native storage facilities for our pattern data,
which provides scalability and integration with related data.
This gives us the ability to apply relational or other constraints
to the data prior to high-throughput pattern matching, i.e.,
passing table expressions into the pattern matching framework.

The remainder of this paper is organized as follows. Section
II provides an overview of our extensions for PostgreSQL
database to support high-throughput pattern matching. Then,
Section III provides the details of our work to exploit GPGPU
within this high-throughput framework. We detail our pre-
liminary experiments of timing based on metric, pattern, and
GPU kernel parametrization characteristics in Section IV. This
section also provides experiments from an initial CBIR data
set. Finally, Section V offers some concluding remarks and
discussion of future work and extensions.

Fig. 2. Our pattern matching extensions utilize GPU kernels to perform mas-
sively parallel data processing to process and produce these table expressions.
Table expressions are the fundamental input and results of database operations.

II. PATTERN STREAM MATCHING FRAMEWORK FOR
POSTGRESQL

Our initial goal was to develop a general algorithm to
achieve stream-style processing of pattern blocks within the
PostgreSQL environment using the server programming inter-
face (SPI). The SPI facilitates the extension of the PostgreSQL
server using very low-level access to the database internals.
Figure 1 provides the algorithm used to process a stream of
patterns. This algorithm is built into a shared object library
and linked into the database through a bridging function using
standard C-language PostgreSQL extension functions. Each
pattern in the stream is compared against the query pattern,
the resulting distance is then combined with other fields of the
source tuple to form a potential row of the result table.

A key capability of our design is that we generate the global
k-nearest neighbors while processing the pattern stream. This
is accomplished by implementing a result collection structure,
which we refer to as a k-sieve. Whereas, a physical sieve
processes a stream of sediment, retaining only the largest mem-
bers; our k-sieve processes the stream of patterns, retaining
only the k best pattern matches. The k-sieve is a max-heap
based data structure designed to collect the k best matches
from a set in near-linear time complexity O(k + n log(k)),
where n is the number of patterns compared. We use the first k
elements of a set to fill the k-sieve, then each element thereafter
is compared with the top of the heap. The ability to reject such
candidates with a single comparison, allows us to immediately
ignore all values greater than the largest value of our set and
to accept elements from any number of input groups; atomic
or otherwise.

The k-sieve is an extremely effective tool for collecting
a subset of the best matches from one or many sets of data.
This property of the k-sieve works efficiently with the ability
to fetch blocks of data from PostgreSQL via cursors using SPI.
Each pattern block from the cursor can be processed individ-
ually through the k-sieve without disrupting the integrity of
the current contents of the sieve. Ultimately, the final set of k
items collected by the k-sieve will be unpacked into a sorted
array, which forms our resulting table expression.

Our set of patterns are stored in a simple database structure,
as modeled in Figure 3. In this model each object is associated
with one or more descriptor patterns. These descriptors are
stored natively in the database as an array column. This array
storage simplifies the pattern stream processing. This design
allows the reduction of the pattern stream using standard join
and restrictions operations which are native to the database.
These operations may be used to perform attribute-based
filtering via the Object Metadata table shown, as well as
using any number of additional tables that can be added to

Fig. 3. The very simple pattern database design, where the Object is an
arbitrary concept which has associated metadata and one or more pattern
descriptors. The descriptor is a numerical array (i.e., feature vector) column.

(a) (b)

Fig. 4. Integration of GPU with DBMS: (a) A table expression returning
function is defined within the database to reference a C-language function of
a shared object. The initial entry point into the shared object is a bridge
function which invokes the SPI function, which in-turn, utilizes the GPU
through CUDA kernels. (b) The SPI function performs massively parallel
dissimilarity measurements against cursor blocks of size M , dividing the work
into GPU optimized blocks of patterns.

this design and contain more advanced data. For instance, if
Objects have associated spatial attributes, PostGIS extensions
and spatial indexing could be utilized to filter the pattern
stream. In a similar fashion, other existing extensions could
be leveraged such as text search capabilities or content based
retrieval techniques.

Our technique allows the design of heterogeneous data
processing techniques, both prior to and after pattern matching.
As a basic example of input table expressions, consider table
views; any number of related data (attributes, spatial, joins,
etc.) could be used to produce the input table expression.
Since the output is also a table expression, it naturally fits
into the standard relational algebra model (restrictions, joins,
aggregations, etc). This concept is depicted in Fig. 2, where the
results of pattern matching can be utilized with the traditional
data processing capabilities of the database such as relational,
spatial, or text search.

III. GPGPU PATTERN MATCHING WITHIN POSTGRESQL

Now that we have outlined an algorithm to extend the
PostgreSQL database for high-throughput pattern processing,
we shift focus to incorporating high performance computing
(HPC) techniques into this extension. The goal is to achieve
the pattern matching speedup that is capable through GPGPU
techniques when processing the patterns from within the

1: procedure PGGPUPATTERNSTREAMMATCH(Q,D,k)
2: . Q query pattern
3: . D pattern data set
4: . k desired result size
5: Build SPI cursor to pull descriptor stream
6: repeat
7: Fetch cursor block of size M
8: for Each tuple from cursor block do
9: Load ID fields into temp ID block

10: Load pattern row into temp block
11: end for
12: match-scores← GPU kernel on temp pattern block
13: for Each row of block do
14: Load ID fields into structure
15: Load match-score into structure
16: Push structure into K-sieve
17: end for
18: until End of Cursor
19: Unpack K-sieve into Tuple Store
20: end procedure

Fig. 5. GPGPU enhanced SPI pattern stream matching algorithm. Returns
a table expression for subsequent database operations. The cursor block size,
X , is configured to optimize the performance of the database.

database environment. Matching millions of pattern feature
vectors against a query pattern using a metric function is a
natural fit for processing on the GPU. The GPU has hundreds
of cores which allow it to simultaneously measure a query
pattern against millions of feature vectors. In comparison to
the CPU, which has to loop through each feature vector and
compare against the query pattern, the GPU only needs a small
amount of time and resources to match patterns. Figure 6
shows the orders of magnitude acceleration of pattern matching
achieved by GPU over CPU.

We use CUDA [16] as our GPGPU framework for devel-
oping massively parallel pattern matching database extension
modules. In the context of CUDA, various logical paralleliza-
tion strategies can be applied to partition the data processing by
organizing a kernel grid. A kernel function is the unit of work
that is to be computed in parallel on the GPU hardware. In this
respect, the solution space is mapped into a logical grid which
is composed of processing blocks. A single block is composed
of a set of threads, where each thread will be invoked with
the kernel function to process one datum. Modern GPU will
typically be processing multiple blocks across the available
computing units simultaneously. Thus, we use thousands of
blocks processing hundreds of patterns each, to effectively
parallelize the matching of millions of patterns within a grid.

To integrate a GPGPU solution into our pattern stream
matching, we extend the algorithm of Figure 1 to incorporate
generation of a pattern block suitable for GPU kernel functions.
Figure 4(b) provides a conceptual depiction of how we map a
particular pattern block (see Fig. 5, step 12) onto the CUDA
grid. We define the threads per block (TPB), (see Fig. 7) and
therefore the number of blocks in the grid. In our current im-
plementation, the TPB defines the number of patterns per GPU
logical block. Note, the GPU logical block is much smaller
than the SPI cursor pattern block, in fact the pattern block is
the data underlying the CUDA grid. Each large pattern block
is pushed to the GPU device and then the kernel is launched,

(a)

(b)

Fig. 6. GPU vector pattern matching timings using (a) Manhattan and (b)
Euclidean respectively.

after which the results (i.e., metric distances) are copied back.
The result measures are merged with the other row data to
form a result tuple which is passed into the k-sieve as detailed
in Section II. These result tuples are critical to integrate the
pattern matching within a database management system with
heterogeneous data processing, such as relational or spatial
operations. Figure 5 illustrates this algorithm, whereby the SPI
cursors are used to construct pattern blocks that are passed to
a GPU for pattern matching.

One of the key novelties of our approach is that we avoid
the necessity of storing the entire database of patterns on the
GPU hardware. Figure 4(a) illustrates the organization of the
database, the dynamically linked shared object, and the CUDA
runtime. As discussed in Sect. II, the result of the pattern
matching process is a table expression within the database
environment.

IV. EXPERIMENTS

We begin our experimentation by verifying that incorpora-
tion of GPU powered HPC techniques is a sensible approach.
As discussed in Section I, numerous research into GPGPU
instantiates an entire data set on the GPU. However, this
is obviously not a practical, cost effective solution for truly

Fig. 7. GPU vector pattern matching timings, using 128-D patterns over
increasing database size, in light of differing CUDA threads per block.

large-scale pattern data sets. As discussed in Section III, our
extension relies on copying data from the native database tables
onto the GPU hardware and then copying the results back. We
therefore conducted timing experiments using multiple metric
functions, varied feature vector dimensionality, and increasing
database sizes.

A. Baseline GPU Timing

Figure 6 shows a timing trend comparison of CPU- and
GPU-based p-norm metric functions computed on data sets of
increasing size and different vector lengths. It is clear that the
timing grows at a much faster rate on the CPU versus the
GPU. In each plot, the data set size grows from 1 million
to 10 million vectors. We show timing of 32-D, 64-D, and
128-D feature vectors for comparison purposes, all using 32
threads per block for GPU kernel functions. Figure 6(a) shows
the trend of computing Manhattan distance and (b) shows
Euclidean. Figure 7 provides performance relative to another
key parameter of GPU kernel functions, namely the TPB. In
this plot, the 128-D patterns are used and the database size
increases from 1 million to 10 million. We have included
GPU host-device data and result transfer times in these results,
as this is a critical component of processing the stream of
database pattern blocks. We can see that even considering the
data transfer onto and off the GPU hardware, the GPU based
matching is nearly an order of magnitude faster than the CPU
(note the y-axis is log-scale).

B. GPU-enabled PostgreSQL Timing

It should be noted that the timing measurements of match-
ing patterns from within the database uses data set sizes an
order of magnitude larger than the Section IV-A experiments,
as we want to process data sets that simply cannot be ma-
terialized onto the GPU. Furthermore, there are additional
costs associated with pulling data from the database, namely
reading the data from disk and unpacking from native tuples.
There exists numerous database tuning techniques that can be
applied to accelerate pattern data access (table scans in our
experimental case), however these discussions are beyond the
scope of the present paper and are left to future work.

Fig. 8. GPU-enabled database pattern match comparison timing trends using
the Euclidean distance metric.

We conducted timing experiments using 32-, 64-, and 128-
dimensional floating point feature vectors. Our timing in the
database start with pattern data sets of size 10 million, and
increases to 100 million in increments of 10 million. The GPU
hardware used was a Nvidia Tesla C2075 GPU co-processir,
with the kernels developed using CUDA Toolkit 5. Our
database management system was PostgreSQL version 9.2.4 on
x86 64 Linux. The database storage tablespaces are on a RAID
5 file system. The database table sizes for each X-dimensional
feature set are 18GB, 36GB, and 54GB, respectively; which
far exceeds any current GPU hardware device storage capacity.
The pattern block size used by the database extensions is a
factor of the memory parameters configuration of PostgreSQL
and the descriptor size. For our timing experiments, we fixed
the pattern block at 1.5 million patterns to accommodate all
pattern sizes and provide consistency during testing of the
other parameters of the system. PostgreSQL is configured
with modest memory limits, i.e., 2GB shared buffers, 24MB
working memory, and other settings as defaults. We use a
CUDA block size of 32 threads per block in experiments that
measure variable database and descriptor sizes. During these
experiments, we were able to compute the global k-nearest
neighbors, with k = 1000 in an average of 166.5 seconds
against a database of size 100 million for the 32-D patterns.
Table I provides the complete timing statistics from our testing
of pattern database sizes from 10 million upto 100 million. As
expected, since the database is significantly larger than the
desired number of top pattern match results, k, the global k-
nearest neighbors are found in linear time.

C. Image Matching with SQL

Additionally, we have performed preliminary experiments
using image descriptors. We have begun building an image
retrieval database from an image data set provided by [17].
The images were processed using publicly available Hessian-
Affine region detector and SIFT key-point descriptors, from
[18]. To process the data set, we extracted the SIFT feature
descriptors for key-points found through the Hessian-Affine
region detector. Each image produces an output data file, with
one key-point per line. We parsed the data files, creating Object
records, then loaded the Object Descriptor table (see Fig. 3).

TABLE I. GLOBAL k-NEAREST NEIGHBOR, WITH k = 1000, FOR THE
L1 AND L2 METRICS AGAINST THE INCREASING DATABASE SIZES OF 10

MILLION TO 100 MILLION.

Metric L1 L2

Pattern Length 32 64 128 32 64 128
10 million 15.10 30.19 55.07 16.54 30.31 54.48
20 million 34.37 60.98 109.08 33.54 60.87 111.93
30 million 48.90 91.00 167.81 51.75 90.71 162.26
40 million 64.45 121.43 225.90 64.86 120.64 217.48
50 million 86.16 151.83 272.62 85.56 151.24 269.67
60 million 100.11 182.31 326.16 98.14 181.97 328.86
70 million 118.95 213.50 379.46 115.46 211.91 383.31
80 million 133.69 242.84 439.82 135.19 243.34 437.58
90 million 149.95 274.12 506.19 150.30 274.27 491.29

100 million 166.48 304.72 549.83 165.40 303.49 547.11
Database Size Time (s)

Once the data is loaded into the Object Descriptor table, it is
immediately searchable using our GPU-enabled pattern stream
matching extensions. As expected, the number of key-points
varies significantly across images, with 98103 images loaded
and the number of key-points per image ranging from 1 to
8686. The resulting database has over 85 million SIFT key-
points. The Object Descriptor table is approximately 50 GB.

If a query image has m keypoints, we can define a
relational algebra expression to rank the images within the
database as

id gcount(*)
(⋃
i∈1..m

match(kpi, data, k)
)
; (1)

where kpi a keypoint’s feature vector, data is the pattern data
set table expression, k is the number of matches per keypoint to
pull into the result, and the result of match is a table expression.
ObjectId is the unique image identifier. Using SQL, this could
be expressed as the following:

SELECT matches.id,count(*) as score
FROM (

SELECT id,score FROM match(kp_1,data,k)
UNION
SELECT id,score FROM match(kp_2,data,k)
UNION
...

SELECT id,score FROM match(kp_m,data,k)
) as matches
WHERE matches.score <= kpMatchThreshold
GROUP BY matches.id
ORDER BY matches.score DESC;

In this query, the count, k, of nearest neighbors and the
keypoint match quality threshold, kpMatchThreshold, are the
tunable parameters. We acknowledge that this approach is
not the state of the art use of keypoint features for CBIR
(e.g., visual code books, etc.). We are simply providing an
illustrative example of the integration between GPU hardware
and PostgreSQL in a relevant application domain.

This novel integration of GPU hardware and the Post-
greSQL database represents a significant alternative to exist-
ing architectures which support large-scale pattern matching.
These techniques will allow researchers to fully leverage
heterogeneous data; fusing the results of pattern matching with
more traditional data processing algorithms. We see significant

opportunities to exploit this research in various pattern recogni-
tion domains such as content-based retrieval, biometrics, image
and video analysis, and other signal processing.

V. CONCLUSION

In this article, we integrated GPU-based high-throughput
p-norm metric functions into a PostgreSQL database server.
We introduced our technique to extend the PostgreSQL back-
end with GPU-enabled pattern matching. This facilitates large-
scale pattern matching using GPU hardware because the data
set size is not limited to what can stored on the GPU.
Additionally, this allows one to design heterogeneous data pro-
cessing techniques that combine large-scale pattern matching
with traditional data processing capabilities of the database
such as relational, spatial, or text search. This has enormous
potential for future work in a variety of fields including, CBIR,
biometrics, and large data set analytics, just to list a few.

Our extensions provide pattern matching results as a ta-
ble expression within the database environment, allowing the
resulting tuples to factor into traditional relational algebra
expressions. This inherently leverages the the power of the
relational database engines to correlate information across
numerous tables using the traditional SQL of the database. We
have implemented p-norm metric functions, for p ∈ {1, 2}, i.e.,
Manhattan and Euclidean.

In future work, we will conduct additional timing and
database tuning experiments. We will determine the optimal
memory settings for the database, and how these settings affect
the parameters used to build the GPU extensions for various
pattern sizes. We intend to develop these techniques as open
source extensions to PostgreSQL and generate comprehensive
documentation of how to incorporate extensions into various
application domains that require pattern matching. We will
begin to explore more specialize pattern metrics and mea-
sures in the future, such as Mahalanobis distance and others.
Additionally, we will investigate alternative kernel and block
organizations such as using multiple threads to compute a
single pattern matching score following parallelized reduction
methodologies.

Furthermore, we will utilize these extensions to create
scalable heterogeneous content-based retrieval systems which
will use image content, image metadata, and other information
available for query construction. We will develop the Post-
greSQL integrations to support visual codebook approaches
as well, i.e., as the pre-matching table expressions. It is also
necessary to develop GPU coordination strategies, as databases
are inherently multi-process concurrent systems. Our goal is to
provide a robust set of open source extensions to support large-
scale, high-throughput pattering matching within PostgreSQL
to empower researchers to explore novel exploitations of
patterns matching with other data.

REFERENCES

[1] A. Berard and G. Hebrail, “Searching time series with hadoop in
an electric power company,” in Proceedings of the 2Nd International
Workshop on Big Data, Streams and Heterogeneous Source Mining:
Algorithms, Systems, Programming Models and Applications, ser. Big-
Mine ’13. New York, NY, USA: ACM, 2013, pp. 15–22.

[2] C.-W. Lu, C.-M. Hsieh, C.-H. Chang, and C.-T. Yang, “An improvement
to data service in cloud computing with content sensitive transaction
analysis and adaptation,” in Computer Software and Applications Con-
ference Workshops (COMPSACW), 2013 IEEE 37th Annual, 2013, pp.
463–468.

[3] N. Rizvandi, J. Taheri, and A. Zomaya, “On using pattern matching
algorithms in mapreduce applications,” in Parallel and Distributed
Processing with Applications (ISPA), 2011 IEEE 9th International
Symposium on, 2011, pp. 75–80.

[4] C.-H. Lin, C.-H. Liu, and S.-C. Chang, “Accelerating regular ex-
pression matching using hierarchical parallel machines on GPU,” in
Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE, 2011, pp. 1–5.

[5] K. Derpanis, M. Sizintsev, K. Cannons, and R. Wildes, “Action spotting
and recognition based on a spatiotemporal orientation analysis,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, no. 3,
pp. 527–540, 2013.

[6] L. Wang, S. Chen, Y. Tang, and J. Su, “Gregex: GPU based high speed
regular expression matching engine,” in Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2011 Fifth International
Conference on, 2011, pp. 366–370.

[7] C. Beleznai, D. Schreiber, and M. Rauter, “Pedestrian detection using
GPU-accelerated multiple cue computation,” in Computer Vision and
Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Soci-
ety Conference on, 2011, pp. 58–65.

[8] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “Parallelization
and characterization of pattern matching using GPUs,” in Workload
Characterization (IISWC), 2011 IEEE International Symposium on,
2011, pp. 216–225.

[9] A. Kooijman and J. Vergeest, “GPU implementation of the lft shape
matching algorithm,” in Parallel Computing in Electrical Engineering
(PARELEC), 2011 6th International Symposium on, 2011, pp. 111–116.

[10] M. Rauter and D. Schreiber, “A GPU accelerated fast directional
chamfer matching algorithm and a detailed comparison with a highly
optimized cpu implementation,” in Computer Vision and Pattern Recog-
nition Workshops (CVPRW), 2012 IEEE Computer Society Conference
on, 2012, pp. 68–75.

[11] D.-D. Truong, V.-T. Nguyen, A.-D. Duong, C.-S. N. Ngoc, and M.-
T. Tran, “Realtime arbitrary-shaped template matching process,” in
Control Automation Robotics Vision (ICARCV), 2012 12th International
Conference on, 2012, pp. 1407–1412.

[12] M. Nabiyouni and D. Aghamirzaie, “A highly parallel multi-class
pattern classification on gpu,” in Cluster, Cloud and Grid Computing
(CCGrid), 2012 12th IEEE/ACM International Symposium on, May
2012, pp. 148–155.

[13] N.-P. Tran, M. Lee, S. Hong, and J. Choi, “High throughput parallel
implementation of aho-corasick algorithm on a gpu,” in Parallel and
Distributed Processing Symposium Workshops PhD Forum (IPDPSW),
2013 IEEE 27th International, May 2013, pp. 1807–1816.

[14] A. Cevahir and J. Torii, “Gpu-enabled high performance online visual
search with high accuracy,” in Multimedia (ISM), 2012 IEEE Interna-
tional Symposium on, Dec 2012, pp. 413–420.

[15] J. Zhong and B. He, “Kernelet: High-throughput gpu kernel executions
with dynamic slicing and scheduling,” IEEE Transactions on Parallel
and Distributed Systems, vol. 99, no. PrePrints, pp. 1–11, 2013.

[16] NVIDIA Corporation, NVIDIA CUDA C Programming Guide, June
2011.

[17] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object re-
trieval with large vocabularies and fast spatial matching,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2007.

[18] K. Mikolajczyk and C. Schmid, “Scale and affine invariant
interest point detectors,” International Journal of Computer Vision,
vol. 60, no. 1, pp. 63–86, 2004. [Online]. Available: http:
//www.robots.ox.ac.uk/∼vgg/research/affine/index.html

http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
http://www.robots.ox.ac.uk/~vgg/research/affine/index.html

	Introduction
	Pattern Stream Matching Framework for PostgreSQL
	GPGPU pattern matching within PostgreSQL
	Experiments
	Baseline GPU Timing
	GPU-enabled PostgreSQL Timing
	Image Matching with SQL

	Conclusion
	References

