
D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

Generalized Scale Independence Through

Incremental Precomputation

Michael Armbrust

†‡

marmbrus@google.com

Eric Liang

‡

ericliang@berkeley.edu

Tim Kraska

*‡

tim_kraska@brown.edu

Armando Fox

‡

fox@cs.berkeley.edu

Michael J. Franklin

‡

franklin@cs.berkeley.edu

David A. Patterson

‡

pattrsn@cs.berkeley.edu

*
Brown University

†
Google, Inc.

‡
University of California, Berkeley

ABSTRACT
Developers of rapidly growing applications must be able to
anticipate potential scalability problems before they cause
performance issues in production environments. A new type
of data independence, called scale independence, seeks to ad-
dress this challenge by guaranteeing a bounded amount of
work is required to execute all queries in an application,
independent of the size of the underlying data. While op-
timization strategies have been developed to provide these
guarantees for the class of queries that are scale-independent
when executed using simple indexes, there are important
queries for which such techniques are insu�cient.

Executing these queries scale-independently requires pre-
computing results using incrementally-maintained material-
ized views. However, since this precomputation e↵ectively
shifts some of the query processing burden from execution
time to insertion time, a scale-independent system must be
careful to ensure that storage and maintenance costs do
not threaten scalability. In this paper, we describe a scale-
independent view selection and maintenance system, which
uses novel static analysis techniques that ensure that cre-
ated views do not themselves become scaling bottlenecks.
Finally, we present an empirical analysis that includes all
the queries from the TPC-W benchmark and validates our
implementation’s ability to maintain nearly constant high-
quantile query and update latency even as an application
scales to hundreds of machines.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

Keywords
Scalability; Scale Independence; Materialized view selection

1. INTRODUCTION
The ability to anticipate scalability problems is critical

to fast-growing Internet services, such as Twitter and Face-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SIGMOD’13, June 22–27, 2013, New York, New York, USA.

Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

book, both of whom have experienced long periods of expo-
nential growth [15, 28]. When attempting to cope with this
rapid influx of data, many scale-oriented developers have
found that they prefer the straightforward pain of maintain-
ing imperative implementations over the di�culty of identi-
fying potentially expensive operations lurking beneath sim-
ple declarative expressions. Following this trend, NoSQL
storage systems typically eschew declarative languages, sac-
rificing the productivity benefits these languages provide.

In our prior work, PIQL [4], we attempted to ensure that
applications will perform predictably as they grow in pop-
ularity, while simultaneously preserving the many produc-
tivity benefits of the relational model. This syncretism was
accomplished through the introduction of scale independence
[5], a new type of data independence. As data sizes grow,
even by orders of magnitude, a scale-independent system en-
forces strict invariants on the cost of query execution. To-
wards this end, PIQL incorporated an optimization algo-
rithm that bounds the amount of work required to execute
a given query. This technique was capable of handling SQL
queries that could be answered scale-independently using
only secondary indexes.

However, there are SQL queries, common in real world ap-
plications, where those previous techniques fall short. For
these more complicated queries, on-demand execution could
require reading unbounded amounts of data. For example,
the popular online service Twitter needs to calculate the
number of people following popular users. Executing this
query on-demand could result in response time that grows
with the size of the database. Fortunately, it is often pos-
sible to safely answer such queries at scale by leveraging
incremental precomputation, e↵ectively shifting some query
processing work from execution time to insertion time.

We formally define two new classes of SQL queries where
precomputation fundamentally changes the worst case exe-
cution cost at scale. Formalizing the characteristics of these
classes allows us to construct a scale-independent view se-
lection and maintenance system. PIQL’s view selection sys-
tem is unlike prior work on materialized views [2, 14, 17,
21], which attempted to minimize cost for a given workload.
While these prior techniques select views that may speed
up query execution on average, the overall performance of
the application can unfortunately remain dependent on the
size of the underlying database. Instead, PIQL focuses on
ensuring scalability independent of data size and workload.

D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

PIQL’s optimizer creates incrementally-maintained mate-
rialized views (IMVs) only when it is possible to verify the
cost of storage and maintenance for these views will not itself
introduce a scaling bottleneck. Potential scaling issues are
avoided using novel static analysis algorithms that ensure a
given view obeys invariants on both the size of the view and
the work required by incremental maintenance. We also de-
scribe schema analysis and query rewriting techniques that
allow PIQL to detect hotspots and mitigate the resulting
performance degradation. In summary, we present the fol-
lowing contributions:

• We formalize the invariants and implicit assumptions
from prior work on scale independence.

• Using these invariants, we define four levels of scale-
independent query execution, two of which were not
covered by existing execution techniques.

• We present a scale-independent view construction al-
gorithm along with static analysis techniques to bound
the cost of storage and maintenance.

• We describe a mechanism for automatically detect-
ing and mitigating common temporal hotspots using a
combination of load balancing and parallel execution.

• We present an empirical study, including all of the
queries from the TPC-W benchmark, of the high quan-
tile latency for query execution and maintenance op-
erations as our system scales to hundreds of nodes.

2. SCALE-INDEPENDENT QUERY
PROCESSING

As first introduced in our prior work [5], a scale-independent
query processing system seeks to aid developers of rapidly
growing applications by guaranteeing predictable query re-
sponse time, independent of the size of the database. One
technique for ensuring this predictability is to maintain in-
variants on the operations performed and resources required
for all queries in an application.

In this section, we first describe the four levels of scale-
independent query execution. We then briefly review the
optimization techniques used by the initial version of PIQL
[4] for queries that can be executed on-demand, formalizing
the invariant used to ensure that a given query performs a
bounded number of operations in the worst case. We also
formalize implicit assumptions made by PIQL’s authors re-
garding the existence of a balanced partitioning for a given
workload over a cluster of machines.

Building upon this foundation, we expand the discussion
to include queries where previous techniques fall short, but
where precomputation through the creation of an IMV can
enable scale-independent execution. Since PIQL must en-
sure that these automatically created IMVs do not them-
selves threaten scalability, we place restrictions on the re-
sources required for their storage and maintenance. Finally,
we give an overview of the workflow used by PIQL to ana-
lyze all queries in an application and determine which scale-
independent execution level should be used for each. This
process results in a list of indexes and IMVs required.

2.1 Scale Independent Execution Levels
In order to help developers reason about the resource re-

quirements of their application, we now define four levels of
scale-independent query execution. Table 1 lists these levels
along with the invariants (Sections 2.2 and 2.3) on execu-

tion, update and storage costs that must be enforced for
each.

The first level, Scale Independance Level 0 (SI-0), includes
trivially scale-independent queries (e.g. SELECT 1) as well as
queries that can be answered in a scale-independent manner
using the clustered index on the primary key (e.g. a query
that does a lookup by primary key). For queries in SI-1, it
is similarly possible to bound the amount of work performed
while executing the query, but only through the creation of
a secondary index. Section 2.2 reviews existing optimiza-
tion techniques that statically analyze queries to determine
if they can be executed using one of these two levels.

In contrast to the queries in SI-0 and SI-1, some queries
could require an unbounded amount of work to execute on-
demand, even after the creation of secondary indexes. Often,
precomputation by creating an IMV can fix this problem,
enabling scale-independent execution by shifting work to in-
sertion time. However, unlike with simple indexes, a scale-
independent view selection system must also consider the
scalability of storage and maintenance costs, and we reason
about these costs using additional invariants. Section 2.3
introduces these new invariants, which ensure that IMVs
themselves do not become a scaling bottleneck. Queries fall
into SI-2 if they can be executed in a scale-independent man-
ner using an IMV that satisfies both of the new invariants.

SI-0 SI-1 SI-2 SI-3
Execution (Inv 1) I D D D
Execution w/ indexes (Inv 1) - I D D
IMV Update (Inv 2) - - I D
IMV Storage (Inv 3) - - I I
IMV Parallel Updates
(Relaxed Invariant 2)

- - - I

Table 1: The four levels of scale-independent execu-
tion. ‘I’ and ‘D’ denote respectively that the cost of
executing a query for a given resource is indepen-
dent or dependent on scale of the application. A ‘-’
implies the cost is not applicable, and thus the query
is trivially scale independent in this dimension.

For each of the aforementioned execution levels assume
that there exists a balanced partitioning of the workload
over all of the machines of a parallel system. Section 2.5
explains in detail why this partitioning is required to avoid
the increased query response time associated with workload
hotspots. Prior definitions of scale independence [4] failed
to deal with the fact that the naive use of secondary indexes
can violate this assumption in cases where there is temporal
locality of insertions relative to the value being indexed (e.g.
an index over the attribute created_on). Fortunately, these
hotspots can often be mitigated by spreading new insertions
across the cluster and periodically computing aggregate re-
sults in parallel. However, since this execution pattern re-
quires relaxing the invariant on the total work performed by
an update, we place queries that utilize this strategy in the
final query level, SI-3.

2.2 Scale-Independent Optimization
To review our prior work: PIQL takes as input the set of

parameterized queries Q used by an application. The opti-
mizer analyzes all queries in Q to ensure that the database
can grow while maintaining consistent performance.

D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

For the purposes of scale-independence, we consider database
growth to occur over the following three dimensions:

|R| the size of all base relations
�

rate

the update rate for all base relations
q

rate

the rate of read queries in the system

PIQL achieved scale independence across these dimen-
sions by designing the optimizer to select only physical plans
that perform a bounded number of I/O operations, indepen-
dent of |R| (i.e., the size of all base relations). In contrast
to standard average cost minimization, PIQL’s optimization
technique prevents the selection of query plans that may per-
form well for most users but that could violate an applica-
tion’s Service Level Objective (SLO) for statistical outliers.
It also allows the database to warn the developer of queries
that pose a potential scalability problem and provide sug-
gestions for resolving the issue before the query can cause
SLO violations in production.

The invariant that is maintained by this optimization tech-
nique can be formalized as:

Invariant 1. Let Exec(q
i

) denote the number of opera-
tions performed in the worst case by a query and c

qi
ops

be a
constant for a given query q

i

. A scale-independent optimizer
will only create physical query plans such that:

8q
i

2 Q9cqi
ops

: Exec(q
i

) < c

qi
ops

A system can verify that an application will satisfy this
invariant by performing a static analysis of the application’s
schema and queries. For example, uniqueness constraints
ensure that a query that performs a lookup by primary key
will return at most one result, and thus require a bounded
number of operations to execute.

To expand the space of queries that can be verified as scale
independent, it is possible to employ language extensions
to standard SQL. For example, Data Definition Language
(DDL) cardinality constraints (introduced in [4]) allow de-
velopers to specify restrictions on the relationships present
in their application, which are enforced at insertion time.

To understand this optimization technique more concretely,
consider a simple application that stores documents along
with associated tags with the following schema:

Tags(docId, tag, timestamp) WITH CARDINALITY(tag, K)
Documents(docId, timestamp, text, ...)

Italicized columns form the primary key of a relation and
the WITH CARDINALITY clause denotes a cardinality constraint
K on the number of unique values of tag that can exist for
any given docId.

An example of a scale-independent query on this schema
is the following parametrized SQL, which returns the set of
tags for a given document.

SELECT * FROM Tags WHERE docId = <doc>

For any value of the <doc> parameter, the query can be
executed by scanning a bounded range of the clustered pri-
mary key index on Tags and will return at most K tuples.
Thus, the optimizer can guarantee that this query will never
violate Invariant 1.

2.3 Scale-Independent View Selection
Not all queries can be answered scale-independently using

only indexes, and in this section we describe how the addi-
tion of IMV selection to PIQL enables the scale-independent

execution of many of these previously unsafe queries. For ex-
ample, the following shows the twoTags query, which returns
the five newest documents assigned two user-specified tags.

SELECT t1.docId
FROM tags t1, tags t2, documents d
WHERE t1.docId = t2.docId AND

t1.docId = d.docId AND
t1.tag = <tag1> AND t2.tag = <tag2>

ORDER BY d.timestamp
LIMIT 5

While a secondary index on Tags.tag would allow e�cient
lookup of the documents for a given tag, such an index is not
su�cient to enable the scale-independent execution of the
twoTags query. The performance of the query is potentially
dependent on the size of the data due to the fact that during
any given execution an unbounded number of rows matching
tag1might need to be scanned before finding five documents
that also match tag2. In practice, developers faced with a
query such as this one often utilize a technique known as
intersection precomputation or caching [19], where all two
tag combinations for a document are computed ahead of
time (analogous to the creation of a join index [27]).

While there has been significant prior work on leveraging
precomputation through automatic materialized view selec-
tion [2, 17, 21] and incremental maintenance [1, 6, 7, 13, 25],
these approaches have focused on minimizing average cost
for a given workload, rather than ensuring consistent re-
source requirements as the database grows. As such, these
techniques could create a view that may speed up query ex-
ecution on average, while the absolute performance of the
query remains dependent on the size of the underlying data.
Simply executing faster is not su�cient to guarantee SLO
compliance as an application explodes in popularity.

In contrast, PIQL must only create an IMV when it will
allow a query to be answered scale-independently. In addi-
tion to determining the scalability of the query when it is
run over the materialized view, we must also ensure that the
resources required to incrementally maintain and store the
created materialized views do not themselves threaten the
scalability of the application. To better explain the poten-
tial scalability threat posed by the inclusion of materialized
views we now formalize the additional invariants that must
be maintained by a scale-independent view selection system.

Bounding Update Cost
A scale-independent view selection system must avoid IMVs
whose update cost increases with the scale of the applica-
tion. To this end, the optimizer ensures the existence of an
upper bound on the number of operations required to incre-
mentally update all indexes and views given an update to a
single tuple in a base relation. Said formally:

Invariant 2. Let Update(r
i

) denote the number of opera-
tions performed in the worst case by index and view main-
tenance when updating a single tuple in r

i

, and let c

ri
ops

be
a constant for r

i

. A scale-independent optimizer will only
create views such that the total maintenance costs obey the
following:

8r
i

2 R9cri
ops

: Update(r
i

) < c

ri
ops

For queries in SI-3, we relax Invariant 2 to permit queries
where serial work performed by a single machine is bounded,
instead of the total work for a single update.

D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

Bounding Storage
It is possible for the size of an IMV to grow super-linearly
with the size of the base relations, for example, due to an
unconstrained join. Therefore, PIQL ensures that the size
of each view is at most a constant factor larger than one of
the base relations present in the view. Said formally:

Invariant 3. Let V be the set of all created views required
to answer the queries in Q and let cvi

storage

be a constant for
a view v

i

. Let r

vi be a relation in R and |r
vi | denote the

number of tuples in r

vi . A scale independent system creates
IMVs with linear storage requirements by ensuring that:

8v
i

2 V 9cvi
storage

, r

vi 2 R : |v
i

| < c

vi
storage

|r
vi |

2.4 Query Compilation
Figure 1 shows the five phases of PIQL, which are used

to determine how to scale-independently execute a query.
In addition to validating the scalability of all queries in an
application and creating necessary indexes and IMVs, PIQL
will also tell developers which level each query falls into so
they can reason about its resource requirements and update
latency characteristics.

PIQL
Query

SI Physical
Plan?

SI with
Precompution?

Storage
Bounded?

Physical
Plan &

Index List

Scale
Dependent

Generate
Delta Queries

Split
Delta Queries

(Section 6)

No

Yes

Yes

Storage
Bounded w/ Aging?

(Section 6)

Yes

No

No

Yes

No

Phase 1
View Construction

(Section 3)

Phase 2
Storage Analysis

(Section 4)

Phase 3
Update Analysis

(Section 5)

Phase 0
SI Optimization
(Prior Work [3])

Figure 1: The phases of the scale-independent opti-
mizer and view selection system.

Queries in level SI-0 or SI-1 are handled using prior tech-
niques by generating a scale-independent physical execution
plan (Phase 0), automatically creating indexes as needed.
For cases where scale-independent physical plan for a query
cannot be found by the optimizer, this paper describes how
to expand a scale-independent relational system to answer
the query instead by leveraging scale-independent precom-
putation (Phases 1-3). This view selection process occurs
automatically through the creation of an IMV for queries
that fall into SI-2. Additionally, PIQL ensures that com-
mon sources of hotspots are avoided (Phase 4), rewriting
the query as a distributed staging step followed by a peri-
odic parallel view refresh step. Since the resources required
by the parallel view refresh step do not satisfy the strict
form of Invariant 2, queries that require this transformation
fall into SI-3.

2.5 Achieving Predictable Response Time
The bounds on execution cost enforced by Invariant 1 are

useful not only for constraining resource requirements, but
also for reasoning about performance. In [4], it was demon-
strated empirically that bounding the number of operations

performed by all queries in the worst case allows an ap-
plication to achieve predictable response time as long as a
scalable underlying storage system is used.

For example, many key/value stores can execute low-level
operations such as get(key), getRange(prefix, limit),
put(key, value) with consistent performance, even at high
quantiles, by using a combination of autonomic techniques
and over-provisioning [11, 26]. Since each query or update
performs only a bounded number of these operations in the
worst case, it is possible to reason about the probability dis-
tribution of the worst case execution time of each query [4].
This worst case reasoning is especially valuable for develop-
ers of interactive applications, who care about the response
time for every user of their system.

While [4] demonstrated that it is possible to achieve nearly
constant latency while scaling up, it is important to under-
stand the implicit assumption that enables this predictabil-
ity. Specifically, achieving consistent performance as the
amount of data and number of machines grow is only possi-
ble when the growing workload can be spread evenly across
machines in an ever growing cluster.

If no balanced partitioning of the workload exists, then
eventually a single partition will become overloaded by the
increased workload. As queues build on the overloaded ma-
chine, the latency for requests to this server will grow and
eventually a↵ect the overall response time of the application.
For example, a hotspot will eventually occur when there is
a query that requires a secondary index over the creation
timestamp of a given table. Maintaining this index naively
would eventually result in a hotspot at the server holding
the partition corresponding to the current time.

Section 6 describes how PIQL automatically avoids the
creation of such indexes, instead utilizing workload balanc-
ing coupled with a periodic parallel collection step.

3. VIEW SELECTION
The first phase of PIQL’s view selection system, view con-

struction, is invoked when the optimizer is unable to find a
scale independent physical plan for a query. Since this query
does not fall into either SI-0 or SI-1, the optimizer will in-
stead try to answer the query by creating an IMV. Note that
this is only the first step in scale-independent view selection
and merely constructs a view that could be used to answer
the query while satisfying Invariant 1. The algorithms in
this section do not yet ensure that this view will meet the
other invariants regarding storage and maintenance costs.
The general form of the IMVs created is as follows:

CREATE VIEW <viewName>
SELECT A

view

[A
agg

]
FROM r1, r2, ...rn

WHERE P

view

[GROUP BY A

eq

]

A

view

is an ordered list of the attributes projected by the
IMV, while A

agg

contains any aggregate expressions. The
relations r1 to rn are the base relations present in the original
query, and P

view

is the set of predicates for the IMV. In the
case of queries with aggregate expressions, a GROUP BY clause
is also added to the IMV definition.

The construction algorithm ensures the created IMV will
allow scale-independent execution of the original query by
assuming that the underlying storage structure allows scale-
independent access to tuples in the view given a prefix of the
attributes present in A

view

. Examples of acceptable storage
systems include B-Trees and range-partitioned distributed

D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

key/value stores. We adopt the convention that the SQL
expression used to define IMVs must specify not only which
tuples are present in the view but also the ordering of at-
tributes in the clustered index used to store the view. Thus,
the definitions of created IMVs e↵ectively define the spatial
locality of the precomputed tuples.

3.1 View Construction Without Aggregates
The view construction algorithm presented in this section

handles select-project-join queries with conjunctive predi-
cates. Section 3.2 expands this algorithm to enable support
for queries with aggregate expressions. At a high level, this
algorithm is solving a variant of the view selection problem
where the result of the target query must be computable by
scanning a contiguous section of the view for any value of
the runtime parameters. We start by describing how pred-
icates that include runtime parameters are handled. Next,
we describe the checks employed to ensure that the result of
the original query can be obtained by scanning a contigu-
ous section of the selected view. Finally, we describe the
construction of the final view definition.

View construction starts by parsing predicates of the form
attr = <parameter> or attr {<,>,,�} <parameter>. Us-
ing these predicates, the algorithm constructs the sets A

eq

and A

ineq

, which contain attributes occurring in equality
and inequality predicates respectively. These attribute sets
are added to the prefix of the projection of the view, al-
lowing the predicates of the original query to be evaluated
e�ciently using an index scan.

As a concrete example, for the twoTags query (Section 2)
the set A

eq

contains {t1.tag, t2.tag}, and A

ineq

is empty.
Next, Algorithm 1 checks to ensure that the answer to the

original query for any set of runtime parameters will be a
contiguous set of tuples in the view. The requirements for
this condition are as follows: Any number of attributes may
be filtered by equality with a runtime parameter. In con-
trast, at most one attribute can be filtered by an inequality
with a parameter, though this attribute may appear in more
than one predicate (i.e., in the case of interval queries). This
limitation is due to the fact that computing the intersec-
tion of two inequality predicates against di↵erent attributes
may involve scanning over an arbitrary number of tuples
in the view, and thus could violate Invariant 1. Similarly,
any number of attributes may be specified in the ORDER BY
clause, but this ordering must be prefixed by the inequality
attribute, if one exists.

Algorithm 1 Confirming Adjacency of Result Tuples

1: A

order

:= ordered list of attributes in ORDER BY clause
2: if |A

ineq

| > 1 _ (|A
order

| > 0 ^A

order

[0] 6= A

ineq

) then
3: return false

4: end if
5: return true

If Algorithm 1 returns successfully, it then creates the set
P

view

. This step is accomplished by removing any predicates
that involve a runtime parameter and then simplifying any
redundant equality predicates.

To avoid changing the meaning of the query, it is im-
portant that this procedure does not inadvertently discard
any transitive equality constraints present due to parame-
ters that appear multiple times in the query. For exam-
ple, given a query with the predicates a1 = <p1> and a2

= <p1>, P

view

must contain the predicate a1 = a2. We
account for these transitive equalities by generating predi-
cates for the view from the equivalence classes defined by the
equality predicates in the original query. Inequality predi-
cates, in contrast, are copied directly from the original query.
These predicates will eventually be turned into inequalities
with parameters during delta query calculation (Section 5).
Therefore, the rules regarding multiple attributes partici-
pating in inequalities still apply, and thus the creation of
the view could be later be rejected due to a lack of a scale-
independent maintenance strategy.

Algorithm 2 Generating View Predicates

1: P := set of all conjunctive predicates in the query of the
form v1 op v2

2: EquivalenceClasses(P) := set of equivalence classes un-
der P

3: P

view

 {}
4: for all X 2 EquivalenceClasses(P) do
5: prevAttr := ?
6: for all v 2 X do
7: if !isParam(v) then
8: if prevAttr 6= ? then
9: P

view

:= P

view

+ Equality(prevAttr, v)
10: end if
11: prevAttr := v

12: end if
13: end for
14: end for
15: for all p 2 P do
16: if isInequality(p.op) then
17: if !isParam(p.v1)^!isParam(p.v2) then
18: P

view

:= P

view

+ p

19: end if
20: end if
21: end for

Algorithm 2 describes this process of creating P

view

. Tak-
ing as input the set of conjunctive predicates (Line 1), the al-
gorithm starts by partitioning values found in P into equiva-
lence classes (Line 2). Next, for every equivalence class (Line
3), the algorithm adds an equality predicate to P

view

for each
attribute pair in the class (Line 4-11). Finally, the algorithm
copies inequality predicates involving non-parameters into
P

view

(Line 15-21).
As an example, consider again the twoTags query. The

predicates in this query define three equivalence classes:

{t1.docId, t2.docId, d.docId}, {t1.tag, <tag1>},
{t2.tag, <tag2>}

From these classes the following is produced for P
view

:

{t1.docId = t2.docId, t1.docId = d.docId}

Once P
view

has been constructed, the system next creates
A

view

. A

view

contains the attributes in A

eq

and A

ineq

as
well as any remaining key attributes from the top-level ta-
bles present in the original query. These key attributes are
added to the projection in order to ensure the view can be
e�ciently maintained using production rules, as proposed
by Ceri and Widom [7]. Specifically, the view selector en-
sures that there will be no duplicate tuples in the view and
that all top-level table references are safe. Additionally, to

D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

avoid unnecessary redundancy, any key attributes that are
unified by an equality predicate in the original query will
only appear once in the projection of the view.

Algorithm 3 Choosing View Keys

1: R := the set of relations present in the original query
2: A

keys

:= {a : r 2 R, a 2 keyAttrs(r)}
3: A

view

 []
4: A

covered

 {}
5: function EquivalenceClass(P, a)
6: return all values in P unified with a due to equality

predicates, including a itself
7: end function
8: for all a 2 A

eq

+A

ineq

+A

order

+A

keys

do
9: if a /2 A

covered

then
10: A

view

:= A

view

+ a

11: A

covered

:= A

covered

[EquivalenceClass(P, a)
12: end if
13: end for

Algorithm 3 describes the process used to populate A

view

and starts by initializing A

keys

to be the set of key attributes
for all top-level tables from the original query (Line 2). Next,
it initialises A

view

, the ordered list of attributes that will ap-
pear in the view, and A

covered

, the set of attributes already
represented in the view definition considering unification, to
be empty (Lines 3-4). Then, it iterates over the ordered
concatenation of the attribute sets (Line 8) and adds to the
view any attributes not yet present in the cover set A

cover

(Line 10). To prevent redundant values from appearing in
the view, when an attribute is added, its entire equivalence
class is added to A

cover

(Line 11).
Applying Algorithm 3 to the twoTags query, the attributes

t1.tag, t2.tag, d.timestamp, and d.docId are selected.
The first two attributes come from A

eq

, d.timestamp comes
from A

order

, and d.docId from A

keys

. By placing attributes
from A

eq

first, the view selector ensures that tuples satisfy-
ing the original query can be located by a prefix of the keys
in the view. Including d.timestamp next ensures that the
relevant tuples in the view will be sorted as specified by
the ORDER BY clause. Finally, d.docId allows for safe view
maintenance and the retrieval of the actual document.

Continuing the twoTags example, the following material-
ized view is created by the view constructor:

CREATE VIEW twoTagsView
SELECT t1.tag as t1tag, t2.tag as t2tag,

d.timestamp, d.docId
FROM Tags t1, Tags t2, Documents d
WHERE t1.docId = t2.docId AND

t1.docId = d.docId

Once the view has been constructed for a given query,
the query is rewritten by replacing the top-level tables with
the view and renaming any attributes to their equivalent
attribute in the view. If there are any attributes that are
present in the original query, but not in the view, they can
be retrieved either by joining the view with the base relation
on the keys that are present, or by adding the missing at-
tributes to the view definition. The former will require more
computation at query time while the latter will require more
storage for the view. Since the method does not a↵ect the
scale independence of the query, the system decides which

technique to use based on the predicted SLO compliance of
the resulting query.

This final step rewrites the twoTags query to use the ma-
terialized view as follows:

SELECT t1.docId
FROM twoTagView
WHERE t1tag = <tag1> AND t2tag = <tag2>
ORDER BY timestamp LIMIT 5

3.2 View Construction With Aggregates
PIQL’s view selection system is also capable of handling

many queries that contain aggregates in the projection. In
this subsection, we describe both the class of aggregates that
are supported and the alternative view selection algorithm
used when an aggregate is present in a query.

3.2.1 Scale-Independent Aggregates
The class of scale-independent aggregates is defined in

part by the storage requirements for partial aggregate val-
ues. Using the categories of aggregates first defined by Gray
et al. [12], PIQL can safely store partial aggregate values
for both distributive aggregates (such as COUNT or SUM) and
algebraic aggregates (such as AVERAGE and VARIANCE). Both
of these categories have partial state records of fixed size.
In contrast, holistic aggregates like MEDIAN can require an
unbounded amount of partial state to be stored and thus
conflict with our goal of scale independence.

Bounding the storage required for each partial aggregate
value alone is not su�cient, as we must also ensure that ef-
ficient incremental maintenance of aggregated values is pos-
sible. Towards this end, we also require updates to the ag-
gregate be both associative and commutative. While both
MIN and MAX are distributive aggregates, updates to them do
not always commute in the presence of deletions. For exam-
ple, when the maximum value from a given group is deleted,
the only way to update the aggregate is to scan over an un-
bounded set of tuples looking for the new maximum value.

3.2.2 View Selection with Aggregates
When PIQL’s view selection system detects an aggregate

in the projection of a scale-dependent query, it uses a slightly
modified view construction algorithm. We explain these
modifications in four parts.

Ordering Views containing aggregates cannot have any
inequalities with parameters, as these could require unbounded
computation to maintain. Additionally, since each query
containing an aggregate will return only one tuple, there is
no ORDER BY clause. These two changes eliminate the need
for Algorithm 1.

Keys Views containing aggregates are maintained using
techniques analogous to a counting solution [13], thus we
no longer require Algorithm 3 to add keys to ensure safe
maintenance.

Aggregate Expressions The view selection algorithm
must add partial aggregate values A

agg

to the created view.
In the case of distributive aggregates, only the aggregate ex-
pression itself must be added, while for algebraic aggregates
more information may be required to ensure e�cient incre-
mental maintainability. For example, AVERAGE is computed
by keeping both a SUM and a COUNT.

Group By Clause All of the attributes in A

eq

are added
to the group by clause of the created view.

D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

To understand more clearly how this modified algorithm
would select a view, consider the following query countTags,
which calculates the number of documents assigned a given
tag, along with the constructed IMV.

SELECT COUNT(*)
FROM Tags
WHERE tag = <tag>

CREATE VIEW docsPerTag
SELECT tag, COUNT(*) as count
FROM Tags t
GROUP BY tag

3.3 Views for Window Queries
PIQL can handle many queries that operate over win-

dows of data, and the techniques for handling these queries
fall into two categories. For queries that operate over a
fixed size tuple window, an index can be created on inser-
tion timestamp. Since the tuple window bounds the number
of tuples that will need to be retrieved from this index, scale
independent optimization then be performed on the rest of
the query using standard techniques. Section 6 discusses the
special consideration required when creating such indexes to
avoid hotspots as the size of the database scales.

Aggregate queries that operate over a time windows are
handled prepending an epoch identifier to the beginning of
the view. The epoch identifier calculated using the follow-
ing formula: timestamp� (timestamp mod windowSize).
For example, consider modifying the countTags query from
the previous section to count tags for a sliding window of
length one minute. PIQL would create the following view
(assuming timestamp is measured in milliseconds).

CREATE VIEW docsPerTagWindowed
SELECT (timestamp - (timestamp % (60*1000)),

tag, COUNT(*) as count
FROM Tags t
GROUP BY (timestamp - (timestamp % (60*1000)), tag

Queries where the window size is larger that the slide
amount can also be handled but will result in updates to
all relevant epochs. Stale epochs can be garbage collected.

4. BOUNDING STORAGE COSTS
Once a candidate view has been produced by the selection

algorithm described above, Phase 2 performs a static anal-
ysis of the maximum possible storage requirements. If the
analysis determines that the view could grow super-linearly
relative to the size of the base relations, the view is rejected,
as its creation might violate Invariant 3.

PIQL’s view size analysis utilizes dependency information
from both the schema and the view definition. Note that
the dependencies defined in this section subsume standard
functional dependencies, where the latter can be represented
as a cardinality dependency of weight one.

At a high level, the algorithm bounds the maximum size
of view by determining how many degrees of freedom re-
main after taking into account all of the tuples from a single
relation in the view definition. In doing so, the algorithm
determines whether the dependencies present are su�cient
to ensure that the view is bounded in size by constant factor
relative to at least one base relation.

4.1 Enumerating Dependencies
The analysis starts by constructing the list of all depen-

dencies for a given view definition using the following rules:

1. (keyAttributes)! (otherAttributes)
Add a dependency of weight one to represent the func-
tional dependency due to the primary key’s uniqueness
constraint.

2. (keyAttributes)
cardinality�������! (constrainedF ields)

Add a dependency for each relation that has a cardi-
nality constraint declared in the schema, weighted by
the cardinality of the constraint.

3. attribute1 $ attribute2

Add a bidirectional dependency of weight one for each
attribute pair present in an equality predicate in the
WHERE clause of the view definition.

4. Fixed Value! attr

Add a directional edge from a special fixed node to any
attribute that is fixed by an equality predicate with a
literal (e.g. attr = true). This dependency is always
implied, independent of what other dependencies are
being considered.

Take, for example, the view definition of the twoTags
query from the previous section. Given this view definition,
the algorithm will produce the following list of dependencies.
We omit trivial dependencies for the sake of brevity.

d.docId! (d.timestamp, . . .) (1)

t1.docId
K�! t1.tag (2)

t2.docId
K�! t2.tag (3)

t1.docId$ t2.docId (4)

t1.docId$ d.docId (5)

First, dependency 1 is added to the set due to the primary
key of the document relations. Next, dependencies 2 and 3
are added to the set due to the cardinality constraint that
each document may have no more than K tags. Finally,
dependencies 4 and 5 are added as a result of the equality
predicates present in the view definition.

4.2 Bounding Size Relative to a Relation
The following algorithm determines if the maximum size

of the view is linearly proportional to one of the relations
present in the query, using the dependency list generated
by the above rules. This analysis is performed by finding a
relation present in the query such that all attributes present
in the view are functionally dependent on the primary key
of the selected relation. If independent attributes remain af-
ter the inclusion of all possible dependencies, then a bound
on the size of the IMV does not exist relative to that rela-
tion. If no relation can be found such that all attributes are
functionally dependent on its primary key, then the view is
rejected due to a possible violation of Invariant 3.

Algorithm 4 describes this process formally, and takes as
input the set of all relations present in the view and all
dependencies for the IMV (Lines 1-2). It returns a boolean
value indicating if there is an upper bound on the size of
the view due to these dependencies. The algorithm iterates
over all of the relations present in the view definition. For
each relation, the set of attributes functionally dependent
on this relation a

dep

is initialized to the key attributes of
the relation (Line 4). Then, the algorithm iteratively selects
the set of attributes a that are functionally dependent on
the attributes in a

dep

given D but are not yet present in
a

dep

(Line 6). These new attributes are then added to a

dep

(Line 7). If a
dep

now includes all attributes from the view,

D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

we know the view size is bounded relative to the relation r,
thus, the algorithm returns true (Lines 8-10). The iteration
stops if at any point there are no more attributes to add to
the set (Line 11). If no bound can be found for any relation,
the algorithm returns false (Line 13).

Algorithm 4 Bounding Maximum View Size

1: R := the set of all relations present in the view
2: D := the set of dependencies for the IMV
3: for all r 2 R do
4: A

dep

:= keyAttrs(r)
5: repeat
6: A := {a | a 2 attrs(R), a 62 a

dep

, D |= A

dep

! a}
7: A

dep

:= A

dep

[A

8: if A

dep

◆ attrs(R) then
9: return true

10: end if
11: until |A| = 0
12: end for
13: return false

To understand this process more concretely, consider again
the definition of the IMV created by our system to answer
the twoTags query. Algorithm 4 will start by selecting the
Tags (t1) relation. This initializes a

dep

to {t1.id, t1.tag}.
On the first iteration, it will add {t2.docId, d.docId} to
a

dep

due to dependencies 4 and 5 respectively. Then, on the
second iteration, it will add all remaining attributes due to
dependencies 1 and 3. At this point, since all attributes in
the query are in a

dep

, the algorithm will return true.
Note that Algorithm 4 would return false were it not for

the cardinality constraint on the number of tags per docu-
ment (functional dependencies 2 and 3). To understand how
this schema modification could cause the twoTagView defi-
nition to violate Invariant 3, consider the degenerate case of
a database with only a single document. As the number of
tags increases, the size of the view would grow quadratically.

4.3 Views with GROUP BY
When the view contains a GROUP BY clause, we must slightly

modify the procedure for determining if the storage required
by the view is bounded. This modification is a result of
the fact that the GROUP BY e↵ectively collapses many tuples
down to those with unique values for the attributes in the
GROUP BY. Thus, instead of requiring attributes from all re-
lations to be covered by the dependencies, it is su�cient
to have dependencies that cover only the attributes being
grouped on. This change can be implemented simply by
substituting attrs(R) with the set of attributes present in
the GROUP BY on Line 8 of Algorithm 4.

5. BOUNDING MAINTENANCE COST
Once the view selection system has produced a candidate

view and verified a bound exists for the storage required by
the view, Phase 3 ensures the existence of an upper bound
on the number of operations required by incremental main-
tenance given a single update to any of the relations present
in the view. In this section, we first review the standard
techniques used to perform incremental maintenance. We
then explain the analysis performed to ensure that the total
number of operations required by this mechanism will be
bounded.

5.1 Maintenance Using Production Rules
PIQL performs incremental maintenance using production

rules [7] that execute each time a base relation is modified.
At a high level, the production rules update the view by
running a delta query. This delta query calculates all of the
tuples that should be added or removed from the view due
to a single tuple insertion or deletion. An updated tuple is
processed as a delete followed by an insert.

Since PIQL’s view construction algorithm ensures the safety
of incremental maintenance, the delta query for an update
can be derived by substituting the updated relation with the
single tuple being inserted or deleted. In order to under-
stand the delta query’s derivation more concretely, consider
the IMV twoTagsView when a new tag is inserted. PIQL’s
view selection system would calculate the first delta query
by substituting the relation t1 with the modified tuple in
the view definition. Notationally, we represent the values
of inserted or deleted tuple as <parameters> to the delta
query. This substitution produces the following rule which
will be run anytime a tuple is added to the Tags relation:

CREATE RULE newTag ON INSERT Tags
INSERT INTO twoTagsView
SELECT <tag>, t2.tag as t2tag, d.timestamp, d.docId
FROM Tags t2, Documents d
WHERE t2.docId = <docId> AND d.docId = <docId>

Update rules must be created for all of the relations present
in the view definition, including another rule for the second
instance of the Tags relation. Due to the presence of a self-
join, the inserted tuple must also be joined with itself. We
omit the other delta queries from the paper for brevity.

5.2 Maintenance Cost Analysis
Given all of the delta queries for a view, we must ver-

ify that none of them threaten the scalability of the ap-
plication by requiring an unbounded number of operations
during execution. Fortunately, since these delta queries are
represented as SQL queries, we can reuse the optimization
techniques from prior work [4] to perform this analysis. If
the optimizer is able to find scale-independent plans for all
of the delta queries, then we can certify that the addition of
the view will not cause a violation of Invariant 2.

For example, consider the delta query newTag from the
previous subsection. Due to the cardinality constraint on
the number of tags per document, this query can always be
executed by performing a single sequential scan.

Since verifying the scalability of the delta queries involves
invoking the optimizer again, it is possible that the only
scale-independent physical plan for a delta query will also
require the creation of an index or materialized view. Thus,
in some cases the creation of a materialized view could result
in multiple recursive invocations of the view selection sys-
tem. Fortunately, we can be assured that this recursion will
always terminate since the degree of the query will decrease
with each successive derivation [16].

5.3 Updating Aggregates
Materialized views that contain aggregates are also main-

tained using delta queries with one important distinction.
Delta queries for aggregate functions return a list of up-
dates to possibly existing rows instead of tuples that will be
added or removed from the IMV. Notationally, we represent

D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

the update that will be applied to a given field in the view
as an expression in the SELECT clause prefixed by a +.

The delta queries themselves are derived using rules simi-
lar to those used for other queries. Specifically, the inserted
tuple is substituted for the relation being updated and sim-
plified, leveraging the distributivity properties of joins and
aggregates [16]. For example, considering the view for the
countTags query, the following delta query is used for main-
tenance:

CREATE RULE ON INSERT INTO Tags
UPDATE twoTagsCount
SELECT <tag>, t2.tag, +1
FROM Tags t2
WHERE t2.docId = <docId>

When a new tag is inserted for a document, this query
increments the count of all combinations of this tag and
others already present for that document. The rules for
deletions are symmetric and thus omitted for brevity.

6. AVOIDING COMMON HOTSPOTS
Preventing workload hotspots is critical to maintaining

consistent performance as any distributed system grows. While
clearly it is not possible to predict and avoid all possible
hotspots, PIQL is able to detect some common cases us-
ing schema annotations provided by the developer. Based
on these annotations, PIQL will avoid creating indexes that
could result in a hotspot, and will instead suggest views that
spread the insertions across the cluster. In this section we
describe an addition to standard DDL and the technique
used to rewrite potentially problematic queries.

6.1 DDL Annotations
PIQL allows developers to annotate columns whose values

exhibit strong temporal locality with respect to insertions.
Figure 2 shows the canonical example of such locality, an in-
dex over the creation timestamp for a given record. Since all
records created within a short time period will have similar
values for this attribute, all updates to an index ordered over
this attribute will be routed to the same partition. While
this concentration of updates will not result in performance
issues at a small scale, it is in direct conflict of our goal of
predictable performance as the system grows.

S1 S2 S4 SN

current
time

...

2009-09

2010-03

S3

2010-08

2011-04

2012-11

R
ange

P
artition

Tag(430, "dog", 2012-11-12:10:05)

Tag(203, "black", 2012-11-12:10:05)
Tag(202, "dog", 2012-11-12:10:05)
Tag(201, "dog", 2012-11-12:10:05)

...

S1 S2 S4 SN...

black, 101

dog, 001

S3

flow
ers, 220

S
F, 100

Zoo, 9200

Tag(430, "dog", 2012-11-12:10:05)

Tag(203, "black", 2012-11-12:10:05)
Tag(202, "dog", 2012-11-12:10:05)
Tag(201, "dog", 2012-11-12:10:05)

...

HASH (tag, docId)
(time, tag, doc-id)

Figure 2: Indexes over timestamps can results in
hotspots, denoted by the shaded server. In con-
trast, PIQL chooses to distribute insertions over all
machines in the cluster.

Developers can warn the optimizer to avoid the creation of
these hotspot prone indexes by using the TEMPORAL keyword.

For example, consider the following modification to the Tags
schema, first introduced in Section 2.

Tags(docId, tag, timestamp TEMPORAL) WITH ...

6.2 Query Rewriting
When PIQL detects a hot-spot prone index, it instead

creates materialized views that can be used to answer the
query using a two step process. As an example of a case
where this process would occur, consider the following query,
popularTags, which returns the most popular tags out of the
most recent 5000 insertions.

SELECT tag, COUNT(*)
FROM (SELECT * FROM Tags

ORDER BY timestamp
LIMIT 5000)

GROUP BY tag

Using only prior techniques, the optimizer would classify
this as SI-1 and attempt to execute it on-demand with an
index over Tags.timestamp. This execution plan would be
problematic at scale, however, as maintaining this index in
a range partitioned system would eventually lead to an over-
loaded partition and subsequently high query latency.

Instead of creating this hot-spot prone index, PIQL will
instead create a view that is hash partitioned by the primary
key of the relation. In the example below, this partitioning
can be seen though the HASH keyword at the beginning of the
view definition. Within each partition the records are sorted
by the TEMPORAL attribute (i.e., timestamp in this example).
Any remaining required attributes are appended to the end
of SELECT clause. This procedure results in the following
materialized view for the popularTags query.

CREATE VIEW popularTagStaging
SELECT HASH(tag, docId), timestamp, tag
FROM Tags

Next, the original query is rewritten as a periodically up-
dated materialized view by substituting the original rela-
tion with the hash-partitioned materialized view. For the
popularTags query this transformation results in the fol-
lowing SQL.

CREATE VIEW popularTags PERIODIC 1 MIN
SELECT tag, COUNT(*)
FROM (SELECT * FROM popularTagStaging

ORDER BY timestamp
LIMIT 5000)

GROUP BY tag

The optimizer will choose a physical plan that executes
the subquery in parallel on each partition. Since the tuples
in each of the partitions are sorted by the desired ordering
attribute, each partition will only need to scan over 5000
tuples in the worst case. Therefore, the total amount of work
that needs to be performed serially has a constant upper
bound. However, since the total amount of computation is
now proportional to the number of machines in the cluster,
this query now falls into SI-3, unlike the twoTags query from
the previous sections, which falls into SI-2. Section 8.2.2
demonstrates that even though the total amount of work
grows with the size of the cluster, the increased parallelism
allows us to execute the query with only minor increases in
the periodic update latency.

D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

7. CONSISTENCY
PIQL’s techniques are compatible with a variety of con-

sistency guarantees, including as online maintenance [20,
23] or deferred view maintenance [24, 9]. For applications
with strong consistency requirements, a locking-based view
maintenance mechanism can be used [23, 20]. However, de-
pending on the data access patterns such locking-based tech-
niques might create contention points and therefore poten-
tially violate our goal of predictable performance at scale.
As an alternative to locking-based techniques, many deferred
view maintenance techniques, such as 2VNL [24], perform
optimistic view maintenance. Finally, eventually consistent
view maintenance techniques [23] provide the lowest over-
head per update, but often at the price of a few concur-
rent updates never being reflected in the view (see also view
maintenance anomalies [18]).

The current implementation uses the simplest technique,
relaxed view maintenance. We, however, ensure that all up-
dates are eventually reflected in the view using the following
procedure: Delta queries execute under relaxed consistency,
while background batch jobs check for and repair any incon-
sistencies that may arise by periodically reconstructing the
entire materialized view. The frequency of the execution of
these batch jobs can be tuned to meet the needs of a spe-
cific application. This approach provides a balance between
low-latency updates, high availability, and consistency.

Clearly, the e�ciency of PIQL could be improved by only
checking for inconsistencies in those sections of the view
that have changed recently as done in [24]. We believe this
optimization as well as other mechanisms for eventually-
consistent, distributed incremental view maintenance rep-
resent interesting future research problems.

8. EXPERIMENTS
In order to understand the e↵ect the scale-independent

invariants have on the latency of both query execution and
view maintenance, we ran two sets of experiments. The first,
a micro-benchmark based on the twoTags example query
(Section 2), demonstrates the need for an IMV when an-
swering a query in SI-2, as well as showing bounded latency
for both query execution and the incremental maintenance of
the view. The second experiment demonstrates the scalabil-
ity of our system under a more holistic workload by running
all queries from the TPC-W benchmark, using the modifi-
cations and IMVs suggested by PIQL’s optimizer.

Experiments were run using Amazon EC2 m1.large in-
stances, which have 7.5 GB of memory and CPU power
roughly equivalent to a two-core, 2GHz processor. SCADS
[5] was used for the underlying storage system and provi-
sioned for each experiment such that all nodes were respon-
sible for the same amount of data and workload.

8.1 TwoTags Benchmark
Without an IMV, the twoTags query can often be ex-

pected to return quickly, but common data patterns can
result in arbitrarily slow response times. For example, con-
sider a case where there are a large number of documents
are assigned tag1 but few documents are also assigned tag2.
With only an index, the system will need to read many of
the documents with tag1 during query execution, resulting
in query latency that grows proportionally with the number
of tuples touched.

To validate whether this problematic scenario arises in
practice, we construct datasets at varying scales in which
document tags are sampled from a Zipf distribution (n=2000,
s=0.1). We chose this distribution as it approximates the
frequency of tags in a social context [10, 22].

We measure the performance of the twoTags query at scale
by partitioning the Tags relation as well as its materialized
view across the cluster by key range, with two replicas per
partition. Each experiment begins with 200,000 tags bulk
loaded to each partition. A cardinality constraint of 10 tags
per document is enforced, with an average of four tags per
document initially. For each data point, we combine the re-
sults from multiple runs across di↵erent EC2 cluster instan-
tiations, and discard the first run of any setup to mitigate
JIT warm-up e↵ects.

A 2:1 ratio of storage to client nodes is maintained across
cluster sizes, with each client utilizing two reader and two
writer threads to issue requests to storage concurrently. Since
writes are significantly more expensive than reads, this re-
sults in a read-write ratio of approximately 25 to 1.

8.1.1 On-Demand vs. Materialization
Figure 3 shows that with on-demand execution, the 99th

percentile latency grows linearly with the size of the data,
and the query read latency quickly rises to over a second.
The significant increase in response time clearly demonstrates
the danger of allowing queries with scale-dependent plans
to run in production. However, when the same query is
answered using the IMV, the response time remains nearly
constant, leveling o↵ at a 99th percentile latency of 8ms.

Figure 3: 99th-percentile query latency as cluster
size grows with and without an IMV.

8.1.2 Cost of Incremental View Maintenance
Now that we have demonstrated bounded query latency

by shifting some of the computational work to insertion time,
we must now verify that we have not negatively impacted
the scalability of writes to the application.

Figure 4: Write completion time remains bounded
even with the overhead of incremental maintenance.

D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

While the incremental view maintenance could be per-
formed asynchronously, returning to the user immediately
after the write is received, we modified the system to per-
form all maintenance synchronously for the purpose of this
experiment. Figure 4 shows the e↵ect that the maintenance
of the materialized view has on write latency.

While latency of updates to the Tags relation is impacted
by view maintenance, the e↵ect is relatively small (⇠ 110ms
in the worst case) and remains virtually constant for cluster
sizes larger than 40 nodes. The initial increase in write la-
tency as the cluster grows is due to the fact that the number
of partitions in the system is small with respect to the cardi-
nality constraint on tags. Specifically, for a smaller cluster,
fewer partitions are often contacted per write, since some
writes will go to the same machine. However, since Invari-
ant 2 bounds the number of writes that will be performed
in the worst case, eventually the maximum distribution is
reached and the performance e↵ect levels o↵.

8.2 TPC-W Benchmark
TPC-W1 is a standard benchmark based on an online

bookstore. Unlike prior work [4], where some TPC-W queries
were excluded from scalability analysis, we include all web
interactions in our evaluation. PIQL’s automatic creation of
IMVs allows for full execution of the benchmark, while still
achieving consistent 99th percentile response time.

Two web interactions required slight modifications to avoid
naive workload hotspots. The first, the BestSellerWI, re-
turns the top 50 most popular items from the last 3333 or-
ders. The second, AdminConfirmWI, returns the 5 most
common items co-purchased with a specified item from the
last 10,000 orders. Since executing either of these interac-
tions on-demand would require an index over the creation
time for a given order, PIQL suggested that we precompute
the answer using periodically refreshed materialized views.

We went further and changed the tuple windows to instead
calculate the result over hour-long time windows. TPC-W
was initially designed to be run on a single machine and
thus the queries were not written expecting arbitrarily high
order rates. Since a time window both provides a more se-
mantically consistent result as the system grows and requires
strictly more work to maintain than simple tuple windows,
we chose this implementation for our evaluation.

8.2.1 Query and Update Performance
After applying the scalability modifications, PIQL’s opti-

mizer was able to find query and update plans that satisfy all
scale-independent invariants. Figure 5 shows the 99th per-
centile response time for the BuyConfirm web interaction.
Since this interaction is the only one that actually places or-
ders, all incremental view maintenance is performed during
this action. Similar to the twoTags query, the strict upper
bound on the number of operations performed in the worst
case causes the increase in response time to eventually level
o↵. Figure 6 shows that PIQL provides consistent 99th per-
centile response time for all web interactions.

Without view maintenance, the BuyConfirm interaction
has a 99th percentile response time of 100ms. This means
that, in the worst case, view maintenance adds nearly two
seconds of latency to this web interaction. Fortunately, in
a production system, this maintenance could be performed
asynchronously and thus not a↵ect end user experience.
1http://www.tpc.org/tpcw/

Figure 5: The response time for maintaining the
IMVs for the TPC-W workload increases initially,
but eventually levels o↵ due to the limitations im-
posed by the scale-independent invariants.

Figure 6: The 99th percentile latency for all TPC-
W web interactions remains nearly constant as the
number of machines increases

8.2.2 Latency of Parallel Refresh
The views used to answer queries such as BestSeller and

AdminConfirm are updated periodically. Since we relax In-
variant 2 to bound only the amount of work performed se-
rially in each partition, instead of the total work required,
these queries fall into SI-3. However, Figure 7 shows that
since each partition can be processed in parallel, the overall
time taken for the refresh step increases only slightly (less
than a second) as we scale from 20 to 100 machines.

Figure 7: Serial work per update stays constant in-
dependent of the size of the cluster, so the latency
for periodic view refresh remains nearly constant.

9. RELATED WORK
Prior work on the automatic selection of materialized views,

such as the static approach taken by Agrawal et al. [2]
or the dynamic approach taken by Kotidis and Rossopou-
los [17], has focused on selecting views that will speed up a
given workload. Generally the problem is framed as follows:
Given a workload and a size bound, materialize the set of
views that based on estimation will result in the greatest im-
provement in the performance of the system. Additionally,

D
R
A
F
T
A
pr
il
14
,
20
13
;
8:
52
am

;
D
R
A
F
T

Gupta et al. [14] present algorithms that consider the cost
of maintenance when selecting views. However, their tech-
niques focus on minimizing the average cost of maintenance
and query execution, not ensuring scale independence.

In contrast, PIQL creates an IMV when it will fundamen-
tally change the scalability of a query in an application, not
just when it could speed up execution. Thus, instead of just
reducing response time, we ensure scale independence for an
application before it is deployed to production. Addition-
ally, our novel static analysis algorithms allow us to ensure
that the size of the selected view can never grow faster than
linearly with the size of the base data.

DBToaster [3] also recursively creates materialized views
to reduce the work of incremental maintenance . However,
their system only works for views with aggregation and does
not bound the total number of operations required.

Agrawal et al. [1] describe a large-scale declarative system
that incrementally maintains materialized views. However,
unlike PIQL, their query language does not support JOINS
of more than two tables, unless they are all joined on the
same attribute. Thus, PIQL’s language extensions and re-
cursive view creation allow the scale-independent mainte-
nance of a wider range of views.

Further expansion of the scale independence may be possi-
ble. In particular better support for predicates with inequal-
ities could be added through the inclusion of other special-
ized data structures such as range trees [8].

10. CONCLUSION
The ability to anticipate and handle rapid growth is criti-

cal for modern large-scale interactive applications. Precom-
putation through the automatic creation of incrementally
maintained materialized views is a powerful tool that can
allow these sites to run more complex queries while still
meeting their performance objectives. This technique shifts
query processing work from execution time to insertion time,
and can not only improve performance but also fundamen-
tally change the scaling behavior of a wide range of queries.

In this paper, we presented a scale-independent view se-
lection system, which not only recognizes such cases but also
leverages novel static analysis techniques to ensure the auto-
matically created views will not themselves become scaling
bottlenecks. These algorithms ensure created views will not
violate invariants on both the storage required and the cost
of maintenance as the scale of an application increases. Ad-
ditionally, we described an annotation that allows PIQL to
detect and mitigate common sources of workload hot spots.
Together, these techniques allow PIQL to provide a rela-
tional engine that preserves the productivity benefits of SQL
while maintaining the performance predictability of today’s
distributed storage systems.

Acknowledgments
We would like to thank Henry Cook, along with the re-
viewers, for feedback that significantly improved the con-
tent of this paper. This research is supported in part by
NSF CISE Expeditions award CCF-1139158 and DARPA
XData Award FA8750-12-2-0331, and gifts from Amazon
Web Services, Google, SAP, Blue Goji, Cisco, Clearstory
Data, Cloudera, Ericsson, Facebook, General Electric, Hor-
tonworks, Huawei, Intel, Microsoft, NetApp, Oracle, Quanta,
Samsung, Splunk, VMware and Yahoo!.

11. REFERENCES
[1] P. Agrawal et al. Asynchronous view maintenance for vlsd

databases. In SIGMOD, 2009.
[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.

Automated selection of materialized views and indexes in
sql databases. In VLDB, 2000.

[3] Y. Ahmad, O. Kennedy, et al. Dbtoaster: higher-order
delta processing for dynamic, frequently fresh views. Proc.
VLDB Endow., 5(10):968–979, June 2012.

[4] M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin,
and D. A. Patterson. PIQL: Success-tolerant query
processing in the cloud. PVLDB, 5(3), 2011.

[5] M. Armbrust et al. Scads: Scale-independent storage for
social computing applications. In CIDR, 2009.

[6] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. E�ciently
updating materialized views. In SIGMOD, 1986.

[7] S. Ceri and J. Widom. Deriving production rules for
incremental view maintenance. In VLDB, 1991.

[8] M. Chaabouni and S. M. Chung. The point-range tree: a
data structure for indexing intervals. In Proc. of ACM
CSC, CSC ’93, pages 453–460, 1993.

[9] L. S. Colby et al. Algorithms for deferred view
maintenance. SIGMOD Rec., 25(2), June 1996.

[10] E. Cunha et al. Analyzing the dynamic evolution of
hashtags on twitter: a language-based approach. In
Workshop on Languages in Social Media, 2011.

[11] G. DeCandia et al. Dynamo: amazon’s highly available
key-value store. SIGOPS, 41, 2007.

[12] J. Gray, A. Bosworth, A. Layman, D. Reichart, and
H. Pirahesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. 1996.

[13] A. Gupta, D. Katiyar, and I. S. Mumick. Counting
solutions to the view maintenance problem. In Workshop
on Deductive Databases, JICSLP, 1992.

[14] H. Gupta and I. Mumick. Selection of views to materialize
in a data warehouse. Knowledge and Data Engineering,
IEEE Transactions on, 17(1):24–43, January 2005.

[15] J. Kincaid. Zuckerberg: Online sharing is growing at an
exponential rate. http://tinyurl.com/cskurl3.

[16] C. Koch. Incremental query evaluation in a ring of
databases. In PODS, 2010.

[17] Y. Kotidis et al. Dynamat: a dynamic view management
system for data warehouses. SIGMOD Rec., 28(2), 1999.

[18] W. Labio et al. Performance issues in incremental
warehouse maintenance. In VLDB, 2000.

[19] X. Long and T. Suel. Three-level caching for e�cient query
processing in large web search engines. In WWW, 2005.

[20] G. Luo et al. Locking protocols for materialized aggregate
join views. In VLDB, 2003.

[21] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham.
Materialized view selection and maintenance using
multi-query optimization. SIGMOD Rec., 30(2), 2001.

[22] M. E. J. Newman. Power laws, pareto distributions and
zipf’s law. Contemporary Physics, 46, 2005.

[23] M. T. Özsu and P. Valduriez. Principles of distributed
database systems (2nd ed.). 1999.

[24] D. Quass and J. Widom. On-line warehouse view
maintenance. In SIGMOD, 1997.

[25] K. Salem et al. How to roll a join: asynchronous
incremental view maintenance. SIGMOD Rec., 29(2), 2000.

[26] B. Trushkowsky et al. The scads director: scaling a
distributed storage system under stringent performance
requirements. In FAST, 2011.

[27] P. Valduriez. Join indices. ACM Trans. Database Syst.,
12(2):218–246, June 1987.

[28] K. Weil. Measuring tweets.
http://blog.twitter.com/2010/02/measuring-tweets.html.

