Rational Coordination of Crowdsourced Resources
for Geo-temporal Request Satisfaction

Christine Bassem
Computer Science Department
Boston University
Boston, MA 02215
Email: cbassem@cs.bu.edu

Abstract—Existing mobile devices roaming around the mo-
bility field should be considered as useful resources in geo-
temporal request satisfaction. We refer to the capability of an
application to access a physical device at particular geographical
locations and times as Geo-Presence, and we presume that mobile
agents participating in geo-presence-capable applications should
be rational, competitive, and willing to deviate from their routes if
given the right incentive. In this paper, we define the Hitchhiking
problem, which is that of finding the optimal assignment of re-
quests with specific spatio-temporal characteristics to competitive
mobile agents subject to spatio-temporal constraints. We design
a mechanism that takes into consideration the rationality of the
agents for request satisfaction, with an objective to maximize the
total profit of the system. We analytically prove the mechanism
to be convergent with a profit comparable to that of a 1/2-
approximation greedy algorithm, and evaluate its consideration
of rationality experimentally.

I. INTRODUCTION

Current advances in mobile technology have enabled users
to walk around with portable, efficient, and powerful process-
ing devices. Such mobile devices are no longer being used for
mere communication, but are also being used as mobile sen-
sors, and actuators [12]. We envision an environment, in which
applications are allowed to access these sensory powers of the
existing devices in the mobility field. In such an environment,
participating self-motivated mobile agents already roaming in
a mobility field are paid to satisfy requests created by clients
with specific spatio-temporal constraints.

We refer to the capability of an application to access
a physical device at particular geographical locations, and
times as Geo-Presence. We categorize geo-presence-capable
systems as either infrastructure-based, or crowdsourcing-based.
In infrastructure-based systems, the mobile agents in the
field are owned and controlled by the system administrator.
Alternatively, in crowdsourcing-based systems, agents are au-
tonomous, self-motivated, and rational, in a sense that they
control their own mobility schedules.

In our work, we consider the second class of geo-presence-
capable systems, in which the system cannot control the
mobile agents, or force them to follow predefined mobility
schedules. We presume that the mobile agents are rational, self-
motivated, and that they would be willing to deviate from their
personal mobility schedules if given a suitable incentive. Our
contribution is to coordinate, not control, the agents mobility
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schedules. In other words, we suggest to the agents routes
that would satisfy spatio-temporal requests provided by clients,
while ensuring that their personal schedule constraints are not
altered.

In this paper, we continue on our work in [3], in which we
defined the Geo-temporal Request Satisfaction (GRS) problem
as that of finding the optimal assignment of requests with
specific spatio-temporal characteristics to competitive mobile
agents subject to spatio-temporal constraints. Requests in the
GRS problem can be requests to visit a location (example
applications are surveillance, advertising, and sensor-based
tasks), or to traverse a path (example applications are fleet
control, car-pool management, and continuous surveillance).
In this paper, we focus on an instance of the GRS problem,
namely the Hitchhiking problem, in which requests are for path
traversals, and agents can only satisfy one request at a time.

Paper Outline. In this paper, we define the Hitchhiking
problem, and design a mechanism that takes into consideration
the rationality of the agents for request satisfaction in Section
2. The objective of our proposed mechanism is to maximize the
total profit of the system subject to our rationality assumptions,
i.e., maximize the social welfare of the agents. We analytically
prove the mechanism to be convergent, and to provide profit
no worse that its corresponding 1/2-approximation greedy
algorithm. Finally, we evaluate the mechanism experimentally
in Section 3.

II. RATIONAL MECHANISMS FOR THE HITCHHIKING
PROBLEM

The GRS problem [3] represents a huge space of spatio-
temporal request allocation problems, each of which has in-
teresting applications in mobile computing. For the purposes
of this paper, we focus on an instance of the GRS problem,
namely the Hitchhiking problem, in which requests have to
be satisfied individually. Such a problem is applicable to car-
pooling, path-based sensor measurements, smart surveillance,
and various other path-oriented applications.

A. The Hitchhiking Problem

We model the structure of the mobility field (e.g., map
of city or locale) as a graph G = (V, E) in which the set
of vertices V' represents the various landmarks in the field
(e.g., intersections), and the set of edges FE represents the links
between these landmarks (e.g., streets). Movement between



landmarks, i.e along an edge, is done in a single discrete time
step. We denote by R the set of requests submitted to the
system, and by A the set of agents participating in the system.

A request in R is defined by the 3-tuple (v, ¢, val()), where
v[i] € V is the ith desired location of the request, ¢[i] > 0 is the
corresponding time for visiting that location, and val(v’,t) is
its valuation function. The valuation of a request is maximized
at the desired locations v and corresponding times £, and may
be valued differently otherwise.!

An agent in A is defined by the 3-tuple (,t,c(p;)),
representing the journey of the agent and its cost function.
The agent’s desired journey is defined by its list of locations
v; € V that have to be visited, and their corresponding latest
times of arrival ¢; > 0. The agent’s cost function c(pj) defines
the cost incurred by it when choosing a path p; to make
its desired journey®. For the purposes of this paper, we will
consider agents with a single-path journey, i.e. v = [v,, vf],
and ¢ = [t,, ty].

Definition 1: (The Hitchhiking Problem) Given the mobil-
ity field graph G, a list of requests R, and a list of agents A,
the Hitchhiking problem is that of finding a legitimate path
for each agent in the list A that maximizes the total profit
of the system, which is defined as the difference between the
total valuation obtained from the serviced requests as defined
by their valuation functions, and the total cost incurred by
the agents servicing these requests as defined by their cost
functions. Moreover, a legitimate path of the agent has to
satisfy its journey constraints, i.e., start at its desired start
location and time, and end at its defined destination at a time
t <ty.

B. The Hitchhiking Game

Assuming that agents should be assumed self-interested,
and in competition to maximize their self-profit, any practical
mechanism used to solve it must also satisfy such rationality
constraints. In this section, we define the Hitchhiking game
with an objective to maximize the social welfare of the agents,
with a total system profit that is comparable to that of the
greedy approximation.

In order to maximize system profit, and eliminate unex-
pected player behavior, the better response dynamics defined
in the games below are simulated by a central authority. The
central authority takes as input all information about the set of
participating agents, and the set of requests to be satisfied, and
simulates the mechanism dynamics, i.e. the central authority
plays the game on behalf of the agents. Requests are chosen
for the agents, and then the agents are notified with their
recommended paths along with their corresponding expected
payments

In the Hitchhiking game, a player’s better response move is
a proposal to satisfy a subset of the requests that maximizes its
utility, given that a player has knowledge about the current state

I'The valuation function can be defined as a linear, non-negative, decreasing
function (as implemented later in this paper), as an exponential decaying
function, or as a step-function.

2The cost of a path p; can be defined as the extra number of hops in that
path when compared to the shortest path that can be used for the journey (as
implemented later in this paper), or it can be defined as the difference between
the agent’s latest time of arrival and the actual time of arrival.

State2 State 3

Fig. 1. Counter example that proves the non-convergence of the Hitchhiking
game.

of the system (e.g., the requests available and other players
moves). Each player’s move generates a legitimate path for
that player. Moreover, players moves are assumed atomic and
serial.

Definition 2: (The Hitchhiking Game) In the Hitchhiking
game, players take turns in making better response moves that
maximize their utility until all players are satisfied with their
path choices. The utility of a player in the Hitchhiking game is
defined as the total profit resulting from the subset of requests
it decides to satisfy.

U(z;) = Z (val,,

r;€ER

— c(pj)) (1

where 7; is a request chosen to be satisfied by the player x;
with a valuation of wal, and the cost incurred by the player to
satisfy it is ¢(p;), in which p; is the legitimate path traversed
to satisfy that request.

Definition 3: (Domination Rule) Since players may choose
to satisfy the same request, an arbitration rule that decides
which player is allowed to claim the request is adopted.
Namely, the Domination Rule states that a player z; is allowed
to dominate another player x; and claim a request rj serviced
originally by x;, only if the total profit obtained from 7} when
serviced by player x;, as defined in Eq. 1, is strictly higher than
that when serviced by player x;. In the case of ties, requests
are claimed in a first-come, first-serve method.

Although the Hitchhiking game interprets the rational be-
havior of the competing agents, it may never reach Nash Equi-
librium under better response dynamics. This non-convergence
of the game is caused by the application of the necessary
domination rule, with the attempt of the players to consider
multiple requests when making their better response decisions.

Theorem 1: The Hitchhiking game may never reach Nash
Equilibrium under better response dynamics.

Proof: Consider the graph shown in the Fig. 1, in which
the set A has two players,

A= {([SlvdlL [1’6}70(*) =0),
([s2,d2],[1,10],¢c(x) =0)}



and the set R has two requests,

R = {([r11,r12], [2, 3], valy ([v1, va], [t1,t2])),
([r21,722],[2, 3], vala([vy, va], [t1, t2])) }

where,

7T—(t1 —2),

if v1 =71y, and vy = rlg
0, otherwise.

valy ([v1, v2], [t t2]) =

3,
if v = ’r‘21, Vg = 7“22, and t1 = 2
0, otherwise.

valy([vy,v2), [t1,t2]) =

Assume the initial state of the game as shown in Fig.1, in
which x5 claims request r; for a utility of 7, and x; has no
choice but its shortest path with a utility of 0. For the first
move, o decides to change its path, and claims both requests
ro and rp, in that order, with a utility of 8. Thus, giving z
the chance to dominate it, and claim 7; with a utility of 6.
Now that x5 has lost r; and has a utility of only 3, it makes
a move, changes its path again, and decides to claim r; only
for a utility of 7. Again, x; has no choice but its shortest path
with a utility of 0. This sequence of moves is repeated over and
over again, leading to the non-convergence of this instance of
the game, proving that the Hitchhiking game may not always
converge under better response dynamics. ]

C. Single-stage Hitchhiking Game

Since the domination rule is necessary for profit maximiza-
tion, the player’s utility function is redefined to depend on the
highest valuation of a single request that can be part of its
legitimate path.

Definition 4: (The HG') The Single-Stage Hitchhiking
Game takes as input the set of available requests, and the
set of agents journeys and cost functions. Players take turns
in making better response moves that maximize their utility
until all players are satisfied with their request choices, and
the domination rule is applied. The utility of a player in HG*
is defined as,

U(z;) = MAX,,cr{val,, —c(p;)} 2)

where r; is a request chosen to be satisfied by the player
x; with valuation val, and the cost incurred by the player to
satisfy it is ¢(p,), in which p; is the legitimate path created to
satisfy that request.

We prove below that HG' is an exact potential game
[16], which always converges. After convergence, each player
decides on the path with the highest paying request, and marks
the request’s exact location and time as part of its journey.
In other words, the player’s original journey is divided into
two smaller journeys; the first new journey starts at the same
location and time as the original journey, and ends at the
marked location and time of the highest paying request, and
the second journey starts from the marked location and time
and ends at the original journey’s destination location and time.

Theorem 2: HG' reaches Nash Equilibrium under better
response dynamics.

Proof: We prove this theorem by proving that HG" is an
exact potential game with an increasing potential function,

D(si,5-i) = Z (Ual""j — Cuy (pj)) (3
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where val,, is the valuation of the request r;, and ¢, (p;) is
the cost incurred by the player x; when choosing the legitimate
path p; to satisfy that request.

In other words, the function ®(s;, s_;) measures the total
profit of the system after a player x; makes a move to the state
of s;. According to the definitions of the potential function of
the system and the utility function of the players, we guarantee
that the potential function ®(s;,s_;) is always increasing.
Moreover, since the maximum valuations that can be obtained
from all requests available in the game are predefined, there
exists a maximum profit value that the function ® cannot ex-
ceed. Therefore, HG! is guaranteed to reach Nash Equilibrium
under better response dynamics. [ |

Efficiency of HG'. As the problem representing HG' can
be formulated as that of the Separable Assignment problem,
which is known to be an instance of maximizing a monotone
submodular function over a partition matroid [9]. Following
the same proof methodology, it can be shown that a greedy
algorithm solving a single-stage hitchhiking game is also a
1/2-approximation algorithm.

D. Multi-stage Hitchhiking Game

According to the definition of HG!, at most a single
request can be serviced by each player. As a result, there may
be requests that are left unserviced. To service these leftover
requests, the agents repeat the game in an iterative approach.

Definition 5: (The HG*) The Multi-Stage Hitchhiking
Game is a recursive implementation of HG' defined above.
In the first stage, the input of the game is the set of all
available requests, and the set of agents journeys and cost
functions. Then, for each stage k, the input of H G* is the
set of leftover requests, and the set of new journeys and cost
functions obtained from the output of the previous HGF~!,
The multi-stage game stops when the output of HG* 1 is the
same as that of HG*, i.e., no more requests can be satisfied.

Lemma 1: The number of stages in HG* is polynomial.

Proof: In each stage of HG™, at most a single request can
be serviced by each player. Therefore, the worst case scenario
is when only one request is satisfied at each stage of the game,
resulting in a total number of |R| stages. [ |

Theorem 3: The Multi-stage Hitchhiking game reaches
equilibrium under better response dynamics.

Proof: By combining our conclusions from Theorem 2
and Lemma 1; HG* has a polynomial number of stages, and
the HG' played in each stage always converges to a Nash
equilibrium. Therefore, any instance of HG* is proven to
always converge under better response dynamics. [ ]



Efficiency of HG*. The HG* game is designed to pro-
vide suitable incentives, and to encourage agent participation.
However, the total profit gained by the systems, which is
represented by the central authority simulating the game,
should also be considered.

Theorem 4: The total profit obtained from the Multi-stage
Hitchhiking game is never worse than that of a multi-stage
greedy algorithm.

Proof: In each single stage in the Multi-stage Hitchhiking
game, the total profit is never worse that of a greedy algorithm
solving the corresponding instance of the problem. For a
satisfied request 7; in a single stage, the profit obtained by
HG* for that request (z,,(j)) is at least as much as the profit
obtained by the greedy algorithm for the same request (z4(j)).
Thus, the total profit obtained by HG* is never worse than that
of the greedy algorithm.

Assume that z,(j) > 2zm,(j), for a request r;. In the
greedy approximation, z,(j) indicates that for an agent x;,
the incremental oracle algorithm has chosen r; as the request
that provides a maximum profit for it. In other words, r; is
the request that provides a maximum utility of z,(j) to ;.
Now consider the same request in HG*. Agents will compete
to satisfy r;, and according to the Domination rule defined in
the mechanism, the agent that provides the maximum revenue
to the system will be allowed to claim that request. Thus,
revenue value z,,(j) provided by the dominating agent x, is
the maximum across all agents in the system.

According to our assumption, z4(j) > 2, (j), there exists
an agent x; that provides better revenue than xj, for the same
request, which is not possible due to our mechanism rules.
Therefore we conclude that z4(j) < z,,,(j) for all requests r;.

|

III. PERFORMANCE EVALUATION

To evaluate the performance of the proposed mechanism,
we designed several sets of simulated experiments to compare
it to the greedy algorithm under different conditions, which
we explain in this section.

A. Experimental Setting

We emulated the behavior of HG* under different settings.
The input of each emulation is a graph representing the mobil-
ity field, the number of requests, the number of agents, the total
simulation time, and the agent slack. Once the emulation starts,
the lists R and A are generated with the attributes specified
below.

Each agent in A is define by the tuple
([vo, vy], [to, tf], c(pj)). The values v, and vy are uniform
random values over the number of locations in the mobility
field, the value t, is a uniformly random value over the
simulation time, and t; = t, + dist(v,,vs) + s, in which the
value s is the allowed slack by the agent. We define slack as
the maximum number of time units an agent is allowed to
waste during its journey. The cost function ¢(p;) of all agents
is defined as the extra number of hops in the path chosen p;
when compared to the shortest path that can be used for the
agent’s journey.
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Fig. 2. The marginal utility of adding agents decreases with increased number
of agents.

Each request in R represents a journey request in the form
of ([ve,vs], [to, tf],val()). The values v, and vy are uniform
random values over the number of locations in the mobility
field, and the values ¢, and ¢ are uniform random values over
the simulation time with the constraint ¢ty > ¢, + dist(v,, vy).
In our experiments, a request’s valuation function is either
fixed, i.e., the request has negligible valuation if satisfied
at non-defined locations and times, or linearly decreasing
according to the actual locations and times of satisfaction.

With the lists R and A, the HG* algorithm is invoked, in
which each stage takes as input the set of pending requests
and the set of available players. Initially, the set of pending
requests is all of the requests in R, and the set of available
players are all the agents in A.

In all our experiments, we focus on two performance
metrics, efficiency ratio, and agent participation. The effi-
ciency ratio is defined as the ratio between the total profit
obtained by all agents, and the maximum (utopian) profit, in
which the profit is the total profit attained by servicing all
requests independent of agents costs. The agent participation
is the percentage of agents that profit from participating in the
system.

B. Experimental Results

We created several sets of experiments to evaluate the
performance of HG™, and their results are shown below. For
each set of experiments, we perform 25 simulations and report
their average results.

Baseline Results. In the first set of experiments, we
compare the performance of HG* with fixed request valuation
functions to the greedy Hitchhiking algorithm defined above.
This set of experiments is based on a 40 * 40 cartesian
Manhattan-style grid, with 400 requests and total simulation
time of 500 time units, and an agent slack of 100 time units.

The results shown in Fig. 2 represent the efficiency ratio
of both approaches, when varying the number of agents from
1 to 800 agents. The results support the result of Theorem
4, as the efficiency ratio of HG™ is never worse than that of
the greedy algorithm. For both approaches, the performance



45
§' 40
T 35
o
e 30
i
52
20
o
a 15
£
5 10
L5
]
— L= o (= o (= (= (=] (=] (= (=
— wn (=] f= (=) L= (= (=] j=] (=]
— ~ m =T (T3] w [ 4]
Number of Agents
M Greedy ™ HG*

Fig. 3. The HG* game is more suitable for rational agents.
1 100
08 - -8 E
o c
- ]
I -
& 0.6 + 60 E
& 5
§ £
@ 0.4 - — 40 5
E 0.2 20 §
’ <
0 0
0 100 200 300 400 500 600 700
Agent Slack (time units)
. HGE Greedy =&—HG* ==Greedy
Fig. 4. The performance of HG* compared to the greedy Hitchhiking
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improves monotonically as the number of agents in the field
increases. Although the performance of the game improves as
the number of agents increases, the decreasing marginal utility
of adding more agents exemplifies the highly-combinatorial
nature of the problem, in which profit doesn’t only depend on
the number of agents, but also their journey constraints.

The results shown in Fig. 3 represent the agent participation
percentage of both approaches, when varying the number of
agents from 1 to 800 agents. The results confirm that HG™ is
superior in terms of satisfying the rationality constraint of the
agents. Thus, HG™ provides more incentive for the agents to
participate in the system in return for some payoff.

Impact of Agent Slack. In the second set of experiments,
we evaluate the performance of the mechanism with fixed
request valuation functions. This set of experiments is based
on a 40 %40 cartesian Manhattan-style grid, with 400 requests,
total simulation time of 500 time units, and the number of
agents is 200.

The results shown in Fig. 4 represent the efficiency ratio,
and agent participation percentage of both approaches, when
varying the slack of agents from O to 800 time units. The
results show that although the difference between the efficiency
ratio of both approaches is nearly 5%, the agent participation
percentage in the game is nearly 20% better than that of the
greedy algorithm. This shows that in HG*, agents have a
higher incentive to increase their slack to gain more profit.
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Fig. 5. Better profit can be achieved with flexible valuation.

Impact of Flexible Valuation. In the third set of experiments,
we evaluate the performance of the mechanism with flexible
valuation functions. This set of experiments is based on a 40 *
40 cartesian Manhattan-style grid, with 400 requests and total
simulation time of 500 time units, and an agent slack of 100
time units. The flexibility region of each request is a 5-step
neighborhood around the original request locations, and a 10-
time-unit region around the original request times.

The results shown in Fig. 5 represent the efficiency ratio of
HG*, when using both fixed and flexible valuation functions
for the requests. The efficiency ratio when using flexible
valuation functions is atleast 10% better. Moreover, the use of
flexible valuation functions is clearly superior for less number
of agents, ex., the efficiency ratio is 25% higher when the
number of agents is only 50.

IV. RELATED WORK

Existing geo-presence-capable systems can be categorized
as either infrastructure-based, or crowdsourcing-based. In
infrastructure-based systems, agents are owned by a system
provider, and their actions are controlled to optimize the sys-
tem’s objective. In such systems, agents can be stationary, as in
traditional wireless sensor networks [13], in which the spatio-
temporal request satisfaction process is commonly defined as
the transformation of the requests into an appropriate queries
to be applied on a spatio-temporal database [10].

Alternatively, agents can be mobile, as in robotics [8], [14]
and dedicated vehicular systems [15], [5], with their journeys
decided according to the system’s constraints. Mobility con-
trol is widely used for field coverage [11], maintenance of
communication chains [7] or for specific task accomplishment
[18]. One of the common approaches for spatio-temporal
request satisfaction in such a class of systems is auction-
based approaches as in [4], [6], in which robots bid for
the requests that maximize their utility. Although, auction-
based request satisfaction is similar to our approach, the
request allocation mechanisms used do not consider mobility
constraints introduced by rational, individual agents that are
willing to deviate from their original journeys.

In crowdsourcing-based geo-presence-capable systems,



agents are self-motivated, with predefined schedules and un-
controlled mobility patterns. They willingly participate in the
system and decide whether or not to perform a task. i.e.,
service a request, according to their prior plans, and they
may alter their schedules to perform a task if given the right
incentive to do so. In existing crowdsourcing-based systems,
the request satisfaction decision is performed solely by the
agents, and the system cannot dictate and/or predict their
behavior. Examples of these systems include enterprise-based
crowdsourcing applications as Amazon Mechanical Turk [2]
and Uber[19], and opportunistic sensor networks as in [1],
[20]. The spatio-temporal request satisfaction process in such
systems is opportunistic, ad-hoc, and provides no quality-of-
service guarantees.

Our proposed model lies under the crowdsourcing-based
systems category, with an assumption that the self-motivated
agents allow for coordinated mobility patterns. This notion
of mobility coordination has first been proposed in [17],
according to our knowledge, in which the authors assume that
mobile nodes have a flexibility in their schedule, and they
leverage this flexibility to obtain a certain coverage distribution
of the network.

V. CONCLUSION

In our work, we propose the idea of coordinating crowd-
sourced mobile resources for geo-temporal request satisfaction,
which creates a new model for resource management in the
field of Internet of Things and smart objects. A coordinated
model of resource management, in which the concern of the
system is not only to optimize for some objective, but to also
incentivize the agents, resource owners, to participate in such
a system. In this paper, we presented the Hitchhiking problem
as a special instance of the GRS problem, and designed a
mechanism that maximizes the system’s profit, while providing
suitable incentives for the agents to participate.

In our future work, we aim to model and develop the dif-
ferent components of our proposed Geo-Presence as a Service
(GPaaS) framework, which acts as a proxy between clients
with specific spatio-temporal requests, and agents capable of
servicing these requests, to provide market-place on-demand
sensory services using the help of these already roaming
mobile agents.
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