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Abstract—Fairness and efficiency are two important concerns
for users in a shared computer system, and there tends to
be a tradeoff between them. Heterogeneous computing poses
new challenging issues on the fair allocation of computational
resources among users due to the availability of different kinds
of computing devices (e.g., CPU and GPU). Prior work either
considers the fair resource allocation separately for each com-
puting device or is unable to balance flexibly the tradeoff between
the fairness and system utilization.

In this work, we consider an emerging heterogeneous com-
puting system with coupled CPU and GPU into a single chip.
We first show that it is essential to have a new fair policy for
coupled CPU-GPU architectures that is capable of considering
both the CPU and the GPU as a whole in fair resource allocation
and being aware of the system utilization maximization. We
then propose a fair policy called Elastic Multi-Resource Fairness
(EMRF) for coupled CPU-GPU architectures, by modeling CPU
and GPU as two resource types and viewing the resource fairness
problem as a multi-resource fairness problem. It extends DRF
by adding a knob that allows users to tune and balance fairness
and performance flexibly, and considers the fair allocation of
computational resources as a whole for CPU and GPU devices.
We show that EMRF satisfies fairness properties of sharing
incentive, envy-freeness and pareto efficiency. Finally, we evaluate
EMRF using real experiments, and the results show that EMRF
can achieve better performance and fairness.

Index Terms—Coupled CPU-GPU Architecture, Fairness, Per-
formance, EMRF, APU.

I. INTRODUCTION

The recent advancement of accelerator technologies (e.g.,

GPU, FPGA and DSP) has made heterogeneous computing

become common and a trend for High Performance Computing

(HPC) systems [31]. By removing the PCI-e bus, the coupled

CPU-GPU architecture (CCGA) [4], which integrates CPU and

GPU into a single chip, is a new emerging heterogeneous

computing system that aims to achieve extreme-scale, cost-

effective, and power-efficient high performance computing.

Sharing computing devices (e.g., CPU and GPU) is essential

to achieve high resource utilization and cost efficiency for a

heterogeneous computing system. First, it generally involves

a high degree of parallelism for a single GPU that consists

of many computing cores, and individual users often cannot

fully utilize it exclusively [26]. Second, even for a single user,

the resource demand of its workload is varying over time,

implying that it is difficult to keep the high utilization all the

time. Resource sharing can address this problem by allowing

multiple users concurrently running their workloads in the

system so that overloaded users can possess unused resources

from underloaded users. Hence, obtaining high utilization by

resource sharing is also an effective manner for high cost

efficiency.

GFLOPS (Giga FLoating-point Operations Per Second) is a

key metric widely used to measure and compare the capacities

for different computing devices. However, there are several

challenges for CCGA in providing performance isolation and

Quality of Service (QoS) guarantees. Due to the significant

architectural differences between CPU and GPU cores, it is not

suitable to simply consider CCGA as a black box with a certain

capacity of aggregate GFLOPS. The system performance is

essentially associated with the relative frequencies of float-

point operations at which the applications invoke with different

kinds of computing devices. Moreover, the performance is also

related to how CPU and GPU capacities are divided across

different applications.

In addition to system efficiency (i.e., performance), fairness

is also a major concern for users in the shared heterogeneous

computing environment. Previous studies have shown that

there is a general tradeoff between the fairness and system

efficiency in resource allocation [20]. Strictly keeping the

fairness among users can result in allocations with low system

efficiency. On the contrary, pursing for a high system efficiency

is often at the expense of compromised fairness.

One of the most popular fair policies is proportional re-
source sharing, which allocates resources to users in propor-

tion to their weights [34]. It has been widely applied to a

variety of computer components such as storage systems [37]

and network link bandwidth [13]. When it comes to the

heterogeneous computing, although there is some work for

CPU only [33] and GPU only [7], [21], all of them consider

the fair resource allocation separately for each computing

device. For the computation in the CCGA, a user’s workload

is computed on both computing devices simultaneously. From

a user’s perspective, it is most likely that the user mainly

concerns with the final GFLOPS allocation and performance

improvement entirely received from the system, rather than

the result of separate resource allocation and performance

improvement from each computing device. It means that we978-1-4673-8815-3/16/$31.00 2016 IEEE



should not consider them separately as the single resource

fair allocation for each computing device. Instead, we should

consider CPU and GPU of CCGA as a whole in resource

allocation. Typically, we show that it can be modeled as

a multi-resource fair allocation problem for CPU and GPU

allocation in the CCGA.

In multi-resource allocation, Dominant Resource Fairness

(DRF) is one of the most popular fair allocation policies [15].

It achieves fairness by equalizing the share of each user’s

dominant resource, referring to as the resource that is most

heavily used (as a fraction of its capacity) by a user. Although

there are a number of extensions [8], [23], [25], [36] (See

Section VII), the impact on the system efficiency receives little

attention. Many recent studies have shown that there tends to

be a tradeoff between fairness and efficiency in multi-resource

allocation [20]. DRF and its extensions are prone to over-

constrain the system for meeting rigid fairness requirements,

resulting in allocations with poor system efficiency.

In this paper, we propose Elastic Multi-Resource Fairness

(EMRF), an elastic fairness-efficiency allocation policy, to

be aware of the tradeoff between fairness and efficiency

for CCGA in resource allocation. It allows users to balance

fairness and system efficiency flexibly in the CCGA with a

knob argument in the range of r0, 1s. EMRF then improves

the system efficiency while guaranteeing the QoS of δ-fairness

with the user’s setting of knob, where δ is the maximum

difference of GFLOPS allocations between any two users

in the CCGA. To the best of our knowledge, EMRF is the

first fair policy that integrates CPU and GPU as a whole

in resource allocation for CCGA. We show that EMRF can

ensure that each user in the CCGA can at least get the amount

of resources as that under the exclusively partitioned non-

sharing environment (“Sharing Incentive”). It can also ensure

that every user prefers to its own allocation and no user

envies the allocation of others (“Envy-freeness”). Moreover,

EMRF enables the system fully utilized by ensuring that it is

impossible for a user to get more resources without decreasing

the resource of at least one user (“Pareto Efficiency”). We

evaluate EMRF with testbed experiments in an AMD APU

platform. The experimental results show that our approach is

highly elastic and can achieve high efficiency and fairness in

the CCGA. We conjecture that the results and findings in this

paper can be extended to supercomputers and clusters.

Organization. Section II overviews the background of

CCGA and describes a computing model on the CCGA.

Section III motivates our work by showing the difficulties of

achieving both fairness and efficiency in the CCGA, followed

by formal definitions of several desirable fairness properties

in Section IV. We describe and analyze our model and

approach in Section V. The experimental evaluation is given

in Section VI. We review the related work in Section VII.

Finally, Section VIII concludes the paper.

II. BACKGROUND AND PRELIMINARY

This section starts by reviewing Coupled CPU-GPU Archi-

tecture (CCGA), and then introduces a heterogeneous comput-

ing model for CCGA.

A. Coupled CPU-GPU Architectures (CCGA)

In traditional discrete CPU-GPU heterogeneous computing

system, the GPU has separated memory space from the CPU,

and the data transfer between the CPU and the GPU is

achieved via a connection bus (e.g., PCIe bus). It tends to

incur large communication overheads between CPU and GPU,

and meanwhile requires a lot of programming effort, since the

data that is manipulated by both the CPU and the GPU have

to be explicitly managed by the programmer carefully [24].

To resolve these limitations, Coupled CPU-GPU Architectures

(CCGA) has emerged, which integrates the CPU and the

GPU into a single chip and allows the CPU and the GPU

to communicate with each other through the shared physical

memory by featuring shared memory space between them.

This reduces the data transfer time significantly, especially for

those applications that need large communication between the

CPU and the GPU, since it enables the CPU and the GPU to

transfer their data in the shared physical memory only without

going through the connection bus and allows them to have

zero-copy for the shared data [4]. Having these merits, CCGA

is a trend for future heterogeneous computing system and

many such processors have been produced, including AMD

APU [10], Ivy Bridge [12] and Intel Sandy Bridge [39].

To better support the programming for CPU-GPU heteroge-

neous computing, OpenCL [16] is proposed by industry and

becomes popular in recent years, as a unified programming

model for both CPU and GPU computing units. It enables

applications written in OpenCL to run on either CPU or GPU

devices, and also allows multiple applications to share and

execute on each device at the same time [38]. Due to the

limited chip area, the GPU in the CCGA is usually less

powerful than the high-end GPU in discrete architectures.

Thus, the GPU in the CCGA usually cannot deliver a dominant

performance speedup as it does in discrete architectures. An

application must carefully assign workloads to both processors

and keep them busy for the maximized speedup (named as co-
run computation) [11], [17], [18], [41].

B. Heterogeneous Computing Model

Fig. 2: The heterogeneous computing model on the CCGA.

Figure 2 illustrates the heterogeneous computing model for

CCGA. We consider the APU, of which the CPU and the GPU

are coupled in the same chip and all data accesses go through

a unified north bridge (UNB) that connects the CPU, the

GPU, and the main memory. In this study, we limit our focus



(a) Proportional resource allocation result under
1:1 resource allocation ratio, with the GPU uti-
lization of 37%.

(b) The DRF allocation with the GPU utilization
of 63%. The allocation ratio is 32 : 9.

(c) Both CPU and GPU are 100% utilized, given
the allocation ratio of 26 : 1.

Fig. 1: Allocations in the CCGA of Example 1. The capacities of CPU and GPU are 100 and 800, respectively. The CPU-to-GPU workload
ratios for User 1 and User 2 are 1{9 and 4{6, respectively.

on applications written in OpenCL, for which the CPU/GPU

computing dominants the performance and the impact of data

transfer is negligible.

Given GFLOPS as a widely used metric in HPC for

measuring and comparing the computing resource capacities

across different computing devices, we use it in our following

resource allocation to represent the amount of allocated re-

sources. Let Ccpu and Cgpu represent the computing capacity

(measured in GFLOPS) of CPU and GPU, respectively. Those

capacities represent the total amount of resources that can be

allocated to users in the CCGA. Each user has a sequence of

jobs to compute. To fully utilize CCGA, the tasks of a job

can be assigned and execute on both CPU and GPU devices

concurrently (i.e., co-run computation). Let ξcpui and ξgpui

denote the fraction of the workload of user i dispatched to CPU

and GPU, respectively. By definition, it has ξgpui “ 1 ´ ξcpui .

The ratio of the workload allocated to CPU to that of GPU for

user i is defined as CPU-to-GPU workload ratio, denoted by

ρi (i.e., ρi “ ξcpui {ξgpui ). It is generally different for different

applications.

Suppose that there are n users and a job queue that receives

arriving jobs from each user and then dispatches them to

the internal scheduling buffer by a job scheduler. The job

scheduler maintains a certain number of submitted jobs in

its internal scheduling buffer. It monitors the number of

operations performed in both CPU and GPU for each job,

and dynamically assigns weights to users in accordance with

the measured allocation ratios. Based on these weights, the

scheduler dynamically controls the resource allocations of

CPU and GPU to each user so that the computed number

of operations of a user is proportional to its weight. The

weights are computed according to the fairness policies of

EMRF for maximizing system utilization. Particularly, we

consider the resource sharing across multiple users/jobs in the

GFLOPS dimension instead of the time dimension, since the

current GPU kernel written in OpenCL is non-interruptible,

i.e., it cannot be stopped once it is submitted, which makes it

impossible for time division sharing approach.

Let F cpu
i and F gpu

i denote the amount of resources in

GFLOPS that user i received from the CPU and the GPU,

respectively. Then the total number of allocated resources Fi

in GFLOPS for user i in the CCGA is Fi “ F cpu
i ` F gpu

i .

For the sake of load balancing computation between the

CPU and the GPU for a user i’s workload, we make the

ratio of the allocated resources of CPU in GFLOPS to that

of GPU equal to its CPU-to-GPU workload ratio ρi, i.e.,

F cpu
i {F gpu

i “ ρi. By learning from the traditional multi-

resource allocation problem where there is a fixed ratio among

different resource types for a task resource demand (e.g., CPU

and memory) [15], we can model CPU and GPU allocation as

a multi-resource allocation problem (namely, CPU-GPU multi-
resource allocation problem). Our allocation in the following

sections is based on this.

III. MOTIVATIONS

In the single-resource allocation, the fairness is achieved

among users through dividing the system resources to users

in proportion to their assigned weights. For example, if there

is a CPU of 200 GFLOPS capacity shared equally by two

users, the system will allocate 100 GFLOPS to each user.

Many existing fair schedulers like Weighted Fair Queuing [13]

and Proportional Resource Sharing [34] are work-conserving

schedulers, which can ensure that the system is 100% fully

utilized whenever there are pending workloads in the system.

It implies that the system utilization is not a problem in the

single-resource fairness.

However, when it comes to the CCGA, the above claim for

system utilization might no longer hold. Fairness in sharing

CCGA is relatively more complex and challenging, since the

loads of users’ applications can be scheduled to both CPU

and GPU devices for concurrent execution in the CCGA. The

resource utilization of computing devices highly depends on

their CPU-to-GPU workload ratios and the allocation ratios

(the relative fraction of system capacity in GFLOPS allocated

to users) in the CCGA. If the users with high GPU loads are

assigned with relatively small allocation ratios, it may result

in the low utilization for the GPU device due to insufficient

resource requests. Similar case does also hold for the CPU

device. On the contrary, keeping high usage of both CPU and



GPU devices generally causes the unfairness problem, since it

may need to adjust the allocations in a manner that just starves

some users.

To demonstrate these points, let’s consider the following ex-

amples for proportional resource sharing and DRF allocations.

Example 1. Consider a CCGA with the capacities of CPU and
GPU to be 100 GFLOPS and 800 GFLOPS, respectively. It is
shared by users 1 and 2 equally with CPU-to-GPU workload
ratios of ρ1 “ 1{9 and ρ2 “ 4{6, respectively.

Proportional Resource Sharing Allocation. We start with

the basic policy for a single resource type [34]. Figure 1(a)

illustrates the allocation results for Example 1 by using

proportional resource sharing. The two users receive the same

number of GFLOPS under the proportional resource sharing

allocation with the allocation ratio of 1 : 1. There is an

allocation of 200 GFLOPS to each user. Specifically, user 1

receives 20 GFLOPS from the CPU device and 180 GFLOPS

from the GPU device. User 2 obtains 80 GFLOPS and 120
GFLOPS from the CPU and GPU devices, respectively. The

CPU device is 100% fully utilized, whereas the utilization of

GPU device is only 37% due to the relatively small allocation

ratio for user 1.

DRF Allocation. In Example 1, the dominant resource

of user 1 is the GPU device (0.1 ¨ F1{100 ă 0.9 ¨ F1{800),

whereas the dominant resource of user 2 is the CPU device

(0.4 ¨F2{100 ą 0.6 ¨F2{800). According to DRF, the fairness

is achieved by equalizing the dominant shares for user 1 and

2, i.e., 0.9 ¨ F1{800 “ 0.4 ¨ F2{100. As shown in Figure 1(b),

the resulting allocations for user 1 and 2 are F1 “ 470.6
GFLOPS and F2 “ 132.3 GFLOPS, respectively. Still,

the GPU device is underutilized, with approximately 63%
utilization only.

The above allocation policies just consider the issue of

how to achieve some measure of fairness by setting users’

allocation ratios, but do not deal with the impact of how

such settings on system utilization. If we want to increase

the system utilization, it needs to adjust the allocations of the

users. As shown in Figure 1(c), both CPU and GPU devices

can be fully utilized if the system allocates 866.7 GFLOPS

to user 1 (86.7 from the CPU and 780 from the GPU), and

33.3 GFLOPS to user 2 (13.3 from the CPU and 20 from

the GPU). In such 100% utilization case, it requires a 26 : 1
allocation ratio (i.e., giving more allocation ratio to user 1),

and increases user 1’s resources from 470.6 (Figure 1 (b))

to 866.7 (Figure 1 (c)) GFLOPS whereas decreasing user 2’s

resources from 132.3 to 33.3 GFLOPS (being unfair for user

2).

Moreover, the system utilization also highly relies on users’

competing workloads, and can be even worse under propor-

tional resource sharing and DRF policies with more users

joining in the system. To illustrate it, we modify Example 1 by

adding a third user (with ρ3 “ 5{5) to the system, as shown

by Example 2 below,

Example 2. We extend Example 1 by adding user 3 with ρ3 “
5{5.

With proportional resource sharing policy, each user in

Example 2 receives 100 GFLOPS (10 from the CPU and 90
from the GPU for user 1; 40 from the CPU and 60 from

the GPU for user 2; 50 from the CPU and 50 from the

GPU for user 3) with 1 : 1 : 1 allocation ratio. It makes

user 1 with CPU-to-GPU workload ratio of ρ3 “ 1{9 being

seriously constrained by the allocation ratio, and reduces the

GPU utilization from 37% (Figure 1(a)) to 25%. If using

DRF policy, the system would allocate 303.8, 86.5 and 69.2
GFLOPS to users 1, 2 and 3 respectively with the allocation

ratio of 160 : 45 : 36, and the GPU is 44.93% utilized. In

contrast, when changing the allocation ratio to 87 : 2 : 1, both

devices are 100% utilized, with allocations of 870, 20 and 10
GFLOPS for users 1, 2, and 3, respectively.

Summary. Through the examples, we have the following

observations. First, pursuing 100% fairness is prone to result

in poor resource utilization, and reversely achieving for high

resource utilization is generally at the expense of fairness. That

is, there tends to be a tradeoff between fairness and efficiency

in resource allocation for users in the CCGA. Second, it can

be more serious for the tradeoff problem between fairness and

efficiency when there are more users in the system.

IV. FAIR SHARING PROPERTIES IN CCGA

From the economic point of view, a good allocation policy

for fair sharing in the CCGA should satisfy several game the-

oretic properties, including sharing incentive, envy-freeness,

and pareto efficiency [15], [35]. We re-define those properties

for CCGA.

A. Sharing Incentive (SI)
Resource sharing is an effective approach to improve the

system utilization and efficiency by allowing overloaded users

to possess the unused resources from underloaded users [29],

[30], [28]. To enable resource sharing among users sustainably,

an allocation policy should satisfy sharing incentive (SI),
which ensures that each user in the shared system can get at

least the resources it would get under a statically equal division

of the computing system. Otherwise, users would prefer to

split the computing system equally and use their own partitions

exclusively without sharing.

The GFLOPS obtained by user i in the CCGA can be repre-

sented by the vector Fi “ xF cpu
i , F gpu

i y. Moreover, let F cpu
i

and F gpu
i represent the received resources in GFLOPS for

user i from CPU and GPU devices under its own non-sharing

partition of CCGA, respectively. Formally, an allocation policy

satisfies SI if the following holds for each user i P r1, ns,
Fi ľ Fi

1. p1q
where Fi “ xF cpu

i , F gpu
i y denotes the GFLOPS received for

user i under its own non-sharing partition of CCGA.

B. Envy-freeness (EF)

Envy-freeness (EF) is another important criterion for mea-

suring the fairness of an allocation policy. It means that no

user envies the allocation of any other users. That is, each

1For any two vectors a and b, we say a ľ b iff ai ě bi for @i.



user prefers its own allocation to the allocation of any other

user. To achieve EF, we should ensure that each user cannot

increase its resource allocation by exchanging its allocation

with any other user.

Formally, let μipFiq be the resources in GFLOPS achieved

by user i under the vector Fi. Then EF is guaranteed for an

allocation policy if

μipFiq ě μipFjq, p@j P r1, ns ^ i ‰ jq. p2q

for any two users i, j P r1, ns. Formula (2) is an indication

for EF that every user i works the best under its own resource

allocation vector compared to using all other users.

C. Pareto Efficiency (PE)

Pareto efficiency (PE) is essential for allocation efficiency

and high resource utilization. An allocation policy is PE if

it is not feasible for a user to increase its resource allocation

without decreasing the resource allocation of at least one other

user. That is, there is no other feasible allocation for which at

least one user is strictly better off and all other users are at

least as well off.

Formally, let F “ xF1,F2, ...,Fny be the allocation result

for n users generated by an allocation policy. The policy is

PE only when it is true that, for any feasible allocation F̃ “
xF̃1, F̃2, ..., F̃ny, if μipF̃iq ą μipFiq for some user i, there

must exist a user j satisfying μjpF̃jq ă μjpFjq.

V. ELASTIC MULTI-RESOURCE FAIRNESS

In this section, we describe our resource allocation model

called Elastic Multi-Resource Fairness(EMRF), which is an

elastic fairness-efficiency model that can balance the tradeoff

between fairness and allocation efficiency flexibly as needed.

We analyze EMRF and show that it meets all the desirable

properties (i.e., SI, EF, PE) shown in Section IV.

A. Allocation Model

We first define some terms used in our model. The fair share
of a user is defined as the resources (GFLOPS) it receives

if each of the resources is divided equally among all the

users. Let’s denote the fair share of user i by Si. Denote the

weight of user i in the CCGA as wi. Then the total amount

of CPU and GPU resources for user i after equal partition

are Ccpu ¨ wiřn
k“1 wk

and Cgpu ¨ wiřn
k“1 wk

, respectively. We can

compute fair share with the progressive filling method [15],

which increases all users’ shares at the same rate, until at

least one resource is saturated. That is, for user i, it must have

maxt Si¨ξcpui

Ccpu¨ wiřn
k“1

wk

,
Si¨ξgpui

Cgpu¨ wiřn
k“1

wk

u “ 1. Hence,

Si “ 1

maxt ξcpui

Ccpu¨ wiřn
k“1

wk

,
ξgpui

Cgpu¨ wiřn
k“1

wk

u
.

Let γcpu
i “ ξcpui

Ccpu
and γgpu

i “ ξgpui

Cgpu
, then we can rewrite the

above formula as

Si “ wiřn
k“1 wk ¨ maxtγcpu

i , γgpu
i u . p3q

Moreover, we call an allocation fair when the resources

received by each user i P r1, ns in the shared CCGA is

proportional to its own fair share. That is, the fairness is

achieved if the following proposition is true,
Fi

Si

“ Fj

Sj

, @i, j P r1, ns. p4q

Let fi denote the share of dominant (bottleneck) resources

received by user i in the CCGA. The allocation shares in CPU

and GPU for user i are
Fi¨ξcpui

Ccpu
and

Fi¨ξcpui

Ccpu
, respectively. By

definition, we have

fi “ maxtFi ¨ ξcpui

Ccpu

,
Fi ¨ ξgpui

Cgpu

u “ Fi ¨ maxtγcpu
i , γ

gpu
i u. p5q

According to Formula (3), we can deduce that,

Lemma 1. @i, j P r1, ns, if Fi

Si
“ Fj

Sj
, there must be fi

wi
“ fj

wj
,

and vice versa.

Proof: According to Formula (5), fi
wi

“ fj
wj

ô
Fi¨maxtγcpu

i ,γgpu
i u

wi
“ Fj ¨maxtγcpu

j ,γgpu
j u

wj
ô Fi¨ wiřn

k“1
wk¨Si

wi
“

Fj ¨ wjřn
k“1

wk¨Sj

wj
ô Fi

Si
“ Fj

Sj
.

By combining Formula (4) and Lemma 1, it provides us

a key information that achieving the fairness of the overall

resources for users in the CCGA is equivalent to guaranteeing

the fairness on their (weighted) dominant resource share.

Thus, the resource fairness problem can be converted to the

dominant resource fairness problem, which can be addressed

with Dominant Resource Fairness (DRF) [15] by ensuring that,
f1

w1

“ f2

w2

“ ¨ ¨ ¨ “ fn

wn

. p6q

Formula (6) shows us that there is a proportional rela-

tionship between a user’s dominant share and its received

resources. Let fmax
i and Fmax

i denote the maximum share of

dominant resource and the corresponding overall resource for

user i under the DRF allocation. With the progressive filling

approach, the allocation of DRF terminates only when there is

at least one resource saturated (e.g., CPU resource is saturated

in Figure 1(b)). In that case, we cannot further increase each

user’s dominant resource, i.e., the dominant resource share

and the overall resource are maximized for each user. We thus

have,
maxt

nÿ

i“1

Fiγ
cpu
i ,

nÿ

i“1

Fiγ
gpu
i u “ 1. p7q

We can get Fmax
i by resolving Fi with Formula (5) (6) (7),

i.e.,

F
max
i “ wi

maxtřn
k“1

wkγ
cpu
k

maxtγcpu
k

,γ
gpu
k

u ,
řn

k“1

wkγ
gpu
k

maxtγcpu
k

,γ
gpu
k

u u
¨

1

maxtγcpu
i , γgpu

i u . p8q

However, DRF only seeks for 100% fairness in resource allo-

cation without considering its impact on resource utilization,

making its allocation efficiency tend to be poor. For example,

as illustrated in Figure 1(b), the resource utilization of GPU

device under DRF allocation is only 63%. On the contrary,

pursuing for high resource utilization could also result in

poor fairness. Figure 1(c) shows an allocation of 100% high

resource utilization for both CPU and GPU devices, but its

fairness is much poor since the share of dominant resource



for user 1 is 780{800 “ 97.5% whereas for user 2 is only

13.3{100 “ 13.3%. It implies that there tends to be a tradeoff

between the fairness and allocation efficiency in multi-resource

allocation [20].

B. EMRF Allocation Policy

We propose a fairness policy called Elastic Multi-Resource
Fairness (EMRF) that allows users to flexibly balance fairness

and allocation efficiency in multi-resource allocation. The

basic idea is that, instead of strictly keeping fairness as

DRF does in multi-resource allocation, we trade fairness for

increasing allocation efficiency by allowing some degree of

unfairness. Here, we define two terms: hard fairness and soft
fairness. The hard fairness refers to that all users get equal

share in resource allocation, i.e., it requires that Formula (4)

must be strictly satisfied. In contrast, the soft fairness allows

some degree of δpδ ě 0q unfairness in resource allocation

among users. Formally, we define δ-fairness by modifying

Formula (4) as

|Fi

Si

´ Fj

Sj

| ď δ, @i, j P r1, ns. p9q

In summary, DRF returns the allocation of hard fairness,

whereas EMRF is aware of fairness-efficiency tradeoff and

considers soft fairness so as to leave some optimization space

for allocation efficiency.

Design of EMRF Policy. A tradeoff balancing allocation

can be viewed as a combination of fairness-oriented allocation

(i.e., purely for fairness guarantee) and efficiency-oriented al-

location (i.e., purely for efficiency optimization). In EMRF, we

provide a knob ηp0 ď η ď 1q for users to control and balance

such two allocations flexibly. The EMRF first performs the

fairness-oriented allocation for soft fairness guarantee. After

that, it makes the efficiency-oriented allocation for efficiency

optimization with the remaining idle resources across users.

In the fairness-oriented allocation, instead of achieving the

hard fairness of Fmax
i , we guarantee the soft fairness of

Fmax
i η for each user i by using DRF. After the fairness-

oriented allocation, the system remains C
1 “ xC 1

cpu, C
1
gpuy

idle resources for the successive efficiency-oriented alloca-

tion, where C
1
cpu “ Ccpu ´ řn

k“1 F
max
k ξcpuk η and C

1
gpu “

Cgpu´řn
k“1 F

max
k ξgpuk η for users. Let F

1
i denote the resource

received by user i under the efficiency-oriented allocation.

Then we have
Fi “ F

max
i η ` F

1
i . p10q

for each user i. The fairness-oriented allocation becomes

dominant (i.e., benefit for fairness optimization) in EMRF

allocation when η is large. On the contrary, the small value of

η benefits more for efficiency optimization.

In the following, we first show that EMRF is a δpδ ě 0q-

fairness, determined by the knob η. Next we introduce the

efficiency-oriented allocation of EMRF.

Theorem 1. EMRF is a δ-fairness policy where

δ “ max
1ďiďn

t maxtγcpu
i , γgpu

i u
wiřn

k“1 wk
¨ maxt ξcpui

C1
cpu

,
ξgpui

C1
gpu

u
u.

Proof: We start by soft fairness definition. For any two

users i, j P r1, ns,
|Fi

Si

´ Fj

Sj

| ď max
@i,jPr1,ns

t|Fi

Si

´ Fj

Sj

|u

“ max
@i,jPr1,ns

t| pFmax
i η ` F

1
i q

Si

´ pFmax
j η ` F

1
j q

Sj

|u

“ max
@i,jPr1,ns

t|pF
1
i

Si

´ F
1
j

Sj

q ` pF
max
i

Si

´ Fmax
j

Sj

qη|u. p11q

According to Formula (6) and Lemma 1, we have
Fmax

i

Si
“

Fmax
j

Sj
. Thus, we have

max
@i,jPr1,ns

t|Fi

Si

´ Fj

Sj

|u “ max
@i,jPr1,ns

t|F
1
i

Si

´ F
1
j

Sj

|u “ max
1ďiďn

tF
1
i

Si

u´ min
1ďjďn

tF
1
j

Sj

u.
p12q

Now our proof turns to be finding an upper bound δ satisfying

that max1ďiďntF
1
i

Si
u ´ min1ďjďntF

1
j

Sj
u ď δ for all feasible

allocations given the idle resource vector of C
1
.

For any feasible allocation xF 1
1, F

1
2, ¨ ¨ ¨, F 1

ny, its allocation

stops when at least one resource saturated, i.e.,

maxt
řn

i“1 F
1
i ξ

cpu
i

C1
cpu

,

řn
i“1 F

1
i ξ

gpu
i

C1
gpu

u “ 1. p13q

Moreover, for all feasible allocations, the maximum value of

F
1
i for user i occurs when it exclusively possesses all the idle

resource C
1
. In that case, there is no resource allocation for

other users, i.e., @j P r1, ns, F 1
j “ 0 if j ‰ i. According to

Formula (13), we get the maximum value of F
1
i as follows

F
1max
i “ 1{ maxt ξcpui

C1
cpu

,
ξgpui

C1
gpu

u. p14q

We now can get the upper bound δ for Formula (12) regarding

all feasible allocations in the case of Formula (14), i.e.,

δ “ max
1ďiďn

tF
1
i

Si

u ´ min
1ďjďn

tF
1
j

Sj

u “ max
1ďiďn

tF
1max
i

Si

u

“ max
1ďiďn

t maxtγcpu
i , γgpu

i u
wiřn

k“1
wk

¨ maxt ξ
cpu
i

C
1
cpu

,
ξ
gpu
i

C
1
gpu

u
u.

Finally, according to Formula (11) (12), we have |Fi

Si
´ Fj

Sj
| ď δ

and our proof completes.

Theorem 1 shows an important relationship between the

knob η and the upper bound of unfairness degree δ for

EMRF. In practice, given a knob value η, we can estimate

its unfairness upper bound δ for EMRF. Reversely, given the

maximum unfairness degree δ, we can calculate the knob value

η.

Efficiency-Oriented Allocation. The efficiency-oriented allo-

cation of EMRF is to find a feasible allocation xF 1
1, F

1
2, ¨¨¨, F 1

ny
that maximizes the system utilization under the idle resource

vector of C
1
. Moreover, for any two users i and j with the

same CPU-to-GPU workload ratio (i.e., ρi “ ρj), switching

resources between them has no impact on efficiency but

fairness. In order for better fairness, we still keep Formula (4)

hold for any two users i and j given that ρi “ ρj . It can be

modeled as a linear programming optimization problem with

n unknowns in its formulation representing the allocations of



n users below,

Efficiency Allocation Optimization.
Maximize

nÿ

i“1

F
1
i . p15q

subject to: nÿ

i“1

F
1
i ξ

cpu
i ď C

1
cpu,

nÿ

i“1

F
1
i ξ

gpu
i ď C

1
gpu. p16q

F
1
i

Si

“ F
1
j

Sj

. pρi “ ρj@i, j P r1, nsq p17q

Solving the linear program, we can get the optimal (largest)

value, denoted by F
1max, for the objective function of For-

mula (15), i.e., F
1max “ řn

i“1 F
1
i . Then the total resources or

allocation efficiency (i.e.,
řn

i“1 Fi) achieved by all users can

be maximized according to Formula (10).

According to Theorem 1, we can now conclude that EMRF

is a knob-based elastic fairness-efficiency allocation policy that

can maximize the system utilization whereas guarantee the δ-

fairness, under the given knob η.

Let’s now take a look at former Example 1 to see how

EMRF policy works. Suppose the knob here is η “ 0.5. It has

γcpu
1 “ 0.1{100, γgpu

1 “ 0.9{800, γcpu
2 “ 0.4{100, γgpu

2 “
0.6{800, S1 “ 444.4, S2 “ 125.0, Fmax

1 “ 470.5, Fmax
2 “

132.4. We then have C
1
cpu “ 50, C

1
gpu “ 548.5 and δ “

1.125. Therefore, we have the following efficiency allocation

optimization problem: maximizing F
1
1 ` F

1
2 subject to F

1
1 ¨

0.1`F
1
2 ¨0.4 ď 50 and F

1
1 ¨0.9`F

1
2 ¨0.6 ď 548.5. By solving

the linear program, it returns F
1
1 “ 500, F

1
2 “ 0. According

to Formula (10), we have F1 “ 735.3 and F2 “ 66.2, which

increases the GPU resource utilization of DRF from 63% to

88% at the expense of δ “ 1.125-fairness.

C. Scheduling System Implementation

By modeling the resource allocation problem as a linear

programming problem, we solve the problem and develop

a scheduling system. The linear program of Formula (15)

for allocation optimization can be solved by using traditional

optimization solvers. For efficiency, this study uses GNU

Linear Programming Kit (GLPK) [3]. The ratios of these

allocations make up the weights to a weighted fair scheduler

(e.g., WFQ [13] and PRS [34]) that allocates resources based

on users’ weights.

At runtime, the allocations (i.e., the weights to the weighted

scheduler) for users need to be updated dynamically, being

adaptive to system changes. Likewise, if there is a significant

change of CPU-to-GPU workload ratio for users’ workloads,

we should re-compute the allocations for users. Algorithm 1

gives the pseudo-code for our EMRF implementation. It

maintains and updates the system status periodically, including

the remaining idle resources, the number of active users (i.e.,

refers to those with running jobs in the system) and their

statistics of CPU-to-GPU workload ratios, etc (Line 1). Next,

it periodically compute the suitable allocations for users, as

the input of relative weights to the weighted fair scheduler,

by invoking the linear program optimization solver GLPK

(Line 2-3). Lastly, it allocates resources to users dynamically

according to their computed weights (Line 4-9). To enable

efficiently concurrent kernel execution across different appli-

cations at runtime in the CCGA, we adopt the kernel slicing

technique [42] in our scheduling system. It slices a kernel

of an application into multiple sub-kernels (namely slices)

and dynamically allocates resources to slices for different

applications. The slice size has balanced the overhead and

performance gains of slicing. For more details about slicing,

we refer the readers to the paper [42].

Algorithm 1 Implementation of Elastic Multi-Resource Fairness
(EMRF)

1: Maintain the statistics of CPU-to-GPU workload ratio for each user i over a pre-
configured time window ΔT .

2: Invoke the linear program optimization solver GLPK for efficient allocation optimiza-
tion (Formula (15)) to compute allocations for users over window ΔT periodically,
according to Formula (10).

3: Use the computed allocations (denoted by F˚
i for user i) in Line 2 as relative

weights for users in the following allocation.
4: Find user i with the lowest normalized resource share, i.e., Fi{F˚

i “
min1ďkďn Fk{F˚

k . Ź Resource allocation based on max-min heuristic.
5: D Ð demand of user i’s next task.
6: if Fi ` D ď Ccpu ` Cgpu then
7: Fi “ Fi ` D.
8: else
9: System is full and the allocation stops.

D. Analysis of Essential Properties

In this section, we start to analyze EMRF formally with the

three essential fair sharing properties (i.e., SI, EF, PE) listed in

Section IV. We first show that by configuring η ě Si{Fmax
i ,

each user under the EMRF allocation can receive at least the

amount of resources when using its own partition of resources

exclusively.

Theorem 2. (Sharing Incentive): The EMRF allocation ob-
tained by solving Formula (15) and (10) is SI when η ě Si

Fmax
i

.

Proof: We start by specifying the vector Fi and Fi defined

in Section IV-A as follows,

Fi “ xFiξ
cpu
i , Fiξ

gpu
i y, Fi “ xSiξ

cpu
i , Siξ

gpu
i y.

According to Formula (10), we have

Fi “ xpFmax
i η ` F

1
i qξcpui , pFmax

i η ` F
1
i qξgpui y

Then,

Fi ´ Fi “ xpFmax
i η ` F

1
i ´ Siqξcpui , pFmax

i η ` F
1
i ´ Siqξgpui y

When η ě Si

Fmax
i

, it holds pFmax
i η ` F

1
i ´ Siqξcpui ě 0 and

pFmax
i η ` F

1
i ´ Siqξgpui ě 0. We therefore have Fi ľ Fi and

our proof completes.

Next we show that under the EMRF allocation, no user

envies other users’ allocations.

Theorem 3. (Envy-freeness): Every user under the EMRF
allocation prefers its own allocation to others.

Proof: Let’s start proof by contradiction to suppose that

user i envies user j under EMRF policy. Then there must be

μipFiq ă μipFjq. p18q



As preparation for the following proof, we first deduce

the formula for μipFjq. Similar to the deduction of For-

mula (3), we adopt the progressive filling approach and

the allocation stops when one resource is saturated under

the resource vector of Fj “ xF cpu
j , F gpu

j y. Then there is

maxtμipFjq¨ξcpui

F cpu
j

,
μipFjq¨ξgpui

F gpu
j

u “ 1. Hence,

μipFjq “ 1

maxt ξ
cpu
i

F
cpu
j

,
ξ
gpu
i

F
gpu
j

u
“ 1

maxt ρi
pρi`1qFcpu

j
, 1

pρi`1qFgpu
j

u

“ 1

maxt ρipρi`1q ¨ pρj`1q
ρjFj

, 1
pρi`1q ¨ pρj`1q

Fj
u

“ pρi ` 1qFj

pρj ` 1q maxt ρi
ρj

, 1u . p19q

We consider the following three cases,

(I). ρi “ ρj : we have
F

1
i

Si
“ F

1
j

Sj
according to Formula (17).

Then there is Fi

Si
“ Fj

Sj
according to Formula (10). By

switching the allocation between user i and j, there should be
μipFjq

Si
“ μjpFiq

Sj
according to the constraint of Formula (17).

Moreover, according to Formula (19), we have μipFjq “ Fj

and μjpFiq “ Fi. We therefore have
Fj

Si
“ Fi

Sj
. Then it

is true that Fi

Si
{Fj

Si
“ Fj

Sj
{Fi

Sj
. It shows that Fi “ Fj ñ

μipFiq “ μipFjq, which violates Formula (18) and shows that

the assumption does not hold.
(II). ρi ą ρj: Formula (19) is equivalent to μipFjq “

pρi`1qFj

pρj`1q ρi
ρj

“ ρiρj`ρj

ρiρj`ρi
¨ Fj ă Fj . Similarly, we can deduce that

μjpFiq ă Fi. Then after exchanging the allocation between

user i and j, we have μipFjq`μjpFiq ă Fi`Fj , violating the

utilization/efficiency maximization requirement in Section V-B

and therefore the assumption is not true.
(III). ρi ă ρj: we can equally transform Formula (19) to

μipFjq “ pρi`1qFj

pρj`1q ă Fj . Likewise, we can get μjpFiq “
pρj`1qFi

pρi`1q ă Fi. If swapping the allocation between user i and

j, there will be μipFjq`μjpFiq ă Fi `Fj , which violates the

utilization/efficiency maximization requirement and therefore

the assumption does not hold.
Based on the analysis of the above three cases, we conclude

that EMRF policy is envy-freeness.
Moreover, we show that the allocation of EMRF is effi-

cient, making that no user can improve its allocation without

decreasing that of other users.

Theorem 4. (Pareto Efficiency): The allocation of EMRF is
pareto efficient.

Proof: By contradiction, let’s suppose that the alloca-

tion F “ xF1,F2, ¨ ¨ ¨,Fny under the EMRF policy is not
pareto efficient, i.e., it must exist a feasible allocation F̃ “
xF̃1, F̃2, ..., F̃ny satisfying that μipF̃iq ě μipFiq for all user i,
and μjpF̃jq ą μjpFjq for some user j. Recall in Section V-A,

our EMRF policy follows the progressive filling approach and

the allocation stops when one resource is fulfilled. That is, for

allocation F, we have

maxt
nÿ

i“1

μipFiqγcpu
i ,

nÿ

i“1

μipFiqγgpu
i u “ 1.

Then there is
řn

i“1 μipFiqγcpu
i ă řn

i“1 μipF̃iqγcpu
i andřn

i“1 μipFiqγgpu
iă řn

i“1 μipF̃iqγgpu
i . It gives us that,

maxt
nÿ

i“1

μipF̃iqγcpu
i ,

nÿ

i“1

μipF̃iqγgpu
i u ą 1.

for allocation F̃, which is not a feasible allocation and implies

that the premise is false. Hence, EMRF is pareto-efficient.

VI. EVALUATION

We start with experimental setup by describing our comput-

ing platform and workloads. Next, we give the experimental

results for our approach.

A. Experimental Setup

We conduct a testbed experiment in a Linux machine

consisting of an AMD A8-3870K APU, with its specification

detailed in Table I. The machine has 8 GB DRAM, and its OS

is Ubuntu 15.10. For the experimental workload, we consider

three types of application programs from Rodinia benchmarks

suite [41], and follow the previous study on categorizing co-

run computation on APU: 1). co-run friendly program (refer-

ring to the program that achieves the best performance when

using both CPU and GPU devices together to deal with the

application), including Gaussian Elimination (GE), K-means

(KM) and Heart Wall (HW); 2). CPU-dominant program
(referring to the program that achieves the best performance

when all its workload runs on CPU), including Myocyte (MY)

and k-Nearest Neighbors (KNN); 3). GPU-dominant program
(referring to the program that gets the best performance when

all its workload runs on GPU), including B+Tree (BT), CFD

Solver (CFD) and LU Decomposition (LUD). The detailed

descriptions of them are presented in Table II. Based on the

benchmarks in Table II, we generate a set of workloads, as

shown in Table III, for the following experimental evaluation.

Platform A8-3870K
CPU GPU

# Cores 4 400

Clock Frequency(MHz) 800 600

Peak FLOPS (GFLOPS) 24 480

Zero copy buffer (MB) 512 (shared)

Cache size(MB) 4 (shared)

TABLE I: The configuration of testbed platform.

Workloads Applications Workload Category

M1 GE, KM, HW, MY, BT
Co-run friendly + GPU-dominant
+ CPU-dominant

M2 GE, KM Co-run friendly + Co-run friendly

M3 HW, MY Co-run friendly + CPU-dominant

M4 KM, BT Co-run friendly + GPU-dominant

M5 KNN, CFD CPU-dominant + GPU-dominant

TABLE III: A set of different workloads generated from Rodinia
benchmarks listed in Table II.

B. Experiment Results

We start by evaluating EMRF in a testbed Linux system,

and compare its performance with WFQ (Weighted Fair Queu-

ing) [13] and DRF [15]. Next we show the system efficiency

and soft fairness results for EMRF under different knobs.



Applications Description Category

Gaussian Elimination (GE)
A classic algorithm used to solve systems of linear equations with a sequence of operations made on the associated matrix of
coefficients [2]. We consider a matrix size of 4096 ˆ 4096.

Co-run friendly

K-means (KM)
A popular clustering algorithm in data mining. It identifies related data points by associating each data point with its nearest
cluster, computing new cluster centroids, and iterating until convergence. We take KDD CUP dataset [5] as its input data.

Co-run friendly

Heart Wall (HW)
It tracks the movement of a mouse heart over a sequence of ultrasound images to record response to the stimulus [27]. The
number of frame is set to 20.

Co-run friendly

Myocyte (MY)
A biology simulator that models cardiac myocyte (heart muscle cell) and simulates its behavior. It can identify potential
therapeutic targets which may be useful for the treatment of heart failure [27]. In our experiment, we set its simulation time to
be 2000.

CPU-dominant

k-Nearest Neighbors (KNN)
A non-parametric lazy learning algorithm used for classification and regression. It finds the k-nearest neighbors from an
unstructured data set by calculating the Euclidean distance from the target latitude and longitude, and evaluating the k nearest
neighbors iteratively. We synthesize an input data with 5000 records using its provided tool.

CPU-dominant

B+Tree (BT) An n-ary tree data structure often used in the implementation of database indexes. We use the mil data set [6] as its input data. GPU-dominant

CFD Solver (CFD)
an unstructured grid finite volume solver for the three-dimensional Euler equations for compressible fluid flow [9]. The data
set fvcorr.domn.097K [1] is taken as input in our experiment.

GPU-dominant

LU Decomposition (LUD)
A method to calculate the solutions of a set of linear equations by factoring a matrix as the product of a lower triangular matrix
and an upper triangular matrix. We consider a matrix of 2048 ˆ 2048.

GPU-dominant

TABLE II: The description of Rodinia benchmarks used in the paper (categorized according to [41]).

Finally, we evaluate various policies under different numbers

of users.

Fig. 3: The execution time for the HW benchmark under different
workload distributions.

1) Throughput and System Efficiency: Recall in Sec-

tion VI-A, there are three types of application programs. In

this section, we conduct two sets of experiments to evaluate

our approach. One set is to mix five representative benchmarks

(e.g., GE, KM, HW, MY, BT) from Table II. The other set is to

study all possible combinations of co-run computation on the

shared environment (i.e., Co-run friendly program vs Co-run
friendly program, Co-run friendly program vs CPU dominant
program, Co-run friendly program vs GPU dominant program,

and CPU dominant program vs GPU dominant program). The

knob of EMRF policy is configured to η “ 0.1.

Mixed Benchmarks Evaluation. This experiment employs

M1 from Table III for five users with different weighted

shares (i.e., 2 : 1 : 3 : 4 : 1) in the APU system, each

submitting a distinct benchmark (e.g., GE, KM, HW, MY, BT).

Each benchmark does the computation in the co-run execution

manner, i.e., some portion of its workload running on CPU and

others on the GPU. Different ratios of workload distribution

between CPU and GPU devices can have a significant impact

on the performance of an application. For example, as shown

in Figure 3, the execution time for HW benchmark is varying

under different workload distributions. There tends to be a

suitable workload distribution for an application, which in fact

has also been explored and discussed by existing work [41]. In

our experiment, for co-run friendly program benchmarks GE,

KM and HW, their suitable ratios ξcpui of workload distribution

on the CPU device are 21%, 7% and 24%, respectively.

Moreover, we set ξcpui “ 0% for the GPU-dominant program

benchmark BT and ξcpui “ 100% for the CPU dominant
program benchmark MY.

(a) CPU utilization. (b) GPU utilization.
Fig. 5: Stacked chart showing the resource utilization for five
benchmarks over time under EMRF policy.

Figure 4(a) shows the throughput results (normalized to

WFQ) for different allocation policies. The system throughput

(i.e., the aggregated throughput of five benchmarks) of WFQ is

the lowest (worst) of the three allocation policies. The problem

is that, the WFQ throttles the GPU-bounded applications (e.g.,

KM, BT) severely, resulting in a poor GPU utilization of only

28% shown in Figure 4(d). This is because that the capacity

of CPU is much smaller than that of GPU. In order to achieve

the strict 2 : 1 : 3 : 4 : 1 fairness allocation ratio across five

benchmarks, WFQ lets CPU-bounded workloads (i.e., MY)

possess much larger amount of CPU throughput (87%) than

GPU-bounded workloads (i.e., KM), as shown in Figure 4(c).

It causes the allocation of GPU-bounded workloads to be

throttled on the CPU device, making it unable to maximally

utilize the GPU device and thereby resulting in the low

utilization for GPU device as illustrated in Figure 4(d).

DRF performs much better than WFQ (i.e., as high as 41%
GPU utilization of DRF in Figure 4(c)). It guarantees that

the dominant (weighted) fair shares are equal across different

benchmarks.

EMRF performs the best. It improves the system throughput

significantly by adjusting the allocation weight across five

benchmarks so that the GPU device is maximally utilized, as

high as 75% GPU utilization for EMRF shown in Figure 4(d).

Moreover, Figure 4(b) gives the speedup result for each policy

relative to WFQ, i.e., the speedup is defined as the ratio of the

execution time of WFQ to that of the corresponding policy. It



(a) System Throughput. (b) Speedup (relative to WFQ). (c) Average CPU Utilizations. (d) Average GPU Utilizations.
Fig. 4: The experimental results for five users running different benchmarks in a shared APU machine under different fair allocation policies.
For the EMRF policy, its knob value is configured to be 0.1.

(a) Co-run friendly program vs Co-
run friendly program.

(b) Co-run friendly program vs CPU
dominant program.

(c) Co-run friendly program vs GPU
dominant program.

(d) CPU dominant program vs GPU
dominant program.

Fig. 6: The normalized throughput results for four possible combinations of co-run programs under different allocation policies. We normalize
them over that of WFQ. We configure the knob value of EMRF policy to be 0.1.

shows that EMRF achieves the best performance result among

the three scheduling policies, all of which are attributed to the

dynamic resource allocation mechanism of EMRF.

We study the resource utilization of each device in more

depth. Figure 5 shows the utilizations of CPU and GPU

for five benchmarks under EMRF policy over time. Initially,

there are five benchmarks executed concurrently on the APU

device under the EMRF scheduling policy until BT completes

(Figure 5(b)) at the 19th second. In that case, EMRF adjusts

the allocation among the remaining four active benchmarks so

that the released CPU and GPU resources are possessed. At the

38th second, MY finishes (Figure 5(a)) and likewise, EMRF

scheduler adjusts the resource allocations among GE,KM and

HW. The whole dynamic allocation repeats until all bench-

marks complete.

Different Co-run Combinations. As illustrated in Figure 6,

we further extend our experiment to consider all possible

combinations of different types of application programs by

considering M2,M3,M4 and M5 from Table III, respectively.

Figure 6(a) gives the throughput results of two co-run friendly
program benchmarks GE and KM with equal share under

different allocation policies, which are normalized over that

of WFQ. It shows that EMRF achieves better results than

others, since it is able to adjust the allocations between co-run

friendly programs so as to maximize the system utilization.

Figures 6(b) shows the results of the co-run friendly program

(e.g., HW) sharing with the CPU-dominant program (e.g.,

MY), whereas Figure 6(c) gives the results of the co-run

friendly program (e.g., KM) and the GPU-dominant program

(e.g., BT). In these two cases, our EMRF achieves the best

performance results among the three scheduling policies. Com-

pared to the WFQ and DRF that consider the fairness only,

EMRF additionally considers the efficiency with the attempt

Fig. 7: The system efficiency and
soft fairness for EMRF under dif-
ferent knobs.

Fig. 8: The throughput results for
different allocation policies under
different numbers of users.

to maximize both CPU and GPU utilization in these two cases.

Finally, Figure 6(d) gives the sharing case of CPU-dominant

program (e.g., KNN) and GPU-dominant program (e.g., CFD).

In this case, WFQ performs the worst, since it constrains the

GPU allocation for GPU-dominant program BT in order to

strictly keep the same allocation as that of CPU-dominant

program KNN. However, DRF and EMRF achieves the same

better performance, since in this case they both can allow

KNN and CFD to freely possess CPU and GPU resources

respectively without constraints.

2) EMRF Results Under Different Knobs: EMRF is a knob-

based elastic allocation policy that can balance fairness and

efficiency flexibly. In this section, we show the impacts of

different knob configurations on the system efficiency and

fairness with the mix of all five workloads. Note in Sec-

tion V-B that EMRF is to maximize the system efficiency

while guaranteeing the soft fairness. Here we define a term

soft fairness degree to quantify the soft fairness. The smaller

value of soft fairness degree indicates the better fairness result.

Figure 7 shows the normalized results of throughput (rel-

ative to that when knob is 1) and soft fairness for EMRF

with different knobs. It favors the throughput (or efficiency)

but worsens the fairness (i.e., the soft fairness degree is large)



when knob value is very small. In contrast, as we increase

the knob value, the fairness can be better at the expense

of efficiency. It indicates that, by controlling such a knob,

users can flexibly balance the tradeoff between fairness and

efficiency with our EMRF.

3) Evaluation on Different Numbers of Users: This section

evaluates the throughput under different numbers of users.

Figure 8 presents the experimental results for different poli-

cies. Particularly, we consider three EMRF policy instances

by varying the knob values, namely, EMRF-0.8, EMRF-0.5,

and EMRF-0.1, under different knob settings of 0.8, 0.5 and

0.1, respectively. We have the following observations. First,

for each allocation policy, there is a decreasing trend for

its throughput curve as more users join in the system. The

reason is that, the resource competition and fairness constraint

become more serious as we increase the number of users, lead-

ing to lower resource utilization. Second, DRF outperforms

WFQ, whereas EMRF is better than DRF. Typically, as we

decrease the knob, EMRF achieves much better throughput

results in all users cases. Third, by comparing EMRF with

different knob values, it shows that the throughput curve

becomes increasingly stable as the knob becomes smaller.

This is because that smaller knob value leads to more room

or freedom for efficiency optimization in all users cases.

Moreover, as discussed previously in Section VI-B2, DRF is

indeed a special case of EMRF given that its knob value is

one, explaining why the curve of DRF drops fast compared to

the three EMRF policy instances.

VII. RELATED WORK

Heterogeneous Computing Schedulers. There are a num-

ber of studies on task scheduling in heterogeneous computing.

Wang et al. [38] proposed a fine-grained fair sharing scheduler

named Simultaneous Multikernel (SMK), which can increase

resource utilization while maintaining the resource fairness

among kernels by scheduling kernels from different applica-

tions dynamically. Observing that GPU memory is a critical

performance factor for applications, Jog et al. [21] proposed a

First-ready Round-robin FCFS (FR-RR-FCFS) memory sched-

uler to improve both fairness and system performance for

concurrent GPGPU applications. Aguilera et al. [7] examined

several different ways to characterize “fairness” for GPU

spatial multitasking, by balancing individual application’s per-

formance and overall system performance. Zhang et al. [41]

had a performance study of scheduling tasks of an applica-

tion to both CPU and GPU simultaneously by developing

a benchmark suite called Rodinia. Moreover, there are also

some optimization studies on the performance improvement

for specific applications, frameworks or algorithms on hetero-

geneous platforms, including [11], [17], [18]. To summarize,

all of these existing studies focus on performance and fairness

optimization for either CPU only or GPU only. However, there

is no work that systematically studies the tradeoff between

the performance and fairness in heterogeneous computing.

Our proposed EMRF scheduler can address it, since it is an

elastic tradeoff scheduler that can balance the performance and

fairness flexibly for users via combining CPU and GPU as a

whole.

Multi-Resource Fairness. In cluster computing, DRF is

the most popular fair policy in the literature for multi-

resource allocation [15], [36], which achieves fair allocation

of multiple resources on the basis of dominant shares. The

attractiveness of DRF stems from its good properties including

sharing incentive, envy freeness, and pareto efficiency. It has

been implemented in many computing frameworks, such as

YARN [32] and Mesos [19]. Subsequently, there have been a

lot of extensions and generalizations for DRF. Wang et al. [36]

extended DRF to a heterogeneous distributed system consist-

ing of a number of heterogeneous machines. Kash et al. [22]

extended the DRF model to a dynamic setting where users can

join the system over time but will never leave. Bhattacharya

et al. [8] generalized DRF to support hierarchical scheduling.

Liu et al. [23] relaxed DRF policy by proposing a Reciprocal

Resource Fairness to allow the trade among different types

of resources between users. Dolev et al. [14] proposed an

alternative to DRF by considering the global system bottleneck

resource. Parkes et al. [25] proposed several schemes to extend

DRF, and particularly focused on the case of indivisible tasks.

Considering that the resource demand vector required by DRF

is hard to get in computer architectures, Zahedi et al. [40]

proposed an alternative multi-resource policy based on Cobb-

Douglas utility function for multiprocessors. Wang et al. [35]

considered the multi-tiered storage consisting of SSD and

HDD and proposed a bottleneck-aware allocation policy to

balance fairness and efficiency for users. In comparison with

the previous studies, we consider CCGA and focus on the

tradeoff balancing between the multi-resource fairness and

efficiency by proposing an EMRF policy. It extends the DRF

policy for CCGA to allow users to flexibly tune and balance

the tradeoff with a knob.

VIII. CONCLUSION AND FUTURE WORK

Heterogeneity is a trend in achieving energy-efficient com-

puting. By removing PCI-e bus, coupled CPU-GPU archi-

tectures have demonstrate promising results in various ap-

plications. Still, fairness in sharing the CPU and the GPU

on such architectures is an open problem. In this paper, we

show for coupled CPU-GPU architectures that, it is essential

to consider both CPU and GPU as a whole in fair resource

allocation rather than separately for each computing device as

previous studies did. This is because both CPU and GPU are

computing devices and used for computation simultaneously in

heterogeneous computing. To the best of our knowledge, this is

first work that combines CPU and GPU devices as a whole in

fair resource allocation for coupled CPU-GPU architectures.

We cast the heterogeneous allocation problem to the multi-

resource fairness allocation problem and consider the tradeoff

between fairness and efficiency. We find that the approaches

proposed by previous studies are heuristics, which cannot truly

tell and guarantee the QoS of δ-fairness mentioned in this

paper. We propose an elastic multi-resource fairness (EMRF)

to address it. It can allow users to flexibly balance fairness



and efficiency using a knob while guaranteeing δ-fairness (See

Theorem 1 in Section V-B). We also show that it satisfies

several desirable properties including sharing incentive, envy

freeness and pareto efficiency. We evaluate our method with

real experiments, showing that our approach can achieve high

efficiency and fairness.
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