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Abstract. Research in image analysis has reached a point where detec-
tors can be learned in a generic fashion for a significant number of con-
ceptual entities. The obtained performance however exhibits versatile be-
haviour, reflecting implications over the training set selection, similarities
in visual manifestations of distinct conceptual entities, and appearance
variations of the conceptual entities. In this paper, we investigate the
use of formal semantics in order to benefit from the logical associations
between the conceptual entities, and thereby alleviate part of the chal-
lenges involved in extracting semantic descriptions. More specifically, a
fuzzy DL based reasoning framework is proposed for the extraction of en-
hanced image descriptions based on an initial set of graded annotations,
generated through generic image analysis techniques. Under the proposed
reasoning framework, the initial descriptions are integrated and further
enriched at a semantic level, while additionally inconsistencies emanat-
ing from conflicting descriptions are resolved. Experimentation in the
domain of outdoor images has shown very promising results, demon-
strating the added value in terms of accuracy and completeness of the
resulting content descriptions.

1 Introduction

Digital image content is omnipresent on the Web; Google posted on August 2005,
a total image size of 2,187,212,422, Yahoo estimated that its index covered
1.5 billion of images at that time, while nowadays statistics show a continuous
growth in these numbers (indicatively Flickr uploads amount to an average of
about 3000 images per minute). Given such numbers, the availability of machine
processable semantic descriptions for this content becomes a key factor for the
realisation of applications of practical interest, perpetuating the challenge of
what constitutes the multimedia community holy grail, i.e. the semantic gap
between representations that can be automatically extracted and the underlying
meaning [1].

In the late 1970s and early 1980s, influenced by the Artificial Intelligence (AT)
paradigm, image analysis and understanding became a problem of acquiring in-
telligent behaviour through computational means, resulting in the first attempts



towards knowledge-directed image analysis. A period of explosive growth in ap-
proaches conditioned by knowledge followed [2, 3]: varying knowledge represen-
tation and reasoning schemes, in accordance with the contemporary Al assets,
were proposed, and knowledge attempted to address all aspects involved, rang-
ing from perceptual characteristics of the visual manifestations to control strate-
gies. The broad and ambitious scope targeted by the use of knowledge, resulted
in representations and reasoning mechanisms that exhibited high complexity
and inflexibility. As a result, research shifted to modular architectures, treat-
ing separately the individual subproblems. Machine learning (ML) approaches
gained increased popularity as means to compensate for the complexity related
to the explicit representation of associations between perceptual features and
conceptual entities. Treating however, semantics solely as embodiments of visual
manifestations, bears a number of serious limitations: not all of semantics can
be expressed solely with visual means, variations pertain the possible manifes-
tations of a single semantic entity, and distinct semantic entities share similar
manifestations. Adding to the aforementioned the implications of the choices
related to the training process, machine learning approaches, despite having re-
ported satisfactory performances for given datasets, tend to scale poorly as the
number of considered concepts is increased or when new content is introduced.

The advent of the Semantic Web paved a new era in knowledge sharing, reuse
and interoperability, by making formal semantics explicit and accessible to het-
erogenous agents and applications. The image analysis community embraced the
new technologies, utilising ontologies at first in order to attach meaning to the
produced annotations, and subsequently as means for assisting the very extrac-
tion of the annotations [4-8]. A characteristic shared among these approaches is
that uncertainty is poorly handled. In the approaches addressing the transition
from perceptual features to conceptual entities, thresholds and allowed ranges
regarding the values of the considered features are used, i.e. ambiguity is treated
as a separate aspect from the domain semantics [5, 4,9, 10]. On the other hand,
in the approaches that focus more on the utilisation of semantics and inference
for the purpose of acquiring descriptions of higher complexity, uncertainty is not
taken into consideration at all [8, 11].

Acknowledging the inherent role of uncertainty in image understanding, in
this paper we propose a formal reasoning framework for the extraction of seman-
tically coherent image descriptions, extending the earlier work presented in [12].
More specifically, we investigate the recent advances in fuzzy Description Logics
(DLs) extensions [13,14], under a generic analysis context with the purpose of
overcoming part of the limitations that result from the non semantic view taken
by machine learning techniques. The input of the proposed reasoning framework
consists of ML obtained descriptions, along with the calculated distance values,
i.e. the values indicating the similarity from the training set concepts. The graded
descriptions are treated as fuzzy assertions, where each concept corresponds to a
fuzzy set specified by the values learned for the parameters comprising the inter-
nal ML structure, and the corresponding distance reflects the membership of the
examined image (image segment) to a given concept. The ML based extracted



descriptions may refer to different levels of granularity, and no assumptions are
made regarding specific implementation issues. The possibly overlapping, contra-
dictory or complementary, input fuzzy assertions are integrated and interpreted
through the utilisation of formal semantics and reasoning.

The rest of the paper is organised as follows. Section 2 discusses the task
of semantic image analysis, indicating issues and requirements related to the
utilisation of formal semantics and reasoning. Section 3 introduces fuzzy DLs
from an image analysis perspective, exemplifying their usability and potential.
In Section 4, we present the implementation details of the proposed reasoning
framework, and in Section 5, the results of the evaluation. Section 6 reports on
relevant work, and finally Section 7 concludes the paper.

2 Applying Reasoning in Semantic Image Analysis

The use of formal, explicit knowledge, and subsequently inference, in semantic
image analysis aims to exploit background knowledge that is characteristic of
the semantic entities (objects, events) of interest within a particular context.
The expected value from formally representing the semantics of a domain can
be roughly summarised as “assisting the extraction of descriptions by making
explicit the way semantics are perceived, ensuring thus the acquisition of inter-
pretations that match human cognition”. In practical terms, the use of knowledge
translates into the elimination of semantic inconsistencies and the acquisition of
descriptions whose interpretation goes beyond visual patterns.

Under these considerations, using formal languages to represent mappings
between feature values and domain entities, such as in [4], where colour, texture
and shape values are mapped to tumour types, or [10], where colour and shape
values are mapped to natural objects, may be significant for purposes of sharing
and reusing knowledge, but it does not leave much opportunities for utilising
reasoning in terms of intelligence through computational means. It is not simply
a matter of the limited datatype support provided by ontology languages such
as RDFS? and OWL#, but because of the non logical nature of the problem
at hand, i.e. the estimation of distance between a given data structure that
constitutes a feature model and the measurable feature values. As the image
and knowledge representation communities get more familiar to each other, the
role and potential of formal knowledge inference, in semantic image analysis is
revised and reassessed. In the following we discuss common issues that arise in
image analysis and how they relate to the application of reasoning.

2.1 Issues and Requirements

Still image analysis, depending on the application context, may refer to the
extraction of descriptions at segment level, image level, or both. In the first

3 http://www.w3.org/TR/rdf-schema/
* http://www.w3.org/ TR /owl-features/



case, the extracted descriptions refer to notions corresponding to objects and
are accompanied by localisation information. In the second case, the descrip-
tions apart from global scene characteristics may as well indicate the presence of
objects, however without providing any information about their location. In ei-
ther case, low-level features are correspondingly extracted and processed, so that
the associations that underly features and conceptual entities can be captured.
Independently from the learning approach followed, the extracted associations
reflect correspondences between visual manifestations and conceptual notions.
These correspondences are neither sound, due to the similarities in appearance
between distinct semantic entities, neither complete, due to the inability to cap-
ture all possible manifestations a semantic entity may have. Furthermore, as
they rely solely on visual characteristics, their potential addresses strictly mean-
ing that can be related to visual information. The aforementioned result in a
number of implications which provide the context for the identification of re-
quirements with respect to the utilisation of formal semantics and reasoning.

A first requirement refers to the ability to handle contradictory descriptions
at the same level of granularity, e.g. at image (scene) or segment level. In the
case of scene level descriptions, it is not adequate to choose the description with
the highest plausibility, where plausibility may refer to the probability of the de-
scription being true or to the degree to which this description is true. The various
scene level descriptions are usually logically related to each other, the simplest
case being that of addressing descriptions of increasing detail. Consequently,
the plausibility of each extracted description is intertwined to the plausibility of
descriptions referring to the semantically related notions. Similar observations
hold for the case of segment level descriptions, when the extracted descriptions
address only the presence of concepts. When localisation information is also
available, image processing issues arise as well, since apart from semantic co-
herency, the extracted descriptions need to be checked at the partitioning plane
(or planes, as different implementations may adopt independent segmentations).

A second requirement refers to the ability to handle and resolve semantic
conflicts between descriptions of different granularity. As in the previous case,
the conceptual notions at object and scene levels are highly likely to be logically
related. The visual information that the learning approaches rely on, cannot en-
sure that such relations are reflected in the learned associations. Such limitation
applies to both directions. The plausibility of object level concepts may impact
on the existence and plausibility of scene level concepts, e.g. the presence of
mountain indicates high plausibility for a mountainous scene, and conversely.
Similarly, the presence of a given scene level concept may affect the plausibility
of a concept at object level. For example, a scene description of beach affects
(negatively) an object level description of snow.

A third requirement involves the ability to support descriptions, at scene or
segment level, whose semantics lie beyond the potential of visual characteris-
tics, i.e. semantics that originate in logical associations between other concepts.
Examples include cases of part-whole relations, temporal sequences of simpler
concepts, the combined or exclusive presence of given concepts, etc. Contrary



to the aforementioned, this requirement impacts mostly on the selection of the
knowledge representation scheme, as it embodies the main goal of knowledge
representation and reasoning, i.e. the automatic extraction of implicit knowledge
based on the explicitly available one. As in every knowledge-based application,
the construction of the knowledge depends on the application context. For exam-
ple, the concept of swimmer is more likely to be described as a face surrounded
by sea, than a person in the sea.

Underlying the aforementioned requirements is the need to provide the means
for handling uncertainty. This forms a crucial requirement, due to the inherent
in image analysis ambiguity, where visual information plays the role of cues
rather than evidences, allowing the detection of a concept only with an esti-
mated plausibility. It is important to note that the semantics of the ambiguity
are not unique. When analysis follows a similarity based approach, matching ex-
tracted feature values to prototypical ones, the resulting plausibility represents
the distance from the prototypical values, i.e. the degree to which the examined
image (segment) belongs to a given concept. On the other hand, when a Bayesian
approach has been followed, the calculated values represent a different kind of
ambiguity, i.e. the probability that the examined image (segment) is an instance
of the examined concept. Naturally, under an analysis framework both kinds of
ambiguity may be present.

In the following we present a brief introduction to the basics of fuzzy DLs and
discuss how the aforementioned requirements relate to core DL inference services.
Additionally, we indicate the functionalities, that once available would allow the
extraction of image semantics under a fuzzy DL based reasoning framework. We
note that in the following, uncertainty refers strictly to cases of machine learn-
ing based analysis, i.e. to fuzzy logic semantics. A combined fuzzy-probabilistic
reasoning framework, although very interesting and promising towards a more
complete confrontation of the image understanding challenge, is currently be-
yond the scope of this paper.

3 Fuzzy DLs and Semantic Image Analysis

Description Logics (DLs) [15] are a family of knowledge representation for-
malisms characterised by logically founded formal semantics and well-defined
inference services. Starting from the basic notions of atomic concepts and atomic
roles, arbitrary complex concepts can be described through the application of
corresponding constructors (e.g., =, M, V). Terminological axioms (TBox) allow
to capture equivalence and subsumption semantics between concepts and rela-
tions, while real world entities are modelled through concept (a : C') and role
(R(a,b)) assertions (ABox). The semantics of DLs are formally defined through
an interpretation I. An interpretation consists of an non-empty set A! (the do-
main of interpretation) and an interpretation function ., which assigns to every
atomic concept A a set ATCA! and to every atomic role R a binary relation
RICATz Al The interpretation of complex concepts follows inductively [15].



Table 1. Example of TBox.

Natural = Outdoor LU = ManMade
3 contains.Sky = Outdoor
Beach = Jcontains.Sea M Jcontains.Sand
Beach C Natural
Cityscape = Jcontains.(Road U Car) LI Jcontains.Building
Cityscape C ManMade

In addition to the means for representing knowledge about concepts and
assertions, DLs come with a powerful set of inference services that make ex-
plicit the knowledge implicit in the TBox and ABox. Satisfiability, subsumption,
equivalence and disjointness constitute the main TBox inferences. Satisfiability
allows to check for concepts that correspond to the empty set, subsumption and
equivalence check whether a concept is more specific or respectively identical to
another, while disjointness refers to concepts whose conjunction is the empty set.
Regarding the ABox, the main inferences are consistency, which checks whether
there exists a model that satisfies the given knowledge base, and entailment,
which checks whether an assertion ensues for a given knowledge base.

Assuming a TBox that describes a specific domain, one can build an ABox
from the analysis extracted descriptions and benefit from the inferences provided
to detect inconsistencies and obtain more complete descriptions. Let us assume
the TBox of Table 1, and the analysis extracted assertions imagel! : Cityscape),
regionl :Sea), region2 :Sand), (imagel,reqionl) : contains, and (imagel,reqionl) :
contains. The following assertions entail: (imagel :ManMade), (imagel :Beach),
and (imagel :Natural). Furthermore an inconsistency is detected, caused by the
disjointness axiom relating the concepts Natural and ManMade. However, the
aforementioned apply only in the case of crisp assertions, which is not the com-
mon case in image analysis. Applying thresholds in the initial descriptions and
transforming them to binary, does not overcome the problem; instead additional
issues are introduced. Let us assume, the following set of initial descriptions,
(regionl : Sea) > 0.8, (regionl : Sand) > 0.9, (imagel : Cityscape)
> 0.9, and that all role assertions involving the role contains have a degree of
> 1.0. Transforming them directly to crisp, would result in the crisp assertions
(regionl : Sea), (regionl : Sand), and (imagel : Cityscape), which would
cause an inconsistency with no clear clues about which assertions are more pre-
vailing, as the degree information has been omitted.

In the case of a fuzzy DL language, the ABox consists of a finite set of fuzzy
assertions of the form a : C > n and (a,b) : R > n, where < stands for >,
>, <, and <®. The semantics are provided by a fuzzy interpretation, which in

5 Intuitively a fuzzy assertion of the form a : C > n means that the membership
degree of the individual a to the concept C' is at least equal to n



accordance to the crisp DLs case, is a pair I = (Af,.7) where A’ is a non-empty
set of objects called the domain of interpretation, and .7 is a fuzzy, this time,
interpretation function which maps: an individual a to an element af € A’ i.e.,
as in the crisp case, a concept name A to a membership function A : AT — [0, 1],
and a role name R to a membership function R? : AT x AT —[0,1].

Regarding fuzzy DLs extensions, two main efforts exist currently that address
formally both the semantics and the corresponding reasoning algorithms. In [14,
16], the DL language SHIN has been extended according to fuzzy set theory
leading to the so called f-SHIN. The fuzzy extensions address the assertion of
individuals and the extension of the language semantics. In [13], a fuzzy exten-
sion of SHOIN(D) is presented, which constitutes a continuation of earlier works
of the authors on extending ALC, SHIF, and SHIF(D) to fuzzy versions [17,
18]. In addition to extending the SHOIN(D) semantics to ~-SHOIN(D), the au-
thors present a set of interesting features: concrete domains as fuzzy sets, fuzzy
modifiers such as very and slightly, and fuzziness in entailment and subsumption
relations.

Additionally to the theoretic foundations for the fuzzy extensions, respective
reasoning algorithms have been presented and implemented, namely the Fuzzy
Reasoning Engine (FIRE)® and the fuzzyDL 7.

Continuing the previous example, let us assume that the following fuzzy asser-
tions result from analysis: (¢magel : Cityscape) > 0.4, (imagel : Outdoor)>
0.82, (regionl : Sea)> 0.8, (region2 : Sand)> 0.65, (region3 : Sky)> 0.9,
and (imagel,region;) : contains > 1.0, for ¢ = 1,2,3. Querying for the great-
est lower bound for the individual imagel with respect to the concepts Outdoor
and Beach we retrieve 0.9 and 0.65 respectively. Note that Beach is defined
as the conjunction of two existential restrictions involving the fillers Sea and
Sand. Since the assertions referring to the role contains have a degree > 1.0, the
degrees of the two existential definitions depends only on the degrees of their
respective fillers. Under Zadeh’s semantics, the T-norm equals the minimum of
the involved degrees, i.e. min{0.65,0.8}= 0.65. The 3 contains.Sky = Outdoor
axiom, gives greatest lower bound for (imagel : Outdoor) equal to 0.9, updating
the explicitly given value of 0.82. As the detection of an outdoor image does not
give any further information about a more specific scene description or of the
objects that may be depicted, the degrees of the other assertions should not be
affected. On the contrary the presence of any of the three concepts, means that
it is an outdoor concept, with a plausibility greater or equal to the corresponding
degree of the respective concept. The subsumption axioms between the concepts
Beach, Natural and Cityscape capture this knowledge, ensuring an appropriate
behaviour.

Furthermore, let us examine in a greater detail the implication of the fuzzy
conjunction semantics appearing in axiom Beach = Jcontains.Sea M Jcontains.Sand.
Under a case where for one of the existential restriction fillers there can be no
assertion, no entailment can be made with respect to the Beach concept. Assum-

5 http://www.image.ece.ntua.gr/ nsimou
" http://faure.isti.cnr.it/ straccia/software/fuzzyDL/fuzzyDL.html



ing now an assertion of the Beach concept, it entails the presence of assertions
for the Sea and Sand concepts, and with degrees greater or equal to that of the
Beach assertion. One can observe that again the fuzzy DLs semantics reflect
the desired behaviour. Note that in the fuzzy case, disjointness has different
semantics than in the crisp case, i.e. two concepts that are disjoint raise no in-
consistency as long as the T-norm (conjunction) of their degrees is not equal or
greater than 0.5. Generally, in the examined image analysis context, a degree
less than 0.5 indicates a rather poor match in terms of visual similarity, resulting
in practically ignoring the corresponding assertions. We note however, that in
case the corresponding concepts classifiers are implemented in a binary fashion,
i.e. low values indicate the non presence of a concept, then such fuzzy assertions
play an important role, as they entail assertions of high degrees for the negated
concepts.

We observe that fuzzy DLs, through the expressivity and the inference ser-
vices that they proffer, constitute a very promising technology for supporting the
extraction of image semantics. The available functionalities allow one to formally
describe the different kinds of logical associations that define the semantics of
the concepts and roles of the respective domain of interest, and ensure the en-
tailment of intended descriptions, the semantic based update of the degrees, and
the detection of inconsistencies, in case the initial description are violating the
semantic model of the domain. However, in order to utilise fuzzy DLs in seman-
tic image analysis, there are still two main issues: the definition of a framework
under which the requirements described in section 2.1 can be realised based on
fuzzy DLs inference services, and the handling of inconsistencies, so that a fi-
nal set of consistent descriptions can be obtained. Handling inconsistencies in
DLs knowledge bases usually refers to approaches targeting revision of the ter-
minological axioms [19,20]. In the examined case however, the inconsistencies
result from the limitations in associating semantics with visual features. Thus it
is the ABox that needs to be appropriately managed. The methodology that we
followed, is described in the following section, where the implementation of the
proposed fuzzy DLs based reasoning framework is detailed.

4 A Fuzzy DLs-based Reasoning Framework for Semantic
Image Analysis

In the previous Section we highlighted how fuzzy DLs relate to the tasks involved
in supporting semantic image analysis. In this section, we present the details of
the proposed fuzzy DLs based reasoning framework, which utilising the core
fuzzy DLs inference services, accomplishes the requirements highlighted in Sec-
tion 2.1. Summarising, the latter address three key issues: i) consistency checking
and handling of assertions of the same granularity (i.e. scene and object level),
il) consistency checking and handling between assertions of different granularity,
and iii) enrichment of the descriptions by means of logical entailment. In the cur-
rent study, localisation information of object level descriptions is not taken into
account, reducing the first task to consistency checking at scene level. Using the



fuzzyDL system for the core fuzzy DLs inferences, the proposed reasoning frame-
work realises the extraction of image semantics as follows. First, the descriptions
that apply to an image at scene level are determined through reasoning, util-
ising the terminological box semantics. In the sequel, based on the previously
inferred scene level descriptions, inconsistencies in the initial set of scene and
object level assertions are tracked and resolved, leading to a semantically mean-
ingful description for the image. The last step refers to the enhancement of the
description by making explicit assertions that result by logical entailment. The
details of each step are presented follow.

Selection of scene descriptions. Due to the logical associations between con-
cepts that refer to objects and concepts that refer to scene level notions, all the
available analysis produced assertions need to be taken into account at this step.
First, the hierarchy of the scene level concepts is computed, based on the respec-
tive TBox. Starting from the more specialised scene concepts, i.e. concepts that
are not subsumed by other scene concepts, and moving upwards the hierarchy,
the assertions of the corresponding concepts are processed with respect to fuzzy
semantics. In each level of the hierarchy, the assertion, explicit or inferred, with
the greatest degree prevails the assertions of disjoint concepts. The latter are
stored in a list as they indicate sources of inconsistency to be addressed in the
following step. In case of assertions referring to concepts that are not disjoint, all
of them are preserved. Moving to the next level of the scene concepts hierarchy,
the procedure is repeated, checking additionally whether the prevailing concept
of the current level is subsumed by the concept(s) selected at the previous level.
If a subsumption relation holds, the degree at the current level is updated ac-
cordingly so that the degree of the subsumer is greatest or equal to that of the
subsumee.

In the opposite case, the concepts of the previous level are moved to the list of
inconsistent concepts. To give an example, assume that the concepts Beach and
Cityscape are at the same level of the hierarchy, and that the next level includes
the concepts Natural and ManMade to which the former are related through re-
spective subsumption axioms. Assuming the assertions (imagel : Beach)> 0.8,
(tmagel : Cityscape)> 0.6, and (imagel : ManMade)> 0.9 the Beach concept
is preserved at the first step. Moving to the next level however, the concept Man-
Made prevails that of Natural, which means that the Beach referring assertion
needs to be considered for inconsistency. The aforementioned process iterates
till reaching the top level concepts of the hierarchy. Obviously, the disjointness
axioms, need to be removed from the TBox on which fuzzy DLs reasoning is
performed, and handled separately, in order to prevent halting the inference in
case of contradictions.

Handling of inconsistency. The previous procedure results in the identifica-
tion of the concepts at scene level that are inferred as valid and of the scene level
concepts that constitute sources of inconsistency. The first step of the consistency
handling tasks is to query for assertions that refer to object level concepts that
are directly disjoint to the previously selected scene level concepts. In the ex-
istence of such assertions, if the referred concept is atomic, the assertions are



directly removed. If the referred concept is complex, the assertions that led to
its inference are tracked and based on the semantics of the DLs constructors
possible solutions are identified and stored. To give a simplified example, in the
case of a complex concept whose definition consists in the conjunction of atomic
concepts, the possible solutions equal the number of conjuncts. The next step,
considers inconsistencies that arise due to disjointness axioms between scene level
concepts, which includes the case of assertions referring to object level concepts
that entail scene level assertions. Again, based on the terminological axioms the
assertions that cause the inconsistency are tracked, and solutions are computed
based on the involved constructors.

In order to enable the unhindered running of the fuzzy DL reasoner inference
services, yet preserve all axioms in the TBox, based on the list of inconsistent
concepts resulting during the first task, corresponding definitions of non-concepts
are introduced, and respective subsumption axioms are added with respect to the
original concepts. For example, assuming that Beach is included in the inconsis-
tent concepts list, the axiom BeachCNon-Beach is added to the TBox, allowing
thus the tracking of inconsistency without halting the reasoner. The alternative
solutions calculated for resolving the inconsistencies are computed collectively,
over the entire ABox, so that possible dependencies among them are taken into
account. Checking and tracking all inconsistencies results in the general case in
a set of possible solutions. In order to choose among the alternative solutions,
we rank the set of solutions according to the number of assertions that need
to be removed per solution, and the average of the corresponding degrees. The
solution that involves the removal of the fewer assertions is eventually preferred
(the average degrees are used to select between solutions of equal size).

Enrichment of descriptions. The enrichment of the descriptions by means of
entailment is the most straightforward of the considered tasks. Once the scene
level concepts are selected, and the assertions ensuing inconsistencies either di-
rectly or through complex definitions, are resolved, we end up with a semantically
consistent set of assertions, that constitute the description of the image. Conse-
quently, all that is left is to make explicit the assertions that are implicit in this
final set. For this reason, appropriately queries are posed and the responses are
included in the image description.

5 Experimental Results and Evaluation

In the previous sections, we described the reasons that motivated our investiga-
tion into a fuzzy DL based reasoning framework for supporting and enhancing
semantics extraction from images. In order to assess the utilisation of formal
semantics under the proposed reasoning framework, we carried out two experi-
ments in the domain of outdoor images. An extract of the constructed Tbox is
shown in Table 2. The test set consisted of 350 images, for which ground truth
was manually generated at scene and object level according to the constructed
TBox. In the evaluation, we compare the reliability of the image descriptions
extracted through machine learning to that of the descriptions resulting after



Table 2. Extract of outdoor images TBox.

Countryside_buildings C Jcontains.Buildings M Jcontains.Foliage
Foliage U Grass LI Tree C Foliage
Rockyside C dcontains.Cliff
Roadside C Jcontains.Road
Coastal = Jcontains.Sea
Forest C Landscape
Forest C dJcontains.Foliage
Beach = Coastal M Jcontains.Sand
Beach C Natural
Cityscape C ManMade
Jeontains.Sky © Outdoor
dcontains.Mountain C Mountainous
Forest M (Roadside U Countryside_buildings) C L
Roadside M Countryside_buildings C L
Landscape M (Mountainous LI Coastal) C L
Natural M ManMade T L

the application of reasoning. We adopted the precision, recall, and F-measure
metrics, where F-measure is defined as 2 xp*r/(p + 7).

- Experiment I. In the first experiment, we employed two classifiers at
scene level and two classifiers at segment level. The scene classifiers use colour
and texture features following a support vector machine [21], and a randomised
clustering trees approach [22] respectively. The segment level classifiers use re-
spectively a distance based feature matching approach based on prototypical
values [10], and a clustering trees approach [23]. The sets of analysis supported
scene and object level concepts are respectively Outdoor, Indoor, Natural, Man-
Made, Landscape, Beach, Mountainous, Beach and Building, Grass, Foliage,
Cliff, Tree, Sea, Sand, Conifers, Boat, Road, Ground, Sky, Trunk, Person. The
TBox includes also the concepts Coastal and Cityscape, which are to be entailed
through reasoning.

In Tables 3 and 4, the evaluation metrics are given for the scene and segment
level concepts respectively. For the case of scene level concepts, we treated the
outcome of the analysis based on the semantics of the concepts that the classifiers
supported. For example, in case the Landscape concept was detected we assumed
that the concepts Natural and Outdoor were also detected, although this was not
necessarily the case, i.e. the corresponding detectors had no provided a positive
outcome. This accounts partially for the low impact of reasoning in the case of
scene level descriptions, since the descriptions that were to be inferred through
the subsumption axioms that apply to between the scene level concepts, were
made explicit. In the case of the Beach and Coastal concepts, where no classi-
fier for Coastal is included, the result of the application of reasoning becomes
apparent. A second reason for the relative low affect of reasoning relates to the
semantics of the scene concepts themselves. Observing the corresponding TBox



Table 3. Evaluation of analysis and reasoning performance for scene level concepts -
Experiment 1.

Analysis Reasoning
Concept |[Recall|Precision|F-M|Recall|Precision|F-M
Indoor - - - 1.00 0.75 0.85

Outdoor 0.99 0.99 0.99| 0.99 0.99 0.99
Natural 0.97 0.96 0.97| 0.98 0.96 0.97
ManMade | 0.18 0.40 0.25| 0.18 0.40 0.25
Cityscape 0.18 0.40 0.25| 0.18 0.40 0.25
Landscape | 0.75 0.63 0.68| 0.76 0.68 0.71
Mountainous| 0.64 0.28 0.39| 0.48 0.30 0.37
Coastal - - - 0.86 0.49 0.63
Beach 0.89 0.26 0.40| 0.90 0.31 0.47

(Table 2), ones notices that the scene level concepts are in their majority either
atomic concepts or concepts appearing in the left-hand of subsumption axioms,
i.e. concepts that cannot be logically entailed through the existence of others.

This is not the case with respect to the object level concepts, where the im-
pact of the reasoning is higher. As illustrated in Table 4, there are cases for which
precision is increased, which correspond to concepts involved in disjointness ax-
ioms, cases where both recall and precision are improved, which correspond to
complex concepts definitions or concepts that appear on the right hand side of
subsumption axioms (e.g. Sea, Mountain), and cases where the performance is
invariable, which involve concepts not participating in any axiom (e.g. Person) or
concepts participating solely in the left hand side of subsumption axioms (e.g.
Trunk). Evaluating collectively the performance of analysis amounts to 0.68,
0.49, and 0.57, for recall, precision, and F-measure. The respective values for
reasoning are 0.68, 0.63, and 0.65. If we take into consideration only concepts
whose semantics are affected by logical associations, the corresponding values
become 0.70, 0.64, and 0.67.

Experiment II. In the second experiment, we considered a method based
on the combined use of global and local information for the detection of both
scene and object level descriptions. Colour, texture and shape descriptors are
used, and learning is implemented using support vector machines. The sets of
analysis supported scene and object level concepts are respectively Country-
side_Buildings, Roadside, Rockyside, Beach and Building, Roof, Grass, Foliage,
Dried_Plant, Sky, Cliff, Tree, Sea, Sand, Boat, Road, Ground, Person, Trunk,
Wave. The concepts Outdoor, Natural, Coastal and Mountainous are to be sup-
ported solely through reasoning.

In the Tables 5 and 6, the evaluation metrics are presented for the case of
scene and object level concepts respectively. A first observation is the improve-
ment in terms of the descriptions completeness, i.e. the subsumption axioms
between the scene level concepts allow to enhance the descriptions supported
by analysis and acquire descriptions of more generic concepts such as Natural,



Table 4. Evaluation of analysis and reasoning performance for object level concepts -
Experiment 1.

Analysis Reasoning
Concept|Recall|Precision|F-M|Recall|Precision|F-M
Building | 0.35 0.17 0.22| 0.09 0.83 0.17
Grass 0.06 0.40 0.10| 0.01 0.94 0.05
Foliage | 0.99 0.70 0.82| 0.90 0.80 0.85
Cliff 0.98 0.21 0.35| 0.54 0.42 0.47
Tree 0.22 0.65 0.33| 0.18 0.58 0.27
Sand 0.49 0.37 0.42| 0.92 0.41 0.56
Sea 0.72 0.46 0.56| 0.88 0.49 0.63
Conifers | 1.00 0.01 0.02| 0.50 0.02 0.03
Mountain| 0.14 0.01 0.01| 0.43 0.04 0.06
Boat 0.10 0.40 0.16| 0.10 0.50 0.17
Road 0.15 0.50 0.23| 0.02 0.25 0.03
Ground | 0.06 0.57 0.19| 0.11 0.57 0.19
Sky 0.93 0.87 0.89| 0.93 0.87 0.89
Trunk 0.38 0.65 0.48| 0.38 0.65 0.48
Person | 0.49 0.54 0.52| 0.49 0.54 0.52

and Mountainous. Secondly, we observe that the application of reasoning im-
proves in general the precision of the extracted descriptions. This is a direct
outcome of the fact that there exists strong semantic association between the
scene and segment level concepts semantics, i.e. there is a significant number of
axioms (subsumption and disjointness ones) between them. This explains also
the stronger, compared to the first experiment, affect of reasoning in the case of
object level descriptions also (Table 6). The aggregated evaluation of scene and
object level concepts amounts to 0.37, 0.65, and 0.47 for recall, precision, and
F-measure. The respective values for reasoning are 0.77, 0.81, and 0.79. Taking
into consideration only concepts which participate to axioms, the corresponding
values become 0.29, 0.61, and 0.39 for the case of analysis, and 0.79, 0.82, and
0.81 for the case of reasoning, constituting hence a significant improvement.

6 Relevant Work

In the majority of relevant literature, only crisp DLs approaches have been inves-
tigated: in [6], crisp DLs are proposed for inferring descriptions whose semantics
lie in logical aggregation, in [8], DLs have been extended with a rule-based ap-
proach to realise abductive inference over crisp analysis assertions, while in [11],
DLs and rules have been utilised for video annotation using crisp semantics.
Fuzzy DLs have been proposed in [24] for the purpose for semantic multime-
dia retrieval; the fuzzy annotations however are assumed to be available. Fuzzy
DLs have been proposed recently in [25] and [26] for enhancing machine learn-
ing based extracted image annotations and document classification respectively;



Table 5. Evaluation of analysis and reasoning performance for scene level concepts -
Experiment II.

Analysis Reasoning
Concept Recall|Precision|F-M|Recall|Precision|F-M
Countryside_buildings| 0.30 1.0 0.46| 0.60 0.86 0.71
Rockyside 0.68 0.70 0.69| 0.68 0.79 0.74
Roadside 0.68 0.69 0.69| 0.68 0.72 0.70
Forest 0.75 0.63 0.69| 0.74 0.68 0.71
Coastal 0.85 0.67 0.75| 0.86 0.72 0.78
Outdoor - - - 0.99 1.00 0.99
Natural - - - 0.97 1.00 0.98
Mountainous - - - 0.67 0.80 0.74
Beach - - - 0.45 0.76 0.57

however, neither approach addresses the problem of resolving semantic inconsis-
tencies in the initially extracted descriptions.

7 Conclusions

In this paper, we presented a fuzzy DLs based reasoning framework with the
aim to enhance the extraction of image semantics through the utilisation of for-
mal semantics. The application of fuzzy DLs semantics allows us to formally
address the uncertainty confronted in descriptions extracted through machine
learning analysis. Furthermore, through the utilisation of the semantics char-
acterising the available domain knowledge, the proposed reasoning framework
addresses and resolves inconsistencies among the initial descriptions. Thereby,
and free of assumptions regarding the preceding analysis, it provides the means
to integrate descriptions acquired through typical image analysis into a seman-
tically consistent, semantically enhanced annotation. The experiments, though
not conclusive, have shown very promising results, indicating that the impact
of reasoning is proportional to the level of semantic associations underlying the
domain concepts. Future directions include the investigation of extending the
framework in order to handle spatial relations semantics, and the combination
with probabilistic knowledge as complementary means to handle the uncertainty
in semantic image analysis.
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Table 6. Evaluation of analysis and reasoning performance for object level concepts -
Experiment II.

Analysis Reasoning
Concept |[Recall|Precision|F-M|Recall|Precision|F-M
Building | 0.54 0.69 0.60| 0.62 0.86 0.72

Roof 0.33 0.54 0.41| 0.33 0.75 0.46
Grass 0.49 0.42 0.45| 0.30 0.52 0.38
Foliage 0.48 0.84 0.61| 0.86 0.86 0.86
Dried-Plant| 0.07 0.11 0.08| 0.07 0.13 0.10
Sky 0.95 0.93 0.94| 0.95 0.93 0.94
Cliff 0.65 0.45 0.53| 0.69 0.70 0.69
Tree 0.49 0.52 0.51| 0.56 0.47 0.51
Sand 0.02 0.10 0.03| 0.57 0.45 0.50
Sea 0.69 0.60 0.64| 0.85 0.69 0.76
Boat 0.41 0.71 0.52| 0.33 0.66 0.44
Road 0.50 0.69 0.58| 0.69 0.71 0.70
Ground 0.26 0.33 0.29| 0.26 0.33 0.29
Person 0.75 0.51 0.61| 0.75 0.51 0.61
Trunk 0.26 0.28 0.27| 0.26 0.28 0.27
Wave 0.25 0.5 0.33| 0.25 0.5 0.33
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