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Generalization of large margin classification methods from the binary classification setting 
to the more general multicategory setting is often found to be non-trivial. In this paper, we 
study large margin classification methods that can be seamlessly applied to both settings, 
with the binary setting simply as a special case. In particular, we explore the Fisher 
consistency properties of multicategory majorization losses and present a construction 
framework of majorization losses of the 0–1 loss. Under this framework, we conduct an 
in-depth analysis about three widely used multicategory hinge losses. Corresponding to 
the three hinge losses, we propose three multicategory majorization losses based on a 
coherence function. The limits of the three coherence losses as the temperature approaches 
zero are the corresponding hinge losses, and the limits of the minimizers of their expected 
errors are the minimizers of the expected errors of the corresponding hinge losses. 
Finally, we develop multicategory large margin classification methods by using a so-called 
multiclass C-loss.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Large margin classification methods have become increasingly popular since the advent of the support vector machine 
(SVM) [4] and boosting [7,8]. Recent developments include the large-margin unified machine of Liu et al. [16] and the 
flexible assortment machine of Qiao and Zhang [19]. Typically, large margin classification methods approximately solve an 
otherwise intractable optimization problem defined with the 0–1 loss. These algorithms were originally designed for binary 
classification problems. Unfortunately, generalization of them to the multicategory setting is often found to be non-trivial. 
The goal of this paper is to solve multicategory classification problems using the same margin principle as that for binary 
problems.

The conventional SVM based on the hinge loss function possesses support vector interpretation (or data sparsity) 
but does not have uncertainty (that is, the SVM does not directly estimate the conditional class probability). The non-
differentiable hinge loss function also makes it non-trivial to extend the conventional SVM from binary classification 
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problems to multiclass classification problems in the same margin principle [25,3,26,12,5,13]. Thus, one seemingly natu-
ral approach to constructing a classifier for the binary and multiclass problems is to consider a smooth loss function.

For example, regularized logistic regression models based on the negative multinomial log-likelihood function (also called 
the logit loss) [31,10] are competitive with SVMs. Moreover, it is natural to exploit the logit loss in the development of a 
multicategory boosting algorithm [9]. Recently, Zhang et al. [30] proposed a smooth loss function that called coherence 
function for developing binary large margin classification methods. The coherence function establishes a bridge between the 
hinge loss and the logit loss. In this paper, we study the application of the coherence function in the multiclass classification 
problem.

1.1. Multicategory margin classification methods

We are concerned with an m-class (m > 2) classification problem with a set of training data points {(xi, ci)}n
i=1 where 

xi ∈X ⊂ R
p is an input vector and ci ∈ {1, 2, . . . , m} is its corresponding class label. We assume that each x belongs to one 

and only one class. Our goal is to find a classifier φ(x) : x → c ∈ {1, . . . , m}.
Let Pc(x) = Pr(C = c|X = x), c = 1, . . . , m, be the class conditional probabilities given x. The expected error at x is then 

defined by

m∑
c=1

I{φ(x) �=c} Pc(x),

where I{#} is 1 if # is true and 0 otherwise. The empirical error on the training data is thus given by

ε = 1

n

n∑
i=1

I{φ(xi) �=ci}.

Given that ε is equal to its minimum value zero when all training data points are correctly classified, we wish to use ε as 
a basis for devising classification methods.

Suppose the classifier is modeled using an m-vector g(x) = (g1(x), . . . , gm(x))T , where the induced classifier is obtained 
via maximization in a manner akin to discriminant analysis: φ(x) = argmax j{g j(x)}. For simplicity of our analysis, we 
assume that for a fixed x, each g j itself lies in a compact set. We also assume that the maximizing argument of max j g j(x)

is unique. Of course this excludes the trivial case that g j = 0 for all j ∈ {1, . . . , m}. However, this assumption does not imply 
that the maximum value is unique; indeed, adding a constant to each component g j(x) does not change the maximizing 
argument. To remove this redundancy, it is convenient to impose a sum-to-zero constraint. Thus we define

G =
{(

g1(x), . . . , gm(x)
)T
∣∣∣ m∑

j=1

g j(x) = 0

}

and assume g ∈ G in this paper unless otherwise specified. Zou et al. [33] referred to such a g as the margin vector. Liu and 
Shen [15] referred to max j(g j(x) − gc(x)) as the generalized margin of (x, c) with respect to (w.r.t.) g.

Since a margin vector g induces a classifier, we explore the minimization of ε w.r.t. g. However, this minimization 
problem is intractable because I{φ(x)�=c} is the 0–1 function. A wide variety of margin-based classifiers can be understood 
as minimizers of a surrogate loss function ψc(g(x)), which upper bounds the 0–1 loss I{φ(x)�=c} . That is, various tractable 
surrogate loss functions ψc(g(x)) are thus used to upper approximate I{φ(x)�=c} . The corresponding empirical risk function is 
given by

R̂(g) = 1

n

n∑
i=1

ψci

(
g(xi)

)
.

If α is a positive constant that does not depend on (x, c), argming(x)∈G 1
α R̂(g) is equivalent to argming(x)∈G R̂(g). We 

thus present the following definition.

Definition 1. A surrogate loss ψc(g(x)) is said to be the majorization of I{φ(x)�=c} w.r.t. (x, c) if ψc(g(x)) ≥ αI{φ(x)�=c} where 
α is a positive constant that does not depend on (x, c).

In practice, convex majorization functions play an important role in the development of classification algorithms. On one 
hand, the convexity makes the resulting optimization problems computationally tractable. On the other hand, the classifica-
tion methods usually have better statistical properties.

Given a majorization function ψc(g(x)), the classifier resulted from the minimization of R̂(g) w.r.t. the margin vector g
is called a large margin classifier or a margin-based classification method. In the binary classification setting, a wide variety 
of classifiers can be understood as minimizers of a majorization loss function of the 0–1 loss. If such functions satisfy 
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other technical conditions, the resulting classifiers can be shown to be Bayes consistent [1]. It seems reasonable to pursue 
a similar development in the case of multicategory classification, and indeed such a proposal has been made by Zou et al. 
[33] (also see [24,23]).

Definition 2. A surrogate function ψc(g(x)) is said to be Fisher-consistent w.r.t. a margin vector g(x) = (g1(x), . . . , gm(x))T at 
(x, c) if (i) the following risk minimization problem

ĝ(x) = argmin
g(x)∈G

m∑
c=1

ψc
(
g(x)

)
Pc(x) (1)

has a unique solution ĝ(x) = (ĝ1(x), . . . , ̂gm(x))T ; and (ii)

argmax
c

ĝc(x) = argmax
c

Pc(x).

Zou et al. [33] assumed ψc(g(x)) as an independent and identical setting; that is, ψc(g(x)) � η(gc(x)) where η is some 
loss function. As we see, Definition 2 does not require that the function ψc(g(x)) depends only on gc(x). Thus, this def-
inition refines the definition of Zou et al. [33]. The definition is related to the notion of infinite-sample consistency (ISC) 
of Zhang [28]. ISC says that an exact solution of Problem (1) leads to a Bayes rule. However, it does not require that the 
solution of Problem (1) be unique. Additionally, Zhang [28] especially discussed two other settings: pairwise comparison 
ψc(g(x)) �

∑
j �=c η(gc(x) − g j(x)) and constrained comparison ψc(g(x)) �

∑
j �=c η(−g j(x)).

In this paper, we are concerned with multicategory classification methods in which binary and multicategory problems 
are solved following the same principle. One of the principled approaches is due to Lee et al. [13]. The authors proposed 
a multicategory SVM (MSVM) which treats the m-class problem simultaneously. Moreover, Lee et al. [13] proved that their 
MSVM satisfies a Fisher consistency condition. Unfortunately, this desirable property does not hold for many other multiclass 
SVMs (see, e.g., [25,3,26,12]). The multiclass SVM of [5] possesses this property only if there is a dominating class (that is, 
max j P j(x) > 1/2).

Recently, Liu and Shen [15] proposed a so-called multicategory ψ-learning algorithm by using a multicategory ψ loss, 
and Wu and Liu [27] devised robust truncated-hinge-loss SVMs. These two algorithms are parallel to the multiclass SVM of 
Crammer and Singer [5] and enjoy a generalized pairwise comparison setting.

Additionally, Zhu et al. [32] and Saberian and Vasconcelos [21] devised several multiclass boosting algorithms, which 
solve binary and multicategory problems under the same principle. Mukherjee and Schapire [17] created a general frame-
work for studying multiclass boosting, which formalizes the interaction between the boosting algorithm and the weak 
learner. We note that Gao and Koller [11] applied the multiclass hinge loss of Crammer and Singer [5] to devise a multiclass 
boosting algorithm. However, this algorithm is cast under an output coding framework.

1.2. Contributions and outline

In this paper, we study the Fisher consistency properties of multicategory surrogate losses. First, assuming that losses 
are twice differentiable, we present a Fisher consistency property under a more general setting, including the independent 
and identical, constrained comparison and generalized pairwise comparison settings. We next propose a framework for 
constructing a majorization function of the 0–1 loss. This framework provides us with a natural and intuitive perspective 
for construction of three extant multicategory hinge losses. Under this framework, we conduct an in-depth analysis on the 
Fisher consistency properties of these three extant multicategory hinge losses. In particular, we give a sufficient condition 
that the multiclass hinge loss used by Vapnik [25], Bredensteiner and Bennett [3], Weston and Watkins [26], Guermeur [12]
satisfies the Fisher consistency. Moreover, we constructively derive the minimizers of the expected errors of the multiclass 
hinge losses of Crammer and Singer [5].

The framework also inspires us to propose a class of multicategory majorization functions which are based on the 
coherence function [30]. The coherence function is a smooth and convex majorization of the hinge function. Especially, 
its limit as the temperature approaches zero gives the hinge loss. Moreover, its relationship with the logit loss is also 
shown. Zhang et al. [30] originally exploited the coherence function in binary classification problems. We investigate its 
application in the development of multicategory margin classification methods. Based on the coherence function, we in 
particular present three multicategory coherence losses which correspond to the three extant multicategory hinge losses. 
These multicategory coherence losses are infinitely smooth and convex and they satisfy the Fisher consistency condition.

The coherence losses have the advantage over the hinge losses that they provide an estimate of the conditional class 
probability, and over the multicategory logit loss that their limiting versions at zero temperature are just their corresponding 
multicategory hinge loss functions. Thus they are very appropriate for use in the development of multicategory large margin 
classification methods, especially boosting algorithms. We propose in this paper a multiclass C learning algorithm and a 
multiclass GentleBoost algorithm, both based on our multicategory coherence loss functions.

The remainder of this paper is organized as follows. Section 2 gives a general result on Fisher consistency. In Section 3, 
we discuss the methodology for the construction of multicategory majorization losses and present two majorization losses 
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based on the coherence function. Section 4 develops another multicategory coherence loss that we call the multiclass 
C-loss. Based on the multiclass C-loss, a multiclass C learning algorithm and a multiclass GentleBoost algorithm are given 
in Section 5. We conduct empirical analysis for the multicategory large margin algorithms in Section 6, and conclude our 
work in Section 7. All proofs are deferred to the appendix.

2. A general result on Fisher consistency

Using the notion and notation given in Section 1.1, we now consider a more general setting than the pairwise comparison. 
Let gc(x) = (g1(x) − gc(x), . . . , gc−1(x) − gc(x), gc+1(x) − gc(x), . . . , gm(x) − gc(x))T . We define ψc(g(x)) as a function of gc(x)

(thereafter denoted f (gc(x))). It is clear that the pairwise comparison ψc(g(x)) =∑ j �=c η(gc(x) − g j(x)), the multiclass hinge 
loss of Crammer and Singer [5], the multicategory ψ-loss of Liu and Shen [15], and the truncated hinge loss of Wu and Liu 
[27] follow this generalized definition. Moreover, for these cases, we note that f (gc) is symmetric.1

Furthermore, we present a unifying definition of ψ(g) = (ψ1(g), . . . , ψm(g))T : Rm → R
m where we ignore the depen-

dency of g on x. Let Ψ be a set of mappings ψ(g) satisfying the conditions: (i) when fixed gc ψc(g) is symmetric w.r.t. 
the remaining arguments and (ii) ψc(g) = ψ j(g jc) where g jc is obtained by only exchanging gc and g j of g. Obviously, the 
mapping ψ(g) defined via the independent and identical setting, the constrained comparison, or the generalized pairwise 
comparison with symmetric f belongs to Ψ . With this notion, we give an important theorem of this paper as follows.

Theorem 3. Let ψ(g) ∈ Ψ be a twice differentiable function from Rm to Rm. Assume that the Hessian matrix of ψc(g) w.r.t. g is 
conditionally positive definite for c = 1, . . . , m. Then the minimizer ĝ = (ĝ1, . . . , ̂gm)T of 

∑
c ψc(g(x))Pc(x) in G exists and is unique. 

Furthermore, if ∂ψc(g)
∂ gc

− ∂ψc(g)
∂ g j

where j �= c is negative for any g ∈ G , then Pl > Pk implies ĝl > ĝk .

The proof of the theorem is given in Appendix A.1. Note that an m×m real matrix A is said to be conditionally positive 
definite if yT Ay > 0 for any nonzero real vector y = (y1, . . . , ym)T with 

∑m
j=1 y j = 0. The condition that ∂ψc(g)

∂ gc
− ∂ψc(g)

∂ g j
< 0

on G for j �= c is not necessary for Fisher consistency. For example, in the setting ψc(g(x)) = η(gc(x)), Zou et al. [33]
proved that if η(z) is a twice differentiable function with η′(0) < 0 and η′′(z) > 0 ∀z, then ψc(g(x)) is Fisher-consistent. 
In the setting ψc(g(x)) =∑ j �=c η(−g j), we note that 

∑
c

∑
j �=c η(−g j)Pc =∑c=1 η(−gc)(1 − Pc). Based on the proof of 

Zou et al. [33], we have that if η(z) is a twice differentiable function with η′(0) < 0 and η′′(z) > 0 ∀z, then ψc(g(x)) =∑
j �=c η(−g j(x)) is Fisher-consistent. That is, in these two cases, we can relax the condition that ∂ψc (g)

∂ gc
− ∂ψc(g)

∂ g j
< 0 for any 

g ∈ G as ∂ψc(0)
∂ gc

− ∂ψc(0)
∂ g j

< 0, for j �= c.

We have the following corollary, whose proof is given in Appendix A.2. We will see two concrete cases of this corollary 
(that is, Theorems 10 and 13).

Corollary 4. Assume ψc(g) = f (gc) where f (z) is a symmetric and twice differentiable function from Rm−1 to R. If the Hessian matrix 
of f (z) w.r.t. z is positive definite, then the minimizer ĝ = (ĝ1, . . . , ̂gm)T of 

∑
c ψc(g(x))Pc(x) in G exists and is unique. Furthermore, 

if ∂ψc(g)
∂ gc

− ∂ψc(g)
∂ g j

where j �= c is negative for any g, then Pl > Pk implies ĝl > ĝk .

Theorem 3 or Corollary 4 shows that ψc(g) admits the ISC of Zhang [28]. Thus, under the conditions in Theorem 3
or Corollary 4, we also have the relationship between the approximate minimization of the risk based on ψc and the 
approximate minimization of the classification error. In particular, if

EX

[
m∑

c=1

ψc
(
ĝ(X)

)
Pc(X)

]
≤ inf

g∈GEX

[
m∑

c=1

ψc
(
g(X)

)
Pc(X)

]
+ ε1

for some ε1 > 0, then there exists an ε2 > 0 such that

EX

[
m∑

c=1,c �=φ̂(X)

Pc(X)

]
≤ EX

[
m∑

c=1,c �=φ∗(X)

Pc(X)

]
+ ε2

where φ̂(X) = argmax j{ĝ j(X)}, φ∗(X) = argmax j{P j(X)} and EX [∑m
c=1,c �=φ∗(X) Pc(X)] is the optimal error. This result di-

rectly follows from Theorem 3 in Zhang [28].

3. Multicategory majorization losses

Given x and its label c, we let g(x) be a margin vector at x and the induced classifier be φ(x) = argmax j g j(x). In the 
binary case, it is clear that φ(x) = c if and only if gc(x) > 0, and that gc(x) ≤ 0 is a necessary and sufficient condition of 

1 A symmetric function of p variables is one whose value at any p-tuple of arguments is the same as its value at any permutation of that p-tuple.
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φ(x) �= c. Thus, we always have I{gc (x)≤0} = I{φ(x)�=c} . Furthermore, let g1(x) = −g2(x) = 1
2 f (x) and encode y = 1 if c = 1

and y = −1 if c = 2. Then the empirical error is

ε = 1

n

n∑
i=1

I{φ(xi) �=ci} = 1

n

n∑
i=1

I{gci (xi)≤0} = 1

n

n∑
i=1

I{yi f (xi)≤0}.

In the multicategory case, φ(x) = c implies gc(x) > 0 but φ(x) �= c does not imply gc(x) ≤ 0. We shall see that gc(x) ≤ 0
is a sufficient but not necessary condition of φ(x) �= c. In general, we only have I{gc(x)≤0} ≤ I{φ(x)�=c} . Although g j(x) −
gc(x) > 0 for some j �= c is a necessary and sufficient condition of φ(x) �= c, it in most cases yields an optimization problem 
which is not easily solved. This is an important reason why it is not trivial to develop multicategory AdaBoost and SVMs 
with the same principle as binary AdaBoost and SVMs.

3.1. Methodology

Recall that 
∑m

j=1 g j(x) = 0 and there is at least one j ∈ {1, . . . , m} such that g j(x) �= 0. If gc(x) ≤ 0, then there exists 
one l ∈ {1, . . . , m} such that l �= c and gl(x) > 0. As a result, we have φ(x) �= c. Therefore, gc(x) ≤ 0 implies φ(x) �= c. 
Unfortunately, if φ(x) �= c, gc(x) ≤ 0 does not necessarily hold. For example, consider the case that m = 3 and c = 1. Assume 
that g(x) = (2, 3, −5). Then we have φ(x) = 2 �= 1 and g1(x) = 2 > 0. In addition, it is clear that φ(x) = c implies gc(x) > 0. 
However, gc(x) > 0 does not imply φ(x) = c.

On the other hand, it is obvious that φ(x) = c is equivalent to φ(x) �= j for all j �= c. In terms of the above discussions, 
a condition of making φ(x) = c is g j(x) ≤ 0 for j �= c. To summarize, we immediately have the following theorem.

Proposition 5. For (x, c), let g(x) be a margin vector at x and the induced classifier be φ(x) = arg max j g j(x). Then

(a) I{gc(x)≤0} ≤ I{φ(x) �=c} = I{⋃ j �=c g j(x)−gc(x)>0} ≤ I{⋃ j �=c g j(x)>0}
(b) I{⋂ j �=c g j(x)≤0} ≤ I{⋂ j �=c g j(x)−gc(x)≤0} = I{φ(x)=c} ≤ I{gc(x)>0}

(c) I{⋃ j �=c g j(x)>0} ≤
∑
j �=c

I{g j(x)>0}

(d) I{⋃ j �=c g j(x)−gc(x)>0} ≤
∑
j �=c

I{g j(x)−gc(x)>0}.

Proposition 5 shows that gc(x) ≤ 0 is the sufficient condition of φ(x) �= c, while g j(x) > 0 for some j �= c is its necessary 
condition. The following theorem shows that they become sufficient and necessary when g has one and only one positive 
element.

Proposition 6. Under the conditions in Proposition 5. The relationship of

I{gc(x)≤0} = I{φ(x) �=c} = I{⋃ j �=c g j(x)−gc(x)>0} = I{⋃ j �=c g j(x)>0} =
∑
j �=c

I{g j(x)>0}

holds if and only if the margin vector g(x) has only one positive element.

In the binary case, this relationship always holds because g1(x) = −g2(x). Recently, Zou et al. [33] derived multicat-
egory boosting algorithms using exp(−gc(x)). In their discrete boosting algorithm, the margin vector g(x) is modeled as 
an m-vector function with one and only one positive element. In this case, I{gc (x)≤0} is equal to I{φ(x)�=c} . Consequently, 
exp(−gc(x)) is a majorization of I{φ(x)�=c} because exp(−gc(x)) is an upper bound of I{gc(x)≤0} . Therefore, this discrete Ad-
aBoost algorithm still approximates the original empirical 0–1 loss function. In the general case, however, Proposition 6
implies that exp(−gc(x)) is not the majorization of I{φ(x)�=c} .

3.2. Approaches

Proposition 5 provides us with approaches for constructing majorization functions of the 0–1 loss function I{φ(x)�=c} . 
Clearly, 

∑
j �=c I{g j(x)>0} and 

∑
j �=c I{g j(x)−gc(x)>0} are separable, so they are more tractable respectively than I{⋃ j �=c g j(x)>0}

and I{⋃ j �=c g j(x)−gc(x)>0} . Thus, 
∑

j �=c I{g j(x)>0} and 
∑

j �=c I{g j(x)−gc(x)>0} are popularly employed in practical applications.
In particular, suppose η(g j(x)) upper bounds I{g j(x)≤0}; that is, η(g j(x)) ≥ I{g j(x)≤0} . Note that η(g j(x)) ≥ I{g j(x)≤0} if 

and only if η(−g j(x)) ≥ I{g j(x)≥0} . Thus η(−g j(x)) upper bounds I{g j(x)≥0} , and hence η(g j(x) − gl(x)) upper bounds 
I{gl(x)−g j(x)>0} . It then follows from Proposition 5 that 

∑
j �=c η(−g j(x)) and 

∑
j �=c η(gc(x) − g j(x)) are majorizations of 

I{φ(x)�=c} . Consequently, we can define two classes of majorizations for I{φ(x)�=c} . The first one is
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ψc
(
g(x)

)=∑
l �=c

η
(

gc(x) − gl(x)
)
, (2)

while the second one is

ψc
(
g(x)

)=∑
l �=c

η
(−gl(x)

)
. (3)

This leads us to two approaches for constructing majorization ψc(g(x)) of I{φ(x)�=c} . Zhang [28] referred to them as 
pairwise comparison and constrained comparison. A theoretical analysis of these two classes of majorization functions has 
also been presented by Zhang [28]. His analysis mainly focused on consistency of empirical risk minimization and the ISC 
property of surrogate losses. Our results in Section 3.1 show a direct and intuitive connection of these two approaches with 
the original 0–1 loss.

3.3. Multicategory hinge losses

Using distinct η(g j(x)) (≥ I{g j(x)≤0}) in the two approaches, we can construct different multicategory losses for large 
margin classifiers. For example, let η(g j(x)) = (1 − g j(x))+ which upper bounds I{g j(x)≤0} . Then 

∑
j �=c(1 − gc(x) + g j(x))+

and 
∑

j �=c(1 + g j(x))+ are candidate majorizations for I{φ(x)�=c} , which yield two multiclass SVM methods.
In the multicategory SVM (MSVM), Lee et al. [13] employed 

∑
j �=c(1 + g j(x))+ as a multicategory hinge loss. Moreover, 

Lee et al. [13] proved that this multicategory hinge loss is Fisher-consistent. In particular, the minimizer of 
∑m

c=1
∑

j �=c(1 +
g j(x))+ Pc(x) w.r.t. g ∈ G is ĝl(x) = m − 1 if l = argmax j(P j(x)) and ĝl(x) = −1 otherwise.

The pairwise comparison 
∑

j �=c(1 − gc(x) + g j(x))+ was used by Vapnik [25], Weston and Watkins [26], Bredensteiner and 
Bennett [3], Guermeur [12]. Unfortunately, Lee et al. [13], Zhang [28], Liu [14] showed that solutions of the corresponding 
optimization problem do not always implement the Bayes decision rule. However, we find that it is still Fisher-consistent 
under certain conditions. In particular, we have the following theorem (the proof is given in Appendix B.1).

Theorem 7. Let P j(x) > 0 for j = 1, . . . , m, Pl(x) = max j P j(x) and Pk(x) = max j �=l P j(x), and let

ĝ(x) = argmin
g(x)∈G

m∑
c=1

Pc(x)
∑
j �=c

(
1 − gc(x) + g j(x)

)
+.

If Pl(x) > 1/2 or Pk(x) < 1/m, then ĝl(x) = 1 + ĝk(x) ≥ 1 + ĝ j(x) for j �= l, k.

This theorem implies that ĝl(x) > ĝ j(x), so the majorization function 
∑

j �=c(1 − gc(x) + g j(x))+ is Fisher-consistent 
when Pl(x) > 1/2 or Pk(x) < 1/m. In the case that m = 3, Liu [14] showed that this majorization function yields the Fisher 
consistency when Pk < 1

3 , while the consistency is not always satisfied when 1/2 > Pl > Pk ≥ 1/3. Theorem 7 shows that 
for any m ≥ 3 the consistency is also satisfied whenever Pk < 1

m .
As we have seen, I{⋃ j �=c g j(x)−gc(x)>0} can be also used as a starting point to construct a majorization of I{φ(x)�=c} . Since 

I{⋃ j �=c g j(x)−gc(x)>0} = I{max j �=c g j(x)−gc(x)>0} , we call this construction approach the maximum pairwise comparison. In fact, this 
approach was employed by Crammer and Singer [5], Liu and Shen [15] and Wu and Liu [27]. Especially, Crammer and 
Singer [5] used the surrogate:

ξc
(
g(x)

)= max
{

g j(x) + 1 − I{ j=c}
}− gc(x). (4)

It is easily seen that

I{⋃ j �=c g j(x)−gc(x)>0} ≤ max
j

{
g j(x) + 1 − I{ j=c}

}− gc(x) ≤
∑
j �=c

(
1 + g j(x) − gc(x)

)
+,

which implies that ξc(g(x)) is a tighter upper bound of I{φ(x)�=c} than 
∑

j �=c(1 − gc(x) + g j(x))+ . Note that Crammer and 
Singer [5] did not assume g ∈ G , but Liu and Shen [15] argued that this assumption is also necessary. Zhang [28] showed 
that ξc(g(x)) is Fisher-consistent only when Pl(x) > 1/2. However, the author did not give an explicit expression of the 
minimizer of the expected error in question in the literature. Here we present the constructive solution of the corresponding 
minimization problem in the following theorem (the proof is given in Appendix B.2).

Theorem 8. Consider the following optimization problem of

ĝ(x) = argmin
g(x)∈G

m∑
c=1

{
max

j

(
g j(x) + 1 − I{ j=c}

)− gc(x)
}

Pc(x). (5)

Assume that Pl(x) = max j P j(x).
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(1) If Pl(x) > 1/2, then ĝ j(x) = I{ j=l} − 1
m for j = 1, . . . , m;

(2) If Pl(x) = 1/2, then 0 ≤ ĝl(x) − ĝ j(x) ≤ 1 and ĝ j(x) = ĝc(x) for c, j �= l;
(3) If Pl(x) < 1/2, then ĝc(x) = 0 for c = 1, . . . , m.

This theorem shows that the majorization function max j{g j(x) +1 −I{ j=c}} − gc(x) is Fisher-consistent when Pl(x) > 1/2. 
Otherwise, the solution of (5) degenerates to the trivial point. As we have seen from Theorems 7 and 8, Pl(x) > 1/2 is a 
sufficient condition for both max j{g j(x) +1 − I{ j=c}} − gc(x) and 

∑
j �=c(1 − gc(x) + g j(x))+ to be Fisher-consistent. Moreover, 

they satisfy the condition ĝl(x) = 1 + ĝk(x) where k = argmax j �=l P j(x). However, as shown in Theorem 7, 
∑

j �=c(1 − gc(x) +
g j(x))+ still yields the Fisher-consistent property when Pk < 1

m . Thus, the consistency condition for the pairwise comparison 
hinge loss is weaker than that for the maximum pairwise comparison hinge loss.

3.4. Multicategory coherence losses

To construct a smooth majorization function of I{φ(x)�=c} , we define η(gc(x)) as the coherence function which was pro-
posed by Zhang et al. [30]. The coherence function is

ηT (z) � T log

[
1 + exp

1 − z

T

]
, T > 0 (6)

where T is called the temperature parameter. Clearly, ηT (z) ≥ (1 − z)+ ≥ I{z≤0} . Moreover, limT →0 ηT (z) = (1 − z)+ . Thus, 
we directly have two majorizations of I{φ(x)�=c} based on the constrained comparison method and the pairwise comparison 
method.

Using the constrained comparison, we give a smooth approximation to 
∑

j �=c(1 + g j(x))+ for the MSVM of Lee et al. [13]. 
That is,

LT
(
g(x), c

)
� T

∑
j �=c

log

[
1 + exp

(
1 + g j(x)

T

)]
.

It is immediate that LT (g(x), c) ≥∑ j �=c(1 + g j(x))+ and limT →0 LT (g(x), c) =∑ j �=c(1 + g j(x))+ . Furthermore, we have the 
following theorem (the proof is given in Appendix B.3).

Theorem 9. Assume that Pc(x) > 0 for c = 1, . . . , m. Consider the optimization problem

max
g(x)∈G

m∑
c=1

LT
(
g(x), c

)
Pc(x) (7)

for a fixed T > 0 and let ĝ(x) = (ĝ1(x), . . . , ̂gm(x))T be its solution. Then ĝ(x) is unique. Moreover, if Pl(x) < P j(x), we have ĝl(x) <
ĝ j(x). Furthermore, we have

lim
T →0

ĝc(x) =
{

m − 1 if c = argmax j P j(x),

−1 otherwise.

Additionally, having obtained ĝ(x), Pc(x) is given by

Pc(x) = 1 − (m − 1)(1 + exp(− 1+ĝc(x)
T ))

m +∑m
j=1 exp(− 1+ĝ j(x)

T )
. (8)

Although there is no explicit expression for ĝ(x) in Problem (7), Theorem 9 shows that its limit at T = 0 is equal to the 
minimizer of 

∑m
c=1
∑

j �=c(1 + g j(x))+ Pc(x), which was studied by Lee et al. [13].
Based on the pairwise comparison, we have a smooth alternative to multiclass hinge loss 

∑
j �=c(1 + gc(x) − g j(x))+ , 

which is

G T
(
g(x), c

)
� T

∑
j �=c

log

[
1 + exp

(
1 + g j(x) − gc(x)

T

)]
. (9)

It is also immediate that G T (g(x), c) ≥∑ j �=c(1 + gc(x) − g j(x))+ and limT →0 G T (g(x), c) =∑ j �=c(1 + gc(x) − g j(x))+ .

Theorem 10. Assume that Pc(x) > 0 for c = 1, . . . , m. Let Pl = max j P j(x) and Pk(x) = max j �=l P j(x). Consider the optimization 
problem

max
g(x)∈G

m∑
G T
(
g(x), c

)
Pc(x)
c=1



62 Z. Zhang et al. / Artificial Intelligence 215 (2014) 55–78
for a fixed T > 0 and let ĝ(x) = (ĝ1(x), . . . , ̂gm(x))T be its solution. Then ĝ(x) is unique. Moreover, if Pi(x) < P j(x), we have ĝi(x) <
ĝ j(x). Additionally, if Pl(x) > 1/2 or Pk(x) < 1/m, then

lim
T →0

ĝl(x) = 1 + lim
T →0

ĝk(x) ≥ 1 + lim
T →0

ĝ j(x) for j �= l,k,

whenever the limits exist.

The proof of Theorem 10 is given in Appendix B.4. We see that the limit of ĝl(x) at T = 0 agrees with that shown in The-
orem 7. Unfortunately, based on G T (g(x), c), it is hard to obtain an explicit expression of the class conditional probabilities 
Pc(x) via the ĝc(x).

4. Multiclass C-losses

In this section, we present a smooth and Fisher-consistent majorization of the multiclass hinge loss ξc(g(x)) in (4) using 
the idea behind the coherence function. We call this new majorization multiclass C-loss. We will see that this multiclass 
C-loss bridges the multiclass hinge loss ξc(g(x)) and the negative multinomial log-likelihood (logit) of the form

γc
(
g(x)

)= log
m∑

j=1

exp
(

g j(x) − gc(x)
)= log

[
1 +
∑
j �=c

exp
(

g j(x) − gc(x)
)]

. (10)

In the 0–1 loss the misclassification costs are specified as 1. It is natural to set the misclassification costs as a positive 
constant u > 0. This setting will reveal an important connection between the hinge loss and the logit loss. The empirical 
error on the training data is then

ε = u

n

n∑
i=1

I{φ(xi) �=ci}.

In this setting, we can extend the multiclass hinge loss ξc(g(x)) as

Hu
(
g(x), c

)= max
j

{
g j(x) + u − uI{ j=c}

}− gc(x). (11)

It is clear that Hu(g(x), c) ≥ uI{φ(x)�=c} . To establish the connection among the multiclass C-loss, the multiclass hinge loss 
and the logit loss, we employ this setting to present the definition of the multiclass C-loss.

We now express max{g j(x) + u − uI{ j=c}} as 
∑m

j=1 ωc
j(x)[g j(x) + u − uI{ j=c}] where

ωc
j(x) =

{
1 j = argmaxl{gl(x) + u − uI{l=c}}
0 otherwise.

Motivated by the idea behind deterministic annealing [20], we relax this hard function ωc
j(x), retaining only ωc

j(x) ≥ 0

and 
∑m

j=1 ωc
j(x) = 1. With such soft ωc

j(x), we maximize 
∑m

j=1 ωc
j(x)[g j(x) +u −uI{ j=c}] − gc(x) under entropy penalization; 

namely,

max
{ωc

j(x)}

{
F �

m∑
j=1

ωc
j(x)
[

g j(x) + u − uI{ j=c}
]− gc(x) − T

m∑
j=1

ωc
j(x) logωc

j(x)

}
, (12)

where T > 0 is also referred to as the temperature. The maximization of F w.r.t. ωc
j(x) is straightforward, and it gives rise 

to the following distribution

ωc
j(x) = exp[ g j(x)+u−uI{ j=c}

T ]∑
l exp[ gl(x)+u−uI{l=c}

T ]
(13)

based on the Karush–Kuhn–Tucker condition. The corresponding maximum of F is obtained by plugging (13) back into (12):

CT ,u
(
g(x), c

)
� T log

[
1 +
∑
j �=c

exp
u + g j(x) − gc(x)

T

]
, T > 0, u > 0. (14)
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Note that for T > 0 we have

T log

[
1 +
∑
j �=c

exp
u + g j(x) − gc(x)

T

]
= T log

∑
j

exp

(
g j(x) + u − uI{ j=c}

T

)
− gc(x)

≥ max
j

{
g j(x) + u − uI{ j=c}

}− gc(x)

≥ uI{φ(x) �=c}.

We thus call CT ,u(g(x), c) the multiclass C-loss. Clearly, CT ,u(g(x), c) is infinitely smooth and convex in g(x) (see Appendix C
for the proof). Moreover, the Hessian matrix of CT ,u(g(x), c) w.r.t. g(x) is conditionally positive definite.

4.1. Properties

We now investigate the relationships between the multiclass C-loss CT ,u(g(x), c) and the multiclass hinge loss 
Hu(g(x), c), and between CT ,u(g(x), c) and multiclass coherence loss G T (g(x), c). In particular, we have the following propo-
sition.

Proposition 11. Let G T (g(x), c), Hu(g(x), c) and CT ,u(g(x), c) be defined by (9), (11) and (14), respectively. Then,

(i) I{φ(x)�=c} ≤ CT ,1(g(x), c) < G T (g(x), c).
(ii) Hu(g(x), c) ≤ CT ,u(g(x), c) ≤ Hu(g(x), c) + T log m.

The proof is given in Appendix C.1. We see from this proposition that CT ,1(g(x), c) is a majorization of I{φ(x)�=c} tighter 
than G T (g(x), c). When treating g(x) fixed and considering ωc

j(x) and CT ,u(g(x), c) as functions of T , we have the following 
proposition.

Proposition 12. For fixed g(x) �= 0 and u > 0, we have

(i) limT →∞ CT ,u(g(x), c) − T log m = 1
m

∑
j �=c(u + g j(x) − gc(x)) and

lim
T →∞ωc

j(x) = 1

m
for j = 1, . . . ,m.

(ii) limT →0 CT ,u(g(x), c) = Hu(g(x), c) and

lim
T →0

ωc
j(x) =

{
1 j = argmaxl{gl(x) + 1 − I{l=c}}
0 otherwise.

(iii) CT ,u(g(x), c) is increasing in T .

The proof is given in Appendix C.2. It is worth noting that Proposition 12-(ii) shows that at T = 0, CT ,1(g(x), c) reduces 
to the multiclass hinge loss ξc(g(x)) of Crammer and Singer [5]. Additionally, when u = 0, we have

CT ,0
(
g(x), c

)= T log

[
1 +
∑
j �=c

exp
g j(x) − gc(x)

T

]
,

which was proposed by Zhang et al. [29]. When T = 1, it is the logit loss γc(g(x)) in (10). Thus, C1,1(g(x), c) bridges the 
hinge loss ξc(g(x)) and the logit loss γc(g(x)).

Consider that

lim
T −→0

CT ,0
(
g(x), c

)= max
j

(
g j(x) − gc(x)

)
.

This shows that CT ,0(g(x), c) no longer converges to the majorizations of I{φ(x)�=c} as T → 0. However, as a special case of 
u = 1, we have limT →0 CT ,1(g(x), c) = ξc(g(x)) ≥ I{φ(x)�=c}; that is, CT ,1(g(x), c) converges to the majorization of I{φ(x)�=c} . 
In fact, Proposition 12-(ii) implies that for an arbitrary u > 0, the limit of CT ,u(g(x), c) at T = 0 is still the majorization of 
I{φ(x)�=c} . We thus see an essential difference between CT ,1(g(x), c) and CT ,0(g(x), c), which are respectively the generaliza-
tions of the C-loss and the logit loss.

For notational simplicity, here and later we denote CT ,1(g(x), c) by CT (g(x), c). Throughout our analysis in this section, 
we assume that the maximizing argument l = argmax j g j(x) is unique. This implies that gl(x) > g j(x) for j �= l. The following 
theorem shows that the C-loss is Fisher-consistent.
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Table 1
Summary of the Multicategory Loss Functions w.r.t. (x, c). Here “I”, “II” and “III” represent the constrained comparison,
pairwise comparison and maximum pairwise comparison settings, respectively.

Hinge
∑

j �=c(1 + g j(x))+ [13] I∑
j �=c(1 − gc(x) + g j(x))+ [25] II

ξc(g(x)) = max{g j(x) + 1 − I{ j=c}} − gc(x) [5] III

Coherence LT (g(x), c) = T
∑

j �=c log[1 + exp(
1+g j (x)

T )] I

GT (g(x), c) = T
∑

j �=c log[1 + exp(
1+g j (x)−gc (x)

T )] [see Eq. (9)] II

CT ,u(g(x), c) = T log[1 +∑ j �=c exp
u+g j (x)−gc (x)

T ] [see Eq. (14)] III

Logit γc(g(x)) = log[1 +∑ j �=c exp(g j(x) − gc(x))] [see Eq. (10)]

Theorem 13. Assume that Pc(x) > 0 for c = 1, . . . , m. Consider the optimization problem:

argmax
g(x)∈G

m∑
c=1

CT ,u
(
g(x), c

)
Pc(x) (15)

for fixed T > 0 and u ≥ 0. Let ĝ(x) = (ĝ1(x), . . . , ̂gm(x))T be the solution. Then ĝ(x) is unique. Moreover, if Pi(x) < P j(x), we have 
ĝi(x) < ĝ j(x). Furthermore, after obtaining ĝ(x), Pc(x) is given by

Pc(x) =
∑m

l=1 exp
u+ĝl(x)+ĝc(x)−uI{l=c}

T∑m
j=1
∑m

l=1 exp
u+ĝl(x)+ĝ j(x)−uI{l= j}

T

. (16)

In the case of u = 0 and T = 1, it follows from Theorem 13 that Pc(x) = exp(ĝc(x))∑m
j=1 exp(ĝ j(x))

. This is identical to the solution 
for logistic regression.

Theorem 14. Let ĝ(x) = (ĝ1(x), . . . , ̂gm(x))T be the solution of optimization problem (15) where Pc(x) > 0 for c = 1, . . . , m, and let 
Pl(x) = maxc Pc(x).

(1) If Pl(x) > 1/2, then

lim
T →0

ĝc(x) =
{

u(m − 1)/m if c = l,
−u/m otherwise.

(2) If Pl(x) < 1/2, then

lim
T →0

ĝc(x) = 0 for c = 1, . . . ,m.

The proofs of Theorems 13 and 14 are given in Appendix B.5. Theorem 14 shows a very important asymptotic property 
of the solution ĝc(x). Especially when u = 1, ĝc(x) as T → 0 converges to the solution of Problem (5) which is based on the 
multiclass hinge loss ξc(g(x)) of Crammer and Singer [5] (see Theorem 8).

Remark 1. We present three multicategory coherence functions LT (g(x), c), G T (g(x), c) and CT (g(x), c). They are respec-
tively upper bounds of three multicategory hinge losses studied in Section 3.3, so they are majorizations of the 0–1 loss 
I{φ(x)�=c} . When m = 2, these three losses become identical. Our theoretical analysis shows that their limits as the tempera-
ture approaches zero become the corresponding hinge losses, and the limits of the minimizers of their expected errors are 
the minimizers of the expected errors of the corresponding hinge losses (see Theorems 9, 10 and 14). We summarize the 
multicategory loss functions discussed in the paper in Table 1.

Remark 2. The coherence losses LT (g(x), c) and CT (g(x), c) can result in explicit expressions for the class conditional prob-
abilities (see (8) and (16)). Thus, this can provide us with an approach for conditional class probability estimation in the 
multicategory SVMs of Lee et al. [13] and of Crammer and Singer [5]. Roughly speaking, one replaces the solutions of clas-
sification models based on the multicategory coherence losses with those of the corresponding multiclass SVMs in (8) and 
(16), respectively. Based on G T (g(x), c), however, there does not exist an explicit expression for the class probability similar 
to (8) or (16). In this case, the above approach for class probability estimation does not apply to the multiclass SVM model 
of Vapnik [25], Bredensteiner and Bennett [3], Weston and Watkins [26], Guermeur [12].

Remark 3. An advantage of CT (g(x), c) over LT (g(x), c) is in that it can make condition g(x) ∈ G automatically satisfy in 
developing a classification method. Moreover, we see that the multiclass C-loss CT (g(x), c) bridges the hinge loss and the 
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logit loss. Thus, it is applicable to the construction of multiclass large margin classification methods. This motivates us to 
devise multiclass large margin classification methods based on CT (g(x), c).

5. Applications of the multiclass C-loss in classification problems

In this section, we develop a multiclass large margin classifier and a multiclass boosting algorithm. Recall that we let 
CT (g(x), c) denote CT ,1(g(x), c); that is, we always set u = 1 here and later.

5.1. The multiclass C learning

Using the multiclass C-loss CT (g(x), c), we now construct margin-based classifiers that we refer to as multiclass C
learning (MCL). We first consider the linear case and then turn to the kernelized case. In the linear case, where g j(x) =
a j + xT b j , we pose the following optimization problem:

min
a,b

1

2

m∑
j=1

‖b j‖2 + γ

n

n∑
i=1

CT
(
g(xi), ci

)

s.t.
m∑

j=1

a j1n + X
m∑

j=1

b j = 0, (17)

where γ > 0 is the regularization parameter, X = [x1, . . . , xn]T is the n×p input data matrix, and 1n represents the n×1
of ones. Note that here we use the result from Liu and Shen [15] that the infinite constraint 

∑m
j=1 g j(x) ∀x ∈ X can be 

reduced to 
∑m

j=1 a j1n + X 
∑m

j=1 b j = 0, which is a function solely of the training data.
Given a reproducing kernel K (·, ·) from X × X → R, we attempt to find a margin vector (g1(x), . . . , gm(x)) = (a1 +

h1(x), . . . , am + hm(x)) ∈∏m
j=1({1} + HK ), where HK is a reproducing kernel Hilbert space. The solution of the following 

problem

min
g(x)

1

2

m∑
j=1

∥∥h j(x)
∥∥2
HK

+ γ

n

n∑
i=1

CT
(
g(xi), ci

)
(18)

under the constraints 
∑m

j=1 g j(x) = 0 ∀x ∈X is

g j(x) = a j +
n∑

i=1

β ji K (xi,x), j = 1, . . . ,m

with constraints 
∑m

j=1 g j(xi) = 0 for i = 1, . . . , n. This result follows readily from that of Lee et al. [13]. We see that kernel-
based MCL solves the following optimization problem:

min
a,β

1

2
βT

j Kβ j + γ

n

n∑
i=1

CT
(
g(xi), ci

)

s.t.
m∑

j=1

a j1n + K
m∑

j=1

β j = 0, (19)

where β j = (β j1, . . . , β jn)T and K = [K (xi, x j)] is the n×n kernel matrix.
The minimization problem in (19) or (17) is a convex minimization problem and the objective function is differentiable; 

thus, the problem is readily solved. In particular, we make use of Newton-type methods to solve this problem. We further 
alternatively update a j ’s and β j ’s. The details are given in Appendix D.

To end this subsection, we establish a connection of multiclass C learning with the multiclass SVM of Crammer and 
Singer [5], which is defined by

min
g(x)

1

2

m∑
j=1

∥∥h j(x)
∥∥2
HK

+ γ

n

n∑
i=1

ξci

(
g(xi)

)
(20)

under the constraints 
∑m

j=1 g j(x) = 0 ∀x ∈ X . From Proposition 12, MCL reduces to the multiclass SVM of Crammer and 
Singer [5] as T → 0. In fact, we have the following theorem (the proof is given in Appendix E).

Theorem 15. Assume that γ in Problems (20) and (18) are same. The minimizer of (18) approaches the minimizer of (20) as T → 0.
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Algorithm 1 GentleBoost.C({(xi, ci)}n
i=1 ⊂ R

p×{1, . . . , m}, T , H).

1: Start with uniform weights wij = 1/n for i = 1, . . . , n and j = 1, . . . , m, and β j(x) = 1/m and g j(x) = 0 for j = 1, . . . , m.
2: Repeat for h = 1 to H :

(a) Repeat for j = 1, . . . , m:
(i) Compute working responses and weights in the jth class,

zi j = T
I{ j=ci } − β j(xi)

β j(xi)(1 − β j(xi))
,

wij = β j(xi)
(
1 − β j(xi)

)
.

(ii) Fit the regression function g(h)
j (x) by weighted least-squares of the working response zi j to xi with weights wij on the training data.

(iii) Set g j(x) ← g j(x) + g(h)
j (x).

(b) Set g j(x) ← m−1
m [g j(x) − 1

m

∑m
l=1 gl(x)] for j = 1, . . . , m.

(c) Compute β j(xi) for j = 1, . . . , m as

β j(xi) =

⎧⎪⎪⎨
⎪⎪⎩

exp
1+g j (xi )−gci (xi )

T

1+∑ j �=ci
exp

1+g j (xi )−gci (xi )

T

if j �= ci ,

1

1+∑ j �=ci
exp

1+g j (xi )−gci (xi )

T

if j = ci .

3: Output φ(x) = argmax j g j(x).

5.2. The multiclass GentleBoost algorithm

Like the negative multinomial log-likelihood function, when the multiclass C-loss is used to devise multicategory discrete 
boosting algorithms, a closed-form solution no longer exists. We instead use the multiclass C-loss to devise a genuine 
multicategory margin-based boosting algorithm. With a derivation similar (also see Appendix F for a brief derivation) to 
that in Friedman et al. [9], Zou et al. [33], Zhu et al. [32], our GentleBoost algorithm is shown in Algorithm 1.

6. Experimental evaluation

Our primary goal in this paper has been to provide statistical analysis of multicategory large margin classification meth-
ods based on hinge losses and coherence losses. However, we have also developed a multiclass C learning algorithm and 
a multiclass gentleBoost algorithm using the multiclass C-loss. In this section, we conduct empirical analysis of these algo-
rithms.

6.1. Results of multiclass C learning

We present the results of experiments evaluating multiclass C learning (MCL) and comparing it with the multiclass 
SVM [5], multiclass ψ-learning [15] and penalized logistic regression (PLR) [31]. All the algorithms were implemented in 
the linear setting.

Our first two experiments used the setup presented by Liu and Shen [15]. The first two datasets were generated from 
three bivariate t-distributions: t((

√
3, 1)T , I2), t((−√

3, 1)T , I2) and t((0, −2)T , I2). Here I2 is the 2×2 identity matrix. In 
the first dataset, the degree of freedom (df) is equal to 1, while it is equal to 3 in the second dataset. All algorithms were 
trained using 150 samples and tested using an additional 106 samples.

These authors found the multiclass SVM and multiclass ψ-learning to work best on these datasets and we have reported 
their results for these approaches in the first two columns of Table 2. This table displays the test errors, which were averaged 
over 100 randomly repeated simulations.

We implemented both MCL and PLR, using the same Newton-type method in both cases. The Newton iteration stops 
when the maximum iteration number (200) is reached or when the difference of successive loss values is less than 0.001. 
The initial values of a j and b j are set to 0.

Adopting the procedure of Liu and Shen [15], our reported results were based on choosing the optimal value of the 
regularization parameter τ = 2γ

n via a simple grid search on [10−3, 103]. As shown in Table 2, ψ-learning has the lowest 
testing error for the first dataset, slightly outperforming MCL. MCL is best on the second dataset.

The third dataset can be obtained from Statlog (http :/ /www.liacc .up .pt /ML/) and it consists of images of the letters “D,” 
“O” and “Q,” with 805, 753 and 783 cases respectively. 200 of the 2341 letters were randomly selected for training and the 
rest were retained for testing. The results are summarized in the third column of Table 2, where the test errors were aver-
aged over 10 randomly repeated simulations. We see that MCL has the smallest test error, followed by ψ-learning and PLR.

Finally, we also performed experiments on text categorization using the WebKB dataset [6]. This dataset contains web 
pages gathered from computer science departments in several universities. The pages can be divided into seven categories. 
In the experiments, we used the four most populous categories, namely, student, faculty, course, and project, resulting in a 
total of 4192 pages. Based on information gain, 300 features were selected. We then randomly selected 70% of the data 
for training while the remaining 30% were used for testing. We repeated this procedure 30 times, and reported the final 

http://www.liacc.up.pt/ML/
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Table 2
Test error rates and their standard deviations in parentheses (%). The results with MCL are based on T = 1 and τ = 2, T = 0.5 and τ = 10, T = 0.2 and 
τ = 10, and T = 1 and τ = 10 for the four datasets, respectively.

data SVM ψ-L MCL PLR

t-data (df = 1) 43.05 (±14.05) 34.94 (±12.09) 35.07 (±11.12) 36.57 (±12.06)
t-data (df = 3) 15.05 (±0.45) 14.95 (±0.33) 14.80 (±0.20) 14.94 (±0.32)
letters 8.16 (±0.75) 7.72 (±0.82) 7.42 (±0.29) 7.54 (±0.40)
WebKB N/A N/A 9.61 (±0.73) 10.04 (± 0.66)

Table 3
Summary of benchmark datasets.

Dataset # Train # Test # Features # Classes

Vowel 528 462 10 11
Waveform 300 4700 21 3
Segmentation 210 2100 19 7
Optdigits 3823 1797 64 10
Pendigits 7494 3498 16 10
Satimage 4435 2000 36 6

Table 4
Test error rates of our method and related methods (in %), and the results with GBoost.C are based on T = 1. The best result for each dataset is shown 
in bold.

Dataset CART AdaBoost.MH GD-MCBoost MBoost.L GBoost.E GBoost.C

Vowel 54.10 50.87 50.43 49.13 50.43 47.62
Waveform 31.60 18.22 17.45 17.23 17.62 16.53
Segmentation 9.80 5.29 4.43 4.10 4.52 4.05
Optdigits 16.60 5.18 3.78 3.28 5.12 3.17
Pendigits 8.32 5.86 3.60 3.12 3.95 3.14
Satimage 14.80 10.00 10.75 9.25 12.00 8.75

errors as an average over the 30 replicates. The results are shown in the final row of Table 2, where we have restricted the 
comparison to MCL and PLR. We see that MCL yields an improvement over PLR.

We also conducted a systematic study of the effect of the hyperparameters τ and T on the letter dataset. We found that 
the results were relatively insensitive to particular values of these hyperparameters over an order of magnitude for T and 
three orders of magnitude for τ . There was a tradeoff; larger τ favors a smaller value of T .

6.2. Results of multiclass GentleBoost algorithm

We also compare our multiclass gentleBoost algorithm (called GBoost.C) with some representative multicategory 
boosting algorithms, including AdaBoost.MH [22], multicategory LogitBoost (MBoost.L) [9], multicategory GentleBoost 
(GBoost.E) [33] and GD-MCBoost [21], on six publicly available datasets (Vowel, Waveform, Image Segmentation,
Optdigits, Pendigits and Satimage) from the UCI Machine Learning Repository. Following the settings in Friedman 
et al. [9], Zou et al. [33], we use predefined training samples and test samples for these six datasets. Summary informa-
tion for the datasets is given in Table 3. We use the code released by Saberian and Vasconcelos [21] to implement their
GD-MCBoost algorithm.

Based on the experimental strategy in Zou et al. [33], eight-node regression trees are used as weak learners for all 
the boosting algorithms with the exception of AdaBoost.MH, which is based on eight-node classification trees. From the 
experiments, we observe that the performance of all the methods becomes stable after about 50 boosting steps. Hence, the 
number of boosting steps for all the methods is set to 100 (H = 100) in all the experiments. The test error rates (in %) of 
all the boosting algorithms are shown in Table 4, from which we can see that all the boosting methods achieve much better 
results than CART, and our method slightly outperforms the other boosting algorithms.

Among all the datasets tested, Vowel and Waveform are the most difficult for classification. The notably better per-
formance of our method for these two datasets reveals its promising properties. Fig. 1 depicts the test error curves of
MBoost.L, GBoost.E, GBoost.C and GD-MCBoost on these two datasets.

As we established in Section 3.1, GBoost.E does not implement a margin-based decision because the loss function used 
in this algorithm is not the majorization function of the 0–1 loss. Our experiments show that GD-MCBoost, MBoost.L
and GBoost.C are comparable, and outperform GBoost.E. The results reported in Table 4 and Fig. 1 are based on the 
setting of T = 1. Recall that γc(g(x)) (see Eq. (10)) is the special case of CT ,0(g(x), c) with T = 1, so the comparison of
GBoost.C with MBoost.L is fair based on T = 1.

Proposition 12 shows that CT (g(x), c) (= CT ,1(g(x), c)) approaches max j{g j(x) +1 −I{ j=c}} − gc(x) as T → 0. This encour-
ages us to try to decrease T gradually over the boosting steps. However, when T gets very small, it can lead to numerical 
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Fig. 1. Test error rates versus boosting steps.

Table 5
Test error rates of our method (GBoost.C) with different values of T (in %). The best and worst results for each dataset are shown in bold, and the 
average (ave) over these different values of T and the corresponding standard deviation (stad) are also given for each dataset.

Dataset T = 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 ave (±std)

Vowel 50.43 49.57 49.57 45.45 48.48 47.62 49.13 48.70 46.75 48.41 (±1.56)

Waveform 16.68 16.60 17.17 17.45 17.13 17.17 17.45 17.32 16.94 17.10 (±0.31)

Segmentation 4.05 4.29 4.38 4.19 4.05 3.52 3.95 4.00 4.24 4.07 (±0.25)

Optdigits 3.00 3.00 3.00 3.12 3.23 3.23 3.23 3.23 3.23 3.14 (±0.11)

Pendigits 3.06 3.34 3.40 3.32 3.00 3.12 3.09 3.14 3.20 3.19 (±0.14)

Satimage 7.90 7.85 8.70 8.85 9.10 9.10 8.85 8.75 8.95 8.67 (±0.47)

problems and often makes the algorithm unstable. To observe the effect of T , we use the different values of T to implement 
our boosting algorithm. The results are shown in Table 5. The experiments show that when T takes a value in [0.1, 20], our 
algorithm (GBoost.C) is always able to obtain promising performance. In other words, the performance of our algorithm 
is less sensitive to the value of T .

7. Conclusion

In this paper, we have studied a class of multicategory coherence loss functions as well as the relationship between 
the multicategory coherence and hinge losses. As majorization functions of the 0–1 loss, the multicategory coherence loss 
functions are Fisher-consistent, infinitely smooth and convex. Thus, it is appropriate for the design of margin-based boosting 
algorithms. In particular, we have devised a multiclass C learning algorithm and a multiclass GentleBoost algorithm. While 
our main focus has been theoretical, we have also shown experimentally that our algorithms are effective.
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Appendix A. The proof of Theorem 3 and Corollary 4

In our derivation, we just write Pc and gc for Pc(x) and gc(x) for notational simplicity. In order to prove the theorem, 
we first present the following definition and lemma, which can be found in Ortega and Rheinboldt [18].

Definition 16. A mapping f : D ⊂ R
p →R

p is monotone on D0 ⊂ D if(
f(u) − f(v)

)T
(u − v) ≥ 0, ∀u,v ∈ D0;

and f is strictly monotone on D0 if the above strict inequality holds whenever u �= v.
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Lemma 17. Let f : D ⊂R
p →R

p be continuously differentiable on an open convex set D0 ⊂ D. Then

(a) f(u) is monotone on D0 if and only if f′(u) is positive semidefinite for all u ∈ D0 .
(b) If f′(u) is positive definite for all u ∈ D0 , then f is strictly monotone on D0.
(c) If f′(u) is conditionally positive definite for all u ∈ D0 , then f is strictly monotone on {u| ∑p

j=1 u j = 0} ⊂ D0 .

A.1. The proof of Theorem 3

To solve the constrained minimization problem in (1), we define the Lagrangian as follows.

L =
m∑

c=1

ψc(g)Pc + λ

m∑
c=1

gc .

Since the Hessian matrix of L w.r.t. g is 
∑

c Hc Pc where Hc = [ ∂2ψc(g)
∂ g j∂ gk

] is conditionally positive definite, the solution ĝc

exists and is unique. Moreover, we have ∇ψc(g) = (
∂ψc(g)

∂ g1
, . . . , ∂ψc(g)

∂ gm
)T is strictly monotone for g ∈ G .

The first partial derivative of L w.r.t. gk is

∂L

∂ gk
= ∂ψk

∂ gk
Pk +

∑
c �=k

∂ψc

∂ gk
Pc + λ.

Based on the Karush–Kuhn–Tucker (KKT) conditions, we have

∂ψk(ĝ)

∂ gk
Pk = −

∑
c �=k

∂ψc(ĝ)

∂ gk
Pc − λ, k = 1, . . . ,m.

Without loss of generality, we assume P1 > P2. Hence,[
∂ψ1(ĝ)

∂ g1
− ∂ψ1(ĝ)

∂ g2

]
P1 −

[
∂ψ2(ĝ)

∂ g2
− ∂ψ2(ĝ)

∂ g1

]
P2 =

∑
c �=1,2

[
∂ψc(ĝ)

∂ g2
− ∂ψc(ĝ)

∂ g1

]
Pc . (21)

We now prove ĝ1 > ĝ2 by contradiction. Let us assume ĝ1 ≤ ĝ2. On one hand, using the strict monotony of ∇ψc and the 
assumption of ψ ∈ Ψ yields

(ĝ1 − ĝ2)

[(
∂ψ1(ĝ)

∂ g1
− ∂ψ1(ĝ)

∂ g2

)
−
(

∂ψ2(ĝ)

∂ g2
− ∂ψ2(ĝ)

∂ g1

)]

= (ĝ1 − ĝ2)

[(
∂ψ1(ĝ)

∂ g1
− ∂ψ1(ĝ)

∂ g2

)
−
(

∂ψ1(ĝ12)

∂ g2
− ∂ψ1(ĝ12)

∂ g1

)]

= (ĝ − ĝ12)T (∇ψ1(ĝ) − ∇ψ1
(
ĝ12))> 0

whenever g2 �= g1. Here ĝ12 = (ĝ2, ̂g1, ̂g3, . . . , ̂gm)T and ĝ − ĝ12 = (ĝ1 − ĝ2)(1, −1, 0, . . . , 0)T . We thus have

0 >
∂ψ2(ĝ)

∂ g2
− ∂ψ2(ĝ)

∂ g1
≥ ∂ψ1(ĝ)

∂ g1
− ∂ψ1(ĝ)

∂ g2
,

which implies that the right-hand side of Eq. (21) is negative. The above first inequality is based on the assumption of the 
theorem.

On the other hand, for c �= 1, 2, using the strict monotony of ∇ψc , we have

(ĝ2 − ĝ1)

[
∂ψc(ĝ)

∂ g2
− ∂ψc(ĝ)

∂ g1
− ∂ψc(ĝ12)

∂ g2
+ ∂ψc(ĝ12)

∂ g1

]
= (ĝ − ĝ12)T (∇ψc(ĝ) − ∇ψc

(
ĝ12))> 0

whenever ĝ1 �= ĝ2. Furthermore, the symmetry of ψc(g) when fixed gc implies that ∂ψc(ĝ)
∂ g2

= ∂ψc(ĝ12)
∂ g1

and ∂ψc(ĝ)
∂ g1

= ∂ψc(ĝ12)
∂ g2

. 
Hence,

(ĝ2 − ĝ1)

[
∂ψc(ĝ)

∂ g2
− ∂ψc(ĝ)

∂ g1

]
> 0 whenever ĝ1 �= ĝ2,

which implies that the left-hand side of Eq. (21) is nonnegative. Thus, the assumption that ĝ1 ≤ ĝ2 is impossible.
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A.2. The proof of Corollary 4

In order to prove Corollary 4, it suffices to prove the following lemma.

Lemma 18. Let u = (u1, . . . , um)T ∈R
m and uc = (uc

1, . . . , u
c
m)T with uc

j = u j − uc . Then Bc = [ ∂2 f (uc)

∂uc
j∂uk

k

] j,k �=c is an (m −1)×(m −1)

positive definite matrix, if and only if Hc = [ ∂ψc(u)
∂u j uk

]m
j,k=1 is an m×m conditionally positive definite matrix.

Proof. Without loss of generality, we only consider the case of c = m. Clearly,

∂ψm(u)

∂ul
=
{

f ′
l (um) l �= m,

−∑m−1
j=1 f ′

j(um) l = m.

Subsequently,

∂2ψm(u)

∂u2
l

=
{

f ′′
ll (um) l �= m,∑m−1

j=1

∑m−1
i=1 f ′′

ji(um) l = m,

∂2ψm(u)
∂ul∂uk

= f ′′
lk(um) for l �= m and k �= m, ∂2ψm(u)

∂um∂uk
= − 

∑m−1
j=1 f ′′

jk(um) for k �= m, and ∂2ψm(u)
∂ul∂um

= − 
∑m−1

j=1 f ′′
l j (um) for l �= m. We 

thus can express Hm as

Hm =
[

Bm −Bm1m−1
−1T

m−1Bm 1T
m−1Bm1m−1

]
=
[

Im−1
−1T

m−1

]
Bm[Im−1,−1m−1].

Given any nonzero z ∈R
m−1, we have

[
zT ,−zT 1m−1

][ Bm −Bm1m−1
−1T

m−1Bm 1T
m−1Bm1m−1

]
[ z −zT 1m−1 ]

= zT [Im−1,−1m−1]
[

Im−1
−1T

m−1

]
Bm[Im−1,−1m−1]

[
Im−1

−1T
m−1

]
z

= zT (Im−1 + 1m−11T
m−1

)
Bm
(
Im−1 + 1m−11T

m−1

)
z,

where Im is the m×m identity matrix and 1m is the m×1 vector of ones. Consider that Im−1 + 1m−11T
m−1 is positive definite. 

Thus, we obtain that Hm is conditionally positive definite if and only if Bm is positive definite. �
Appendix B. Fisher consistency

B.1. The proof of Theorem 7

Without loss of generality, we assume that P1 > 1/2 > P2 ≥ · · · Pm > 0.
Suppose that P1 > 1/2. First, it is immediate to obtain ĝ1 ≥ ĝ2 ≥ · · · ≥ ĝm from Theorem 5 of Zhang [28]. Now note that

L(g) =
m∑

c=1

∑
j �=c

(1 − gc + g j)+ Pc

= (1 − g1 + g2)+ P1 +
∑
j �=1,2

(1 − g1 + g j)+ P1 +
∑
c �=1

(1 − gc + g1)+ Pc +
∑
c �=1

∑
j �=1,c

(1 − gc + g j)+ Pc .

We are given u = (u1, . . . , um)T ∈ G such that u1 ≥ u2 ≥ um . Let ρ � u1 − u2. We define f1 = u1 + m−1
m (1 − ρ) and f j =

u j − 1−ρ
m for j = 2, . . . , m. Clearly, 

∑m
j=1 f j = 0 and f1 = f2 + 1. We consider two cases.

In the first case where 0 ≤ ρ ≤ 1, we have

L(u) − L(f) = (1 − ρ)P1 +
∑
j �=1,2

(1 − u1 + u j)+ P1 +
∑
c �=1

(1 − uc + u1)Pc −
∑
c �=1

(2 − ρ − uc + u1)Pc

= (1 − ρ)(2P1 − 1) +
∑
j �=1,2

(1 − u1 + u j)+ P1,

which implies that L(u) − L(f) > 0 whenever ρ �= 1.
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In the second case where ρ > 1, we then have

L(u) − L(f) =
∑
c �=1

(1 − uc + u1)Pc −
∑
c �=1

(2 − ρ − uc + u1)Pc = (ρ − 1)(1 − P1) > 0.

In summary, the minimizer ĝ j should satisfy ĝ1 = 1 + ĝ2 whenever P1 > 1
2 .

Now suppose that P2 < 1
m . Assume that u = (u1, . . . , um)T is a minimizer of L. We first show that ui − ui+1 ≤ 1. If there 

were an integer k such that 1 ≤ k ≤ m − 1 and uk − uk+1 > 1, we would be able to give a new minimizer v = (v1, . . . , vm)T

by letting vi = ui + [1 − (uk − uk+1)] for i = 1, . . . , k and v j = u j for j = k + 1, . . . , m. Then, for any pair (i, j) where 
i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , m}, we have the following four inequalities: 1 + v j − vi ≤ 0, 1 + u j − ui ≤ 0, 1 + vi − v j > 0, 
and 1 + ui − u j > 0. Therefore, we can get

L(v) − L(u) =
k∑

i=1

Pi

m∑
j=k+1

[
(1 + v j − vi)+ − (1 + u j − ui)+

]

+
m∑

j=k+1

P j

k∑
i=1

[
(1 + vi − v j)+ − (1 + ui − u j)+

]

=
m∑

j=k+1

P j

k∑
i=1

(vi − ui)

=
m∑

j=k+1

P j

k∑
i=1

[
1 − (uk − uk+1)

]
< 0.

Second, we consider two cases. In the first case we assume u2 = u3 = · · · = um . Letting a � u1 − u2, we can obtain a ≤ 1
from the previous discussion. We thus have

L(u) = P1

m∑
i=2

(1 + ui − u1)+ +
m∑

i=2

Pi(1 + u1 − ui)+ +
m∑

i=2

Pi

∑
j �=1,i

(1 + u j − ui)+

= (m − 1)(1 − a)P1 + (1 + a)(1 − P1) + (m − 2)(1 − P1)

= (1 − mP1)a + (m − 1)P1 + (1 − P1) + (m − 2)(1 − P1).

Noting that P1 > 1
m (due to Pm ≤ · · · ≤ P2 < 1

m ), we obtain that u is a minimizer of L if and only if a = 1. Consequently, we 
have u1 = 1 + u2.

In the second case we assume there exists a k ∈ {2, . . . , m − 1} such that u2 = · · · = uk and uk − uk+1 > 0. In this case 
we let a � u1 − u2 and b � uk − uk+1. If a were smaller than 1, we would be able to find a new minimizer v of L. Since 
0 ≤ a < 1 and 0 < b ≤ 1, we have ρ � min{b, 1 − a} > 0. Let vi = ui − ρ for i = 2, · · · , k and v j = u j for j = 1, k + 1, · · · , m. 
Then for any pair (i, j) where i ∈ {2, · · · , k} and j ∈ {1, k +1, · · · , m} we have the following three inequalities: 1 + vi − v j ≥ 0, 
1 + ui − u j ≥ 0 and (1 + v j − vi)+ − (1 + u j − ui)+ ≤ (ui − vi). The third inequality follows from the convexity of the hinge 
function. Then, we have

L(v) − L(u) =
k∑

i=2

Pi

∑
j∈{1,k+1,···,m}

[
(1 + v j − vi)+ − (1 + u j − ui)+

]

+
∑

j∈{1,k+1,···,m}
P j

k∑
i=2

[
(1 + vi − v j)+ − (1 + ui − u j)+

]

≤
k∑

i=2

Pi

∑
j∈{1,k+1,···,m}

(ui − vi) +
∑

j∈{1,k+1,···,m}
P j

k∑
i=2

(vi − ui)

= ρ

[
(m − k + 1)

k∑
i=2

Pi − (k − 1)

(
1 −

k∑
i=2

Pi

)]

= ρ

(
m

k∑
i=2

Pi − k + 1

)
.

Since P2 < 1 and P2 ≥ · · · ≥ Pm , we obtain that 
∑k

i=2 Pi < k−1 . Hence, L(v) − L(u) < 0.
m m
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In summary, the minimizer u should satisfy u1 = u2 +1. Recall that in the previous proof, we ignore the assumption that ∑m
i=1 ui = 0. In fact, if L attains its minimum at u with 

∑m
i=1 ui = C , we can obtain a new vector u′ by letting u′

i = ui − C
m . 

Then, we have L(u) = L(u′) and 
∑m

i=1 u′
i = 0.

B.2. The proof of Theorem 8

Without loss of generality, we assume that Pl = max j(P j(x)). This implies gl = max j(g j(x)). Thus,

L =
m∑

c=1

{
max

j
[g j + 1 − I{ j=c}] − gc

}
Pc =

{
max

j
[g j + 1 − I{ j=l}] − gl

}
Pl +

∑
c �=l

(1 + gl − gc)Pc .

Case 1. gl ≥ max j �=l{1 + g j}. In this case, we have

L =
∑
c �=l

(1 + gl − gc)Pc = 1 − Pl +
∑
c �=l

(gl − gc)Pc ≥ 1 − Pl +
∑
c �=l

Pc

due to gl − gc ≥ 1 for c �= l. It is obvious that L attains its minimum value

Lmin = 2(1 − Pl)

when gl − gc = 1 for c �= l. Combining 
∑m

j=1 g j = 0, we have gl = (m − 1)/m and gc = −1/m for c �= l. Furthermore, we have 
Lmin ≥ 1 if Pl ≤ 1/2 and Lmin < 1 otherwise.

Case 2. max j[g j + 1 − I{ j=l}] = 1 + gk for k �= l. In this case, we have 0 ≤ gl − gk ≤ 1 and gk − g j ≥ 0 for j �= l. Note that

L = (1 + gk − gl)Pl +
∑
c �=l

(1 + gl − gc)Pc

= (gl − gk)

(∑
c �=l

Pc − Pl

)
+
∑
c �=l

(gk − gc)Pc + 1

= (gl − gk)(1 − 2Pl) +
∑
c �=l

(gk − gc)Pc + 1.

If Pl < 1/2, then L ≥ 1. Especially, L attains the minimum value 1 when gl − gk = 0 and gk − gc = 0 for c �= l. That is, gc = 0
for c = 1, . . . , m.

If Pl = 1/2, L attains the minimum value 1 whenever the gc satisfy that gl − gc ≤ 1 and gk − gc = 0 for c �= l.
If Pl > 1/2, then L ≥ 2(1 − Pl). Further, L attains the minimum value 2(1 − Pl) when gl − gk = 1 and gk − gc = 0 for 

c �= l; that is, gl = (m − 1)/m and gc = −1/m for c �= l.

B.3. The proof of Theorem 9

Consider the following Lagrangian function:

L =
m∑

c=1

∑
j �=c

T log
[
1 + exp

(
(1 + g j)/T

)]
Pc − λ

m∑
c=1

gc

=
m∑

c=1

T log
[
1 + exp

(
(1 + gc)/T

)]
(1 − Pc) − λ

m∑
c=1

gc,

where λ is the Lagrange multiplier. The first-order derivatives of L w.r.t. the gc are

∂L

∂ gc
= exp((1 + gc)/T )

1 + exp((1 + gc)/T )
(1 − Pc) − λ.

The Hessian matrix [ ∂2 L
∂ gl∂ g j

] = diag( ∂2 L
∂ g2

1
, . . . , ∂

2 L
∂ g2

m
) where

∂2L

∂ g2
c

= T (1 − Pc)exp((1 + gc)/T )

[1 + exp((1 + gc)/T )]2

is positive definite and the minimizer ĝc of the optimization problem (7) exists and is unique. This minimizer is obtained 
as the solution of ∂L = 0 for c = 1, . . . , m:
∂ gc
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ĝc = T log
λ

1 − Pc − λ
− 1.

Since λ
1−Pc−λ

> 0, we have 0 < λ < 1 − Pc for c = 1, . . . , m. We thus have ĝl > ĝ j if and only if Pl > P j . Moreover, we 
obtain (8).

Let l = argmaxc Pc . It then follows from 
∑m

c=1 ĝc = 0 that ĝl > 0, and hence,

1 − Pl

1 + exp(−1/T )
< λ < 1 − Pl.

This implies limT →0 λ = 1 − Pl . As a result, we have limT →0 ĝc = −1 for c �= l and limT →0 ĝl = m − 1 due to 
∑m

c=1 ĝc = 0.

B.4. The proof of Theorem 10

We prove the theorem according to Corollary 4 where ψc(g) = f (gc) = G T (g(x), c). It is directly calculated that for j �= c,

f ′
j

(
gc)= exp

1+g j−gc
T

1 + exp
1+g j−gc

T

� βc
j ,

f ′′
j j(gc) = βc

j (1 − βc
j ) and f ′′

jk(gc) = 0 for k �= j, c. Thus, the Hessian matrix Bc = [ f ′′
jk(gc)] j,k �=c is positive definite. As a result, 

Corollary 4 shows that the minimizer ĝ exists and is unique.
Additionally, it is always satisfied that ∂ψc (g)

∂ gc
= − 

∑
j �=c f ′

j(gc) < 0 for j �= c. Thus, we obtain that Pl > Pk implies ĝl > ĝk

from Corollary 4.
Recall that the minimizer ĝc satisfies the condition of

Pc

∑
j �=c

βc
j =
∑
j �=c

β
j

c P j

where β j
c is defined via the ĝc and we still denote them by the β j

c for simplicity. By the implicit function theorem, ob-
viously, ĝc is a continuous function of T on (0, ∞). Thus, its limit at T = 0 is bounded due to 

∑m
c=1 ĝc = 0 and the 

boundedness of the ĝc . Without loss of generality, we assume that P1 > P2 ≥ · · · ≥ Pm . In this case, we always have 
limT →0 ĝ1 ≥ limT →0 ĝ2 ≥ · · · ≥ limT →0 ĝm ,

lim
T →0

β
j

1 = lim
T →0

exp
1+ĝ1−ĝ j

T

1 + exp
1+ĝ1−ĝ j

T

= 1, and lim
T →0

β
j

2 = lim
T →0

exp
1+ĝ2−ĝ j

T

1 + exp
1+ĝ2−ĝ j

T

= 1 for j �= 1.

If limT →0 ĝ1 > limT →0 ĝ2 + 1 had been satisfied, we would obtain

0 = lim
T →0

P1

∑
j �=1

β1
j = lim

T →0

∑
j �=1

β
j

1 P j = 1 − P1.

On the other hand, if limT →0 ĝ1 < limT →0 ĝ2 + 1 had been satisfied, we would obtain

P1 = lim
T →0

∑
j �=1

β
j

1 P j

/∑
j �=1

β1
j = (1 − P1)/

(
1 +

∑
j �=1,2

lim
T →0

β1
j

)
≤ 1 − P1 or

P2 = lim
T →0

P2 + P1β
1
2 +∑ j �=1,2 β

j
2 P j

1 +∑ j �=2 β2
j

= 1

1 + limT →0
∑

j �=2 β2
j

≥ 1

m
.

Therefore, we obtain that limT →0 ĝ1 = limT →0 ĝ2 + 1 whenever P1 > 1
2 or P2 < 1

m .

B.5. The proof of Theorems 13 and 14

We also prove the theorem in terms of Corollary 4. In the current case we have ψc(g) = f (gc) = CT (g(x), c). We take 
computations for j �= c as

f ′
j

(
gc)= exp

u+g j−gc
T

1 +∑l �=c exp u+gl−gc
T

� βc
j ,

f ′′
j j(gc) = βc

j (1 − βc
j )/T and f ′′

jk(gc) = βc
j β

k
j /T for k �= l, c.

We denote �m = diag(βm, . . . , βm ) and βm = (βc, . . . , βm )T . Then the Hessian matrix Bm is
1 m−1 1 m−1
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Bm = 1

T

(
�m − βmβT

m

)
.

Since 
∑

k �= j,m βk
j β

m
k < βm

j (1 − βm
j ), the matrix Bm is strictly diagonally dominant. Thus, Bm is positive definite. It then 

follows from Corollary 4 that the minimizer ĝ exists and is unique. Noting that ∂ψc(g)
∂ gc

= − 
∑

j �=c βc
j < 0, we further obtain 

that Pl > Pk implies ĝl > ĝk .
Since ĝ is the solution of the optimization problem in question, it should satisfy the first-order condition:

Pc
∑m

l=1 exp u+ĝl−ĝc
T

1 +∑l �=c exp u+ĝl−ĝc
T

=
m∑

j=1

P j × exp
u+ĝc−ĝ j

T

1 +∑l �= j exp
u+ĝl−ĝ j

T

,

from which we get

Pc

Pk
= exp(ĝc/T )

exp(ĝk/T )

exp(ĝc/T ) +∑l �=c exp((u + ĝl)/T )

exp(ĝk/T ) +∑l �=k exp((u + ĝl)/T )
. (22)

From (22) and using the fact that 
∑m

c=1 Pc = 1, we have (16).
We now consider the proof of Theorem 14. First, it is clear that ĝc is continuous in T on (0, ∞), so its limit at T = 0

exists (∞ allowed). For notational simplicity, we just use the gc instead of the ĝc(x). Second, the above proof shows that 
λ = 0. And ∂L

∂ gc
= 0 yields Pc =∑m

j=1 β
j

c P j . Namely, for c = 1, . . . , m,

Pc = 1

1 +∑i �=c exp((u + gi − gc)/T )
Pc +

∑
j �=c

exp((u + gc − g j)/T )

1 +∑i �= j exp((u + gi − g j)/T )
P j.

Let l = argmaxc Pc and k = argminc Pc . We thus have that limT →0 gk ≤ limT →0 g j ≤ limT →0 gl for j �= k, l. Note that

Pk = Pk

1 +∑i �=k exp(
u+gi−gk

T )
+ Pl

exp(
gl−u−gk

T ) +∑i �=l exp(
gi−gk

T )

+
∑
j �=k,l

P j

exp(
g j−u−gk

T ) +∑i �= j exp(
gi−gk

T )
.

The first term of the right-hand side of the above equation approaches 0 at T → 0 due to limT →0
u+gi−gk

T = +∞ for u > 0. If 
there were i �= k, l such that limT →0(gi − gk) > 0, we would have that the right-hand side of the above equation approaches 
0 at T → 0. This implies that limT →0(gi − gk) = 0 and limT →0(gi − gl) ≤ 0 for any i �= l.

On the other hand, take

Pl = lim
T →0

Pl

1 +∑i �=l exp(
u+gi−gl

T )
+ lim

T →0

∑
j �=l

P j

exp(
g j−u−gl

T ) + 1 +∑i �= j,l exp(
gi−gl

T )
.

We are able to show that limT →0(u + gi − gl) < 0 cannot be satisfied, otherwise the first term is current is Pl and the 
second term is 1 − Pl .

Case 1. Pl > 1/2. We can also obtain that limT →0(u + gi − gl) > 0 for any i �= l cannot be satisfied, because the first 
term of the right-hand side of the above equation is 0 and the second term is always less than 1/2 otherwise. Thus, we 
have limT →0(u + gi − gl) = 0 for any i �= l. As a result, limT →0 gl = u(m − 1)/m and limT →0 gli = −u/m for i �= l due to 
limT →0

∑m
i=1 gi = 0.

Case 2. Pl < 1/2. In this case, we always have limT →0(gi − gl) = 0. Otherwise, the second term is 1 − Pl which is greater 
than 1/2.

Appendix C. The properties of the multiclass C-loss

We first prove that CT ,u(g(x), c) is convex. From Appendix B.5, we can obtain the Hessian matrix of CT ,u(g(x), c) w.r.t. 
g(x). That is,

Hc = ∂2CT ,u(g(x), c)

∂g∂gT
= 1

T

(
�c − βcβ

T
c

)
,

where �c = diag(βc
1, . . . , βc

m) and βc = (βc
1, . . . , βc

m)T . We also have from Appendix B.5 that Hc is positive semidefinite (in 
fact, it is conditionally positive definite). Thus, CT ,u(g(x), c) is convex.
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C.1. The proof of Proposition 11

Noting that

∏
j �=c(1 + exp

u+g j(x)−gc(x)

T )

1 +∑ j �=c exp
u+g j(x)−gc(x)

T

> 1,

we have CT ,1(g(x), c) < G T (g(x), c).
Now assume that l = argmax j{g j(x) + u − uI{ j=c}}. Then

T logm + Hu
(
g(x), c

)− CT ,u
(
g(x), c

)= T log
m exp

u+gl(x)−gc(x)−uI{l=c}
T

1 +∑ j �=c exp
u+g j(x)−gc(x)

T

≥ 0.

C.2. The proof of Proposition 12

First, it is easily obtained that limT →∞ ωc
j(x) = 1

m . Second, consider that

lim
T →∞ CT ,u

(
g(x), c

)− T log m = lim
T →∞

log
1+∑ j �=c exp

u+g j (x)−gc (x)

T
m

1
T

= lim
α→0

log
1+∑ j �=c exp α(u+g j(x)−gc(x))

m

α

= lim
α→0

1
m

∑
j �=c[u + g j(x) − gc(x)]exp[α(u + g j(x) − gc(x))]

1+∑ j �=c exp α(u+g j(x)−gc(x))

m

= 1

m

∑
j �=c

[
u + g j(x) − gc(x)

]
.

It immediately follows from Hu(g(x), c) ≤ CT ,u(g(x), c) ≤ Hu(g(x), c) + T log(m) that limT →0 CT ,u(g(x), c) = Hu(g(x), c).
Third, the derivative of CT ,u(g(x), c) w.r.t. T is given by

∂CT ,u

∂T
= ln

[
1 +
∑
j �=c

exp
u + g j(x) − gc(x)

T

]
−
∑

j �=c exp
u+g j(x)−gc(x)

T
u+g j(x)−gc(x)

T

1 +∑ j �=c exp
u+g j(x)−gc(x)

T

= max
j

u + g j(x) − gc(x) − uI{ j=c}
T

−
∑m

j=1 exp
u+g j(x)−gc(x)−uI{ j=c}

T
u+g j(x)−gc(x)−uI{ j=c}

T∑m
j=1 exp

u+g j(x)−gc(x)−uI{ j=c}
T

≥ 0.

Thus, CT ,u(g(x), c) is an increasing function of T .

Appendix D. The learning algorithm for MCL

For simplicity, we only consider the learning algorithm based on (17). Let

L = 1

2

m∑
j=1

‖b j‖2 + γ

n

n∑
i=1

CT
(
g(xi), ci

)+ n∑
i=1

λi

(
m∑

j=1

a j + bT
j xi

)
,

where λi ’s are Lagrangian multipliers, and calculate

∂L

∂b j
= b j + γ

n

n∑
i=1

(wij − eij)xi +
n∑

i=1

λixi,

∂L

∂a j
= γ

n

n∑
(wij − eij) +

n∑
λi,
i=1 i=1
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where wij = wci
j (xi) is defined in (13), and ei j = 1 if j = ci and ei j = 0 otherwise. It follows from 

∑m
j=1

∂L
∂b j

= 0 and ∑m
j=1

∂L
∂a j

= 0 that

∂L

∂b j
= (b j − b̄) + γ

n

n∑
i=1

(wij − eij)xi,

∂L

∂a j
= γ

n

n∑
i=1

(wij − eij),

where b̄ = 1
m

∑m
j=1 b j . Thus, the Lagrangian multipliers λi are automatically eliminated. Denoting ei = (ei1, . . . , eim)T , wi =

(wi1, . . . , wim)T , a = (a1, . . . , am)T , B = [b1, . . . , bm] and vec(B)T = (bT
1 , . . . , bT

m), we have

∂L

∂a
= γ

n

n∑
i=1

(wi − ei) = 0, (23)

∂L

∂ vec(B)
= (Ip⊗Cm)vec(B) + γ

n

n∑
i=1

(wi − ei)⊗xi = 0, (24)

where A ⊗ B denotes the Kronecker product of matrices A and B, and Cm = Im − 1
m 1m1T

m is the m×m centering matrix. 
We now use the Newton–Raphson method to alternatively solve the nonlinear equation systems in (23) and (24). Since the 
Hessian matrices are positive semidefinite, the method converges. Considering that the Newton–Raphson method requires 
inverting the Hessian matrix in each iteration, we employ a quadratic lower bound algorithm [2]. In particular,

∂2L

∂ vec(B)∂ vec(B)T
= Cm⊗Ip + γ

n

n∑
i=1

(
diag(wi) − wiw

T
i

)⊗xix
T
i

� Cm⊗Ip + γ

2n
Cm⊗XT X = Cm⊗

(
Ip + γ

2n
XT X

)
,

where A � M means A − M is positive semidefinite and we use the fact that (diag(wi) − wiwT
i ) � 1

2 Cm . We use the pseu-
doinverse of Cm (which is itself), and thus we need to invert Ip + γ

2n XT X only once.

Appendix E. The proof of Theorem 15

Consider that the first-order derivative of CT ,1(g(x), c) w.r.t. g j(x) is

∂CT ,1(g, c)

∂ g j
= (β j − I{ j=c})

where

β j =

⎧⎪⎪⎨
⎪⎪⎩

exp
1+g j−gc

T

1+∑ j �=c exp
1+g j−gc

T

if j �= c,

1

1+∑ j �=c exp
1+g j−gc

T

if j = c.

Given a ḡ = (ḡ1, . . . , ̄gm)T ∈ G , we denote J = { j �= c : (1 + ḡ j − ḡc) = ξc(ḡ) � maxl(1 + ḡl − ḡc − I{l=c})} and k = |J |. It is 
directly obtained that

lim
T →0

∂CT ,1(ḡ, c)

∂ g j
=
⎧⎨
⎩

1
k if j ∈ J ,

0 if j /∈ J and j �= c,
−1 if j = c

if k �= 0 and maxl �=c(1 + ḡl − ḡc) > 0, and that

lim
T →0

∂CT ,1(ḡ, c)

∂ g j
=

⎧⎪⎨
⎪⎩

1
k+1 if j ∈ J ,

0 if j /∈ J and j �= c,

− k if j = c
k+1
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if k �= 0 and maxl �=c(1 + ḡl − ḡc) = 0. On the other hand, let ∂ξc(ḡ) be the subdifferential of ξc at ḡ. Assume that maxl �=c(1 +
ḡl − ḡc) = 0. For any z = (z1, . . . , zm) ∈ ∂ξc(ḡ), if and only if we have z j ∈ [0, 1] if j ∈ J , z j = 0 if j /∈ J and j �= c, and 
z j = − 

∑
l∈J zl if j = c. This implies that

lim
T →0

∇CT ,1(ḡ, c) ∈ ∂ξc(ḡ).

Accordingly, we conclude the theorem.

Appendix F. Derivation of multiclass GentleBoost algorithm

The empirical risk over the training data is given by

e(g) = T

n

n∑
i=1

log

[
1 +

∑
j �=ci

exp
1 + g j(xi) − gci (xi)

T

]
.

Let h(x) = (h1(x), . . . , hm(x))T ∈ G be the increments. Following the derivation of the LogitBoost algorithm, we consider the 
second-order Taylor expansion of e(g + h) around g and employ a diagonal approximation to the Hessian as

e(g + h) ≈ e(g) + 1

n

n∑
i=1

m∑
j=1

h j(xi)
(
β j(xi) − I{ j=ci}

)+ 1

2nT

n∑
i=1

m∑
j=1

h2
j (xi)β j(xi)

(
1 − β j(xi)

)
,

where

β j(xi) =

⎧⎪⎪⎨
⎪⎪⎩

exp
1+g j (xi )−gci (xi )

T

1+∑ j �=ci
exp

1+g j (xi )−gci (xi )

T

if j �= ci,

1

1+∑ j �=ci
exp

1+g j (xi )−gci (xi )

T

if j = ci .

For each j, one can find h j(x) by minimizing

n∑
i=1

h j(xi)
(
β j(xi) − I{ j=ci}

)+ 1

2T

n∑
i=1

h2
j (xi)β j(xi)

(
1 − β j(xi)

)
.

The solution is obtained by fitting the regression function h j(x) based on weighted least-squares of zi j to xi with wights 
wij . We thus have the algorithm in Algorithm 1.
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