
Warped-Slicer: Efficient Intra-SM Slicing through Dynamic Resource Partitioning
for GPU Multiprogramming

Qiumin Xu∗, Hyeran Jeon†, Keunsoo Kim‡, Won Woo Ro‡, and Murali Annavaram∗
∗ Ming Hsieh Department of Electrical Engineering, University of Southern California

{qiumin, annavara}@usc.edu
† Department of Computer Engineering, San Jose State University

hyeran.jeon@sjsu.edu
‡ School of Electrical and Electronic Engineering, Yonsei University

{keunsoo.kim, wro}@yonsei.ac.kr

Abstract—As technology scales, GPUs are forecasted to
incorporate an ever-increasing amount of computing resources
to support thread-level parallelism. But even with the best
effort, exposing massive thread-level parallelism from a single
GPU kernel, particularly from general purpose applications, is
going to be a difficult challenge. In some cases, even if there
is sufficient thread-level parallelism in a kernel, there may
not be enough available memory bandwidth to support such
massive concurrent thread execution. Hence, GPU resources
may be underutilized as more general purpose applications
are ported to execute on GPUs. In this paper, we explore
multiprogramming GPUs as a way to resolve the resource
underutilization issue. There is a growing hardware support
for multiprogramming on GPUs. Hyper-Q has been introduced
in the Kepler architecture which enables multiple kernels
to be invoked via tens of hardware queue streams. Spatial
multitasking has been proposed to partition GPU resources
across multiple kernels. But the partitioning is done at the
coarse granularity of streaming multiprocessors (SMs) where
each kernel is assigned to a subset of SMs. In this paper, we
advocate for partitioning a single SM across multiple kernels,
which we term as intra-SM slicing. We explore various intra-
SM slicing strategies that slice resources within each SM to
concurrently run multiple kernels on the SM. Our results show
that there is not one intra-SM slicing strategy that derives
the best performance for all application pairs. We propose
Warped-Slicer, a dynamic intra-SM slicing strategy that uses an
analytical method for calculating the SM resource partitioning
across different kernels that maximizes performance. The
model relies on a set of short online profile runs to determine
how each kernel’s performance varies as more thread blocks
from each kernel are assigned to an SM. The model takes into
account the interference effect of shared resource usage across
multiple kernels. The model is also computationally efficient
and can determine the resource partitioning quickly to enable
dynamic decision making as new kernels enter the system.
We demonstrate that the proposed Warped-Slicer approach
improves performance by 23% over the baseline multiprogram-
ming approach with minimal hardware overhead.

Keywords-GPUs; scheduling; multiprogramming; multi-
kernel; resource management;

I. INTRODUCTION

Each new generation of GPUs has delivered more pow-
erful theoretical throughput empowered by ever-increasing
amount of execution resources [1]–[4]. Traditional graphics-
oriented applications are successful in exploiting the re-
source availability to improve throughput. With the advent of
new programming models, such as OpenCL [5] and CUDA
[6], general purpose applications are also relying on GPUs to

derive the benefits of power-efficient throughput computing.
However, resource demands across general purpose appli-
cations can vary significantly, leading to the widely-studied
issue of GPU resource underutilization [7]–[17].

One of the promising solutions to resolve the resource
underutilization issue is multiprogramming, where kernels
from diverse applications can be concurrently executed on a
GPU. Several new design features of recent generations of
GPUs are encouraging this trend.

The HSA foundation co-led by AMD introduced a queue-
based multiprogramming approach for heterogeneous ar-
chitectures that include GPUs [18], [19]. NVIDIA also
introduced concurrent kernel execution (CKE) that allows
multiple kernels of an application to share a GPU. For
instance, Hyper-Q was introduced by NVIDIA for the
Kepler architecture which enables kernels to be launched
to the GPU via 32 parallel hardware queue streams [2].
These hardware mechanisms use a Left-Over policy that
assigns as many resources as possible for one kernel and
then accommodates another kernel if there remain sufficient
resources [20]. These simple policies enable concurrent
execution of kernels only opportunistically.

Inspired by the support for concurrent execution, several
researchers have proposed microarchitectural and software-
driven approaches to concurrently execute kernels from
different applications more aggressively [7], [8], [10], [12].
These studies showed that concurrent kernel execution can
be beneficial for improving resource utilization especially
when the kernels have complementary characteristics. For
example, when a compute-intensive kernel and a memory-
intensive kernel from different applications share a GPU,
both pipeline and memory bandwidth are well utilized
without compromising either kernel’s performance. Several
models [7], [10], [13] have been proposed to find the
optimal pair of kernels that can be executed concurrently
for better performance and energy efficiency. Software-
driven approaches have used kernel resizing to maximize
the opportunity for concurrent execution, even within the
current Left-Over policy. Kernel slicing [10] partitions a
big kernel into smaller kernels so that any single kernel
does not consume all available resources. Elastic kernel [8]
runs a function that dynamically adjusts kernel size by
using resource availability information. Refactoring kernels
and rewriting application code to improve concurrency have

shown that there are significant performance advantages with
concurrent execution. However, it may not be feasible or
desirable to modify and recompile every application for
improving concurrency. To reap the benefits of concurrent
kernel execution more broadly, in this paper we focus on
hardware-driven multiprogramming approaches, where ker-
nels from diverse applications can be automatically launched
to the GPU without software modifications.

One hardware-driven multiprogramming approach is spa-
tial multitasking [12], a microarchitectural solution that
splits the streaming multiprocessors (SMs) in a GPU into
at least two groups and allows each SM group to execute a
different kernel. Unlike the Left-Over policy, which allows
multiple kernels to run only if there is enough space,
spatial multitasking enables at least two different kernels
to concurrently run on a GPU without prioritizing just
one kernel over the other. As different applications have
their own dedicated set of SMs, we refer to this approach
as inter-SM slicing. Inter-SM slicing is a simple way to
preserve concurrency with minimal design changes. While
spatial multitasking enables better utilization of GPU-wide
resources such as memory bandwidth, they do not address
the resource underutilization issue within an SM. For ex-
ample, if a concurrent thread array (CTA) within a kernel
requires 21% of the shared memory then only four CTAs
can be launched on the SM which leaves 16% of the shared
memory to be wasted. Thus, if the available resource in an
SM is not an integer multiple of the required resource of a
CTA, there will be resource fragmentation.

Inspired by these challenges, this paper explores another
approach to resolve resource underutilization issue within
an SM while preserving concurrency. We propose Warped-
Slicer, which is a technique that enables efficient sharing
of resources within an SM across different kernels. For
example, two compute-intensive kernels can be concurrently
run on an SM without compromising their performance if
each of the kernels has computation intensity in different
kinds of instructions such as an ALU-intensive application
and an SFU-intensive application. Each kernel may have
different resource demand and performance behavior, and
we try to minimize the performance impact suffered by each
kernel when multiple kernels are assigned to the same SM.
Lee et al. [9] discussed the potential benefits if one were
to support intra-SM slicing. Since the focus of their paper
is to design thread block scheduling policies, they did not
explore microarchitectural design challenges of concurrently
executing multiple kernels on the SM and what are the best
policies for resource assignment between the two kernels.

We first present a scalable intra-SM resource allocation
algorithm across any number of kernels. The goal of this
algorithm is to allocate resource to kernels so as to max-
imize resource usage while simultaneously minimizing the
performance loss seen by any given kernel due to concurrent
execution. This algorithm is similar to the water-filling
algorithm [21] that is used in communication systems for
equitable distribution of resources. We present the algorithm
assuming we have oracle knowledge of each application’s
performance versus resource demands. We then show that

we can approximate the oracle knowledge by doing short
on-line profiling runs to collect these statistics. Next, we
describe how the profiling can be done efficiently to identify
when to use inter-SM slicing and when to activate intra-
SM slicing. Through extensive evaluation, we show that
the proposed dynamic partitioning technique significantly
improves the overall performance by 23%, fairness by 26%
and energy by 16% over the baseline Left-Over policy.

II. METHODOLOGY AND MOTIVATION

Table I
BASELINE CONFIGURATION

Parameters Value
Compute Units 16, 1400MHz, SIMT Width = 16x2

Resources / Core max 1536 Threads, 32768 Registers
max 8 CTAs, 48KB Shared Memory

Warp Schedulers 2 per SM, default gto
L1 Data Cache 16KB 4-way 64MSHR
L2 Cache 128KB/Memory Channel, 8-way
Memory Model 6 MCs, FR-FCFS, 924MHz

GDDR5 Timing tCL=12, tRP=12, tRC=40,
tRAS=28, tRCD=12, tRRD=6

A. Multiprogramming Support in GPUs
There is growing support for enabling multiprogramming

in GPUs. In the Kepler and Maxwell generation, up to 32
concurrent streams are mapped into multiple hardware work
queues, which removes false dependency among concurrent
streams; this technology is branded as Hyper-Q [2], [3].
Recent GPUs allow grid launch inside a GPU kernel code
for reducing CPU-GPU context switching time if the amount
of the work should be adjusted dynamically [25]. The
HSA foundation, co-led by AMD introduced a queue-base
multiprogramming approach for heterogeneous architectures
that include GPUs [18]. HSA-compatible GPUs that support
TLBs adopt multiprogramming even in the SM level [4],
[26]. However, there is no publicly available documentation
on how resource partitioning is done among applications
inside an SM. As such it is imperative to understand the
best resource partitioning approach to maximize resource
utilization while at the same time preventing conflicting
resource demands.

B. Methodology
In this section, we first show motivational data regarding

how resource utilization varies across different application
categories and how different applications face different
hurdles to reduce their stall times. We used GPGPU-
Sim v3.2.2 [24] in our evaluation and our configuration
parameters are described in Table I. GPGPU-Sim front-
end is extensively modified to allow multiple processes to
concurrently share the same execution backend.

We studied a wide range of GPU applications from image
processing, math, data mining, scientific computing and
finance domains. These applications are from the CUDA
SDK [6], Rodinia [22], Parboil [23] and ISPASS [24]
benchmark sets, as summarized in Table II. To quantify
the resource utilization of each benchmark we ran each
benchmark in isolation for two million cycles without any
multiprogramming.

2

Table II
RESOURCE UTILIZATION FLUCTUATES ACROSS 10 GPGPU APPLICATIONS (ARITHMETIC MEAN OF ALL CORES ACROSS TOTAL CYCLES).

Application Abbr. Inst. Reg. Shm. ALU SFU LS Griddim Blkdim L2 MPKI Type Profile%
Blackscholes [6] BLK 0.9B 95% 0% 48% 73% 84% 480 128 51.3 Memory 0.7%
Breadth First Search [22] BFS 0.6B 71% 0% 14% 6% 46% 1954 512 84.4 Memory 5%
DXT Compression [6] DXT 1.2B 56% 33% 47% 11% 21% 10752 64 0.03 Compute 0.25%
Hotspot [22] HOT 0.7B 84% 19% 41% 22% 75% 7396 256 5.8 Compute 0.36%
Image Denoising [6] IMG 1.7B 43% 0% 81% 30% 11% 2040 64 0.3 Compute 0.14%
K-Nearest Neighbor [22] KNN 0.4B 37% 0% 14% 26% 42% 2673 256 100.0 Memory 6%
Lattrice-Boltzmann [23] LBM 0.2B 98% 0% 7% 1% 100% 18000 120 166.6 Memoy 0.25%
Matrix Multiply [23] MM 0.6B 86% 5% 52% 1% 34% 528 128 1.7 Compute 0.25%
Matrix Vector Product [23] MVP 0.2B 74% 0% 9% 7% 96% 765 192 89.7 Cache 0.9%
Neural Network [24] NN 0.9B 94% 0% 43% 22% 89% 54000 169 3.7 Cache 0.25%

0%

20%

40%

60%

80%

100%

B
L

K

B
FS

D
X

T

H
O

T

IM
G

K
N

N

L
B

M

M
M

M
V

P

M
U

M

N
N

AV
G

 Pc
t.

of
 T

ot
al

 C
yc

le
s Long Memory Latency Short RAW Hazard Execute Stage Resource Ibuffer Empty

Figure 1. Fraction of total cycles (of all cores) during which warps cannot
be issued due to different reasons.

C. Motivational Analysis
Table II shows the resource utilization of the target appli-

cations. We chose large input size to avoid GPU resource
underutilization due to insufficient input. The grid dimension
and block dimensions used in each application are shown in
the table, labeled Griddim and Blkdim, respectively. Inst.
column shows the total number of instructions executed
during the two million cycles for each benchmark. We
measured the register (labeled Reg in the table) and shared
memory (Shm) demand of applications. This information
can be obtained at compile time without any simulations.
We also measured the average utilization of functional units
(ALU , special function units SFU , and load/store units LS)
while executing each application. As shown, applications
have diverse resource usage. KNN uses 37% of registers
while LBM utilizes 98%. IMG barely issues LS resources,
while MVP consumes 96% of the LS resources. On average,
70% of registers, 6% of shared memory, 31% of ALU units,
11% of SFUs and 49% of LD/ST units are utilized.

The Type column classifies the benchmarks into memory
or compute intensive based on whether the L2 misses per
kilo warp instructions executed (labeled L2 MPKI) is high
(≥ 30) or low. We chose 30 as the threshold because there’s
a large gap (10-50) between high L2 MPKI benchmarks and
low L2 MPKI benchmarks. The cache type denotes the L1
Cache Sensitive applications in Section IV. The Pro f ile%
column will be discussed later.

We measured the fraction of cycles when an application
is stalled because no new warps can be issued due to a
variety of structural and functional reasons. Figure 1 shows
the fraction of cycles during the total execution cycles
where no warps are executed due to various stalls. Long
memory latency stalls and execution stage resource stalls
(the required functional unit is unavailable) in total waste
40% of GPU cycles. There are also short RAW stalls (read-
after-write dependencies). The i-buffer empty stalls are when
the warps are waiting for next instruction to be fetched. As

shown, not all applications suffer the same set of bottlenecks.
For instance, DXT is mostly waiting for the instruction fetch,
while BFS is awaiting for response from memory system.

The fact that different applications demand different re-
sources (as shown in Table II) and different applications
are stalled by different constraints (as shown in Figure 1)
suggests that there is a potential for improving performance
by combining different application pairs that have differing
resource needs and stall reasons. For instance, we can choose
DXT and BFS to co-locate in the same SM. Furthermore,
concurrent kernel execution in the same SM can get around
the design imposed limits on how many thread blocks can be
launched from a given kernel. For example, the maximum
number of CTAs allocated to an SM is limited by the
total number of available registers, shared memory size,
available warps, maximum CTA count allowed by the GPU.
A majority of kernels are limited by only one of these
limits [27]. When a given resource (e.g., the register file) is
underutilized by one kernel because it has reached the usage
limits on a different resource (e.g., the shared memory), it
is possible to co-locate another kernel that places very little
demand on the shared memory but can make use of the
unused registers.

In this paper, we propose to identify the best multipro-
gramming approach for a given set of kernel types, without
any software modifications. Proper resource partitioning
across multiple co-located kernels within an SM is a chal-
lenging problem. One of the challenges is that application
performance does not necessarily improve proportionally
to the amount of resources that are assigned to it. The
relationship between performance and resource allocation
is mostly non-linear and sometimes even non-convex, as
shown later in Figure 3a. Therefore designing an efficient
algorithm for GPUs to optimize SM resource allocation with
various constraints can be a challenging task. To the best
of our knowledge, none of these challenges, policies and
performance prediction models have been studied in-depth
in prior works. There has been a plethora of work in CPU
space to enable efficient concurrent application execution by
equitable sharing of resources, such as last level cache and
memory bandwidth [28]–[36]. But in a GPU the size of the
register file far exceeds the size of the cache and the number
of execution lanes is at least an order magnitude more than
in a CPU. Hence, GPUs present unique challenges for intra-
SM sharing, which must be addressed.

3

A A AA A A

A A A A

A

Even Partitioning

A

A

A

A

A

A

A

A A

A

FCFS Allocation

Fragmentation!

A A

A A

A A

Left-Over Allocation

No A Left

A A AA AA

A A AA AA

A A

B B

B B

B B

B

B B

B B

B

B

B

B B B

B

(a) (b) (c) (d)
Warped-Slicer Re-partitioning for the Third Kernel

(e)

A A A A A A

B B B

CA A

Figure 2. Illustration of proposed storage resource allocation strategies for improving resource fragmentation.

III. INTRA-SM SLICING

In this section, we first discuss some intra-SM slicing
approaches that we consider for evaluation in this paper.
We illustrate these approaches in Figure 2. The resource
allocation strategies we discussed here are equally applicable
to register file, shared memory and threads; for simplicity,
we use shared memory in this section as an example. We
assume that two kernels named A and B are running together
on the same SM and each of the kernel A’s CTAs request
only 50% of the shared memory that is required by a CTA
of kernel B.

The outermost box graphically represents the total shared
memory in an SM. The shared memory required by a CTA
from kernel A is represented as a rectangle while shared
memory required by a CTA from kernel B is represented as
a larger square. In Figure 2a, shared memory is allocated
in a First-Come-First-Serve (FCFS) manner. For example,
as shown in the figure, if CTAs of kernel A and B are
assigned to an SM in a interleaved manner, then kernel A
and kernel B’s shared memory allocations are interspersed
in the shared memory. When a CTA from kernel A finished
(a gray-colored rectangle), the deallocated shared memory
region is not large enough to fit a CTA from kernel B. As a
result, all the shared memory originally assigned to A will
be fragmented after kernel A terminates and those regions
cannot be used for the newly arriving CTAs of kernel B.

The second strategy to consider is the concurrent kernel
execution approach that uses Left-Over allocation strategy.
Figure 2b shows the Left-Over strategy. Under Left-Over,
Kernel A is given all the shared memory it needs, and only
when it does not need any more resources is the remaining
memory assigned to kernel B. Only when two adjacent CTAs
of kernel A finish, a new CTA from B can take the resources
used by the two CTAs of kernel A. Note that when the first
CTA from A finishes execution, one has to wait until the
second CTA from A to finish before assigning CTA B.

The third strategy to run two kernels is to apply even
spatial partitioning [12]. Spatial multitasking was previously
proposed for assigning different sets of SMs to different
kernels. We use the same approach for intra-SM slicing. We
evenly split the resources across the two kernels. As such
half of the register file and shared memory are given to each
kernel. As shown in Figure 2c, kernel A and B are assigned
half of the shared memory region from the beginning of the
execution; left half of the shared memory is dedicated to
kernel A and the right half is reserved by kernel B. Whenever

a CTA from A terminates a new CTA from A is assigned.
However, even-split may limit the shared memory usage.
For example, although there are remaining resources on the
right half that can accommodate CTAs of kernel A, kernel
A cannot use those resources.

The last strategy which is proposed in this paper is the
Warped-Slicer. At the beginning when two kernels start
running on the GPU, we determine the best partition of
the register and shared memory resources. To maximize the
resource utilization, the partition can assign more registers
to kernel A and provide more shared memory to kernel B.
After the initial partition is done, the CTA from kernel A
can only replace another CTA from kernel A.

Figure 2e illustrates how the proposed Warped-Slicer
policy can be easily extended to more than two kernels.
When a third kernel comes, we launch a new resource
repartitioning phase for the three kernels. Then the GPU
runtime reallocates some of the currently used resources for
the third kernel C (the gray-colored rectangle). From that
point on, kernel A and kernel B will issue no more CTAs to
use the marked resources. Kernel C will then start to execute
once the assigned resources are freed from A and B.

In this paper, we evaluated the strategies described in
this section in depth. As we show later in our results
section, Warped-Slicer is significantly better than even spa-
tial partitioning. However, Warped-Slicer requires a way to
estimate the resource allocations across multiple kernels that
maximize the resource usage and improve the cumulative
performance. In the next two sections, we will present two
performance prediction models for achieving this goal.

IV. INTRA-SM RESOURCE PARTITIONING USING
WATER-FILLING

In this section, we present an analytical method for
calculating the resource partitioning that maximizes perfor-
mance. We present the analytical model assuming we have
full knowledge of each application’s performance versus
resource demands. Such oracle knowledge may be gained for
instance by running each application with varying amounts
of resources and measuring the performance. In the next
section, we show how to realistically collect simple microar-
chitectural statistics to replace the oracle knowledge.

Before presenting the details of the algorithm, we show
an approach for classifying applications based on their
performance scalability with thread-level parallelism. This
classification is used by the partitioning algorithm later.
Figure 3a shows how the application performance varies

4

0

0.2

0.4

0.6

0.8

1

0% 20% 40% 60% 80% 100%

N
or

m
al

iz
ed

 IP
C

CTA Occupancy

HOT (Compute)
IMG (Compute)
BLK (Memory)
NN (Cache)
MVP (Cache)

(a) (b)
Figure 3. (a) Performance vs. increasing CTA occupancy in one SM, (b)
identify the performance sweet spot.

when the number of CTAs assigned to an SM increases. The
X-axis shows the number of CTAs allocated as a fraction of
the maximum allowed CTAs for a given benchmark. In our
experiments, a maximum of eight CTAs can be assigned
to an SM. However, some benchmarks may need more
resources than are provided in an SM to execute eight CTAs.
In this case, the maximum allowed CTAs could be less than
eight CTAs. The Y-axis shows the IPC of the application
normalized to the best IPC the application achieves. The
behavior diverges across different applications [9], [37]–
[39]. The resulting graphs can be empirically classified into
the following categories.
• Compute Intensive-Non Saturating: The performance

continues to increase as more CTAs are assigned to an
SM. This behavior is shown by benchmarks like HOT.

• Compute Intensive-Saturating: The performance contin-
ues to increase with CTAs but then it saturates. This
behavior is shown by benchmarks such as IMG. The
performance saturation could be due to pipeline stalls
on RAW dependencies.

• Memory Intensive: These benchmarks, such as BLK,
also exhibit increasing performance with CTA count but
they saturate rather quickly. If an application is memory
intensive (number of L2 cache misses as a fraction of
total number of instructions executed is large), then the
performance saturates much more quickly than the ap-
plications in the compute intensive-saturation category.

• L1 Cache Sensitive: L1 Cache sensitive applications
continue to increase their performance with CTA count
up to the point when the L1 cache is filled up. At that
point, adding more CTAs to the SM results in L1 cache
thrashing and performance degradation. This is the case
with both NN and MVP benchmarks.

The goal is to find the resource distribution across two
applications so as to achieve optimal performance when
two applications are combined to run on the same SM.
Since GPUs allocate resources at the CTA level, resource
distribution can be translated into how many CTAs from
each application are assigned to an SM. Figure 3b illustrates
visually how many CTAs are assigned to each of the two
applications. In this illustration, we select two applications:
IMG which is a Compute Intensive-Saturating application
and NN which is in the Cache Sensitive application category.
We plot IMG’s resource occupancy versus performance on
the primary X-axis. We then plot a mirrored image of NN

plot on the secondary X-axis. NN graph shows how its
performance varies as resource occupancy decreases from
100% to 0%. By plotting the two graphs in this manner, we
see that the total use of resources from two applications is
always equal to 100% at any given X-axis point. This figure
clearly illustrates why even partitioning of the SM resources
to these two applications is sub-optimal; the performance
of NN is maximized, but IMG suffers a massive 30%
performance loss, compared to the peak achievable IPC. On
the other hand, if we select 60% resources for IMG and
40% resources for NN, then IMG and NN each suffers only
10% performance loss compared to the peak performance
achieved when each application is executed sequentially.
Thus, we can maximize the benefits of running the two
applications concurrently.

Based on the intuition provided above we propose an
optimization model that relies on the performance and
resource utilization data to find the best concurrent execution
approach. We find that there exists a sweet spot, where the
performance degradation of each application is minimized
when running both applications concurrently. The sweet
spot partitioning is captured by the following optimization
function:

Max Min
i

P(i,Ti) :
K

∑
i=1

RTi ≤ Rtot (1)

where P(i,Ti) is the performance of application i nor-
malized to the maximum achievable performance when Ti
CTAs are assigned to the application, K is the number of
applications sharing the SM. RTi is the resource requirement
of Ti CTAs. The sum of all the resource requirements
should be less than the total resources available in an SM
(Rtot). Thus, the optimization tries to find the minimum
performance loss across all the applications assigned to an
SM subject to the constraint that the total resource usage
does not exceed available SM resources.

The detailed algorithmic implementation is shown in
Algorithm 1. We use two vectors, Qi and Mi. Qi stores the
incremental best performance achieved by running increas-
ing # of CTAs from Kernel i. Mi maintains the # of CTAs
that can achieve the performance stored in Qi. gi is the index
pointing to the current allocation of resources in Mi and Qi.
Initially, each kernel is assigned one CTA. Then in each
iteration, we identify a kernel that loses performance the
most compared to its peak achievable performance. Then,
we assign the minimum number of CTAs that can improve
the kernel’s performance. We use Ti CTAs for kernel i as the
best SM partition strategy. Ti is iteratively updated to find
the optimal number of CTAs that minimize the performance
loss due to concurrent execution across all applications. K
is the number of applications sharing the SM and N is the
maximum concurrent number of CTAs restricted by an SM.
The time and space complexities of Algorithm 1 are both
O(KN), which is superior to a brute-force implementation,
where the complexity is O(NK). Note that the model de-
scribed above is inspired by the water-filling algorithm [21]
which is used extensively in communication systems for
distributing resources such as bandwidth across multiple
competing users. However, water-filling algorithm [21] uses

5

Algorithm 1 Water-Filling Partitioning Algorithm
1: RL = Rtot . RL represents total resources left
2: . Pi, j stores the perf of kernel i with j CTAs
3: . Qi,d stores the max perf with less than or equal to j

CTAs, elements of the same value are not stored
4: . Mi stores the associated # of CTAs that lead to Qi
5: . Initialize vectors for all kernels
6: for i = 1 . . . K do . K is the max # of Kernels
7: max = 0,d = 0 . d is the index of Q and M
8: for j = 1 . . . N do . N is the max # of CTAs
9: if Pi, j > max then

10: max = Qi,d = Pi, j, Mi,d = j, d++
11: end if
12: end for
13: Ti = 1, gi=1 . Ti is # of CTAs assigned to Kernel

i. gi points to current resource allocation in M and Q.
Initially minimum 1 CTA is allocated to each kernel.

14: RL = RL−Ri
15: end for
16: while RL >= 0 do
17: find = false, mp = MAX . mp: Min perf.
18: for i= 1 . . . K do
19: if not Full(i) and Qi,gi < mp then
20: find = true, mp = Qi,gi , S = i . S is the

selected kernel with min perf. to assign the next CTA
21: end if
22: end for
23: if not find then break;
24: end if
25: dT = MS,gS+1−MS,gS . dT : minimum amount of

CTAs required to have incremental perf increase
26: . RS represents the resource required to allocate one

CTA from the selected kernel
27: if RL >= RS ·dT then
28: RL = RL−RS ·dT , gS++, TS = TS +dT
29: else
30: Full(S) = true; . No more resource should be

allocated to kernel S
31: end if
32: end while

continuous functions while our proposed solution is discrete.
One potential issue with this algorithm is that it only

tries to minimize the performance loss across various CTA
combinations. If a performance loss upper-bound is not set,
some applications may lose too much performance due to
concurrent execution. Therefore, we disband the co-location
of multiple kernels in the same SM when the performance
loss exceeds a threshold. In such case, we simply fall back
on spatial multitasking.

We set the performance loss threshold of any single kernel
to 1

K ×120% if K kernels are concurrently sharing an SM. As
we will show later in Section V, only two pairs of applica-
tions chose spatial multitasking over intra-SM partitioning.
And even with a higher threshold value, the majority of
the application pairs gained significant performance benefits
from intra-SM partitioning.

A. Profiling Strategy
Recall that the water-filling algorithm’s description in the

previous section relies on the availability of performance
versus the number of CTAs for each kernel. However, in
practice, the impact of CTA count on performance is not
available a priori. Hence, in this section we present a simple
hardware-based dynamic profiling strategy to estimate the
performance versus CTA allocation for each kernel. In
essence, we compute Qi and Mi for each application based
on a short runtime profile rather than the entire application
run. One of the unique aspects of a GPU design is that there
are a plethora of identical SMs. We utilize these parallel
SMs to measure the performance impact of varying CTA
count for each of the K kernels that are being co-located in
an SM. We use two kernels as an illustration to describe
our profiling approach. However, our profiling technique
is applicable to any number (K) of kernels. As shown in
Figure 4, we first divide the available SMs equally between
the two kernels. We then assign a sequentially increasing
number of CTAs from each of the two kernels to its allocated
SMs. For example, we assign from kernel 1, 1 CTA to SM0,
2 CTAs to SM1, 3 CTAs to SM2 etc. Similarly, we assign
from kernel 2, 1 CTA, 2 CTAs, 3 CTAs each to a different
set of SMs. For instance, if a GPU has 16 SMs and each
SM can accommodate 8 CTAs then kernel 1 and kernel 2
will each use 8 SMs during the profile phase. Each SM will
run anywhere from 1 to 8 CTAs. Note that this approach
is scalable to multiple kernels by simply time sharing one
SM to run with a different number of CTAs sequentially and
then collect the Qi and Mi for each kernel.

We then employ a sampling phase to measure the IPC of
each SM as it executes a given number of CTAs in isolation
for 5K cycles. While the L1 cache miss rate will not be im-
pacted by application executions on other cores, the L2 and
memory accesses are shared across all SMs. The SM with
more CTAs tends to consume higher memory bandwidth.
As a result, the sampling phase may not accurately measure
the performance of each application when running with a
given number of CTAs on a GPU in isolation. To solve
this problem, we design a scaling factor, inspired by recent
work [40], to offset this memory bandwidth contention
penalty. We found the scaling factor to be highly effective
in predicting performance while accounting for differing
bandwidth demands across the SMs.

Recently, Jog and Kayiran observed that the IPC, DRAM
bandwidth and L2 MPKI have the following relationship for
memory intensive applications on GPU [40]:

IPC ∝
BW

MPKI
(2)

Based on Equation 2, we design a weight factor to offset
the imbalance problem as follows:

IPCscaled = IPCsampled ∗ f actor
f actor = 1+φmem ∗ψ (3)

ψ =
Bscaled×MPKIsampled

Bsampled×MPKIscaled
−1

where the IPCsampled , Bsampled and MPKIsampled are the
IPC, bandwidth, L2 cache miss rate measured during the

6

SM 0 SM 1 SM 2 SM 3

SM 4 SM 5 SM 6 SM 7

CTA 0
CTA 5

CTA 1 CTA 2 CTA 3

CTA 0
CTA 4 CTA 5
CTA 1 CTA 2 CTA 3

Kernel 1 Kernel 2
Kernel Aware Thread-block Scheduler

Sa
m

pl
er

SM 0 SM 1 SM 2 SM 3

SM 4 SM 5 SM 6 SM 7

CTA 0

CTA 9
CTA 7

CTA 0
CTA 4 CTA 5

Kernel 1 Kernel 2
Kernel Aware Thread-block Scheduler

Sa
m

pl
er

C
as

e1
: C

ho
os

e
In

tr
a-

SM
 S

lic
in

g
at

 (2
,2

)

SM 0 SM 1 SM 2 SM 3

SM 4 SM 5 SM 6 SM 7

Kernel 1 Kernel 2
Kernel Aware Thread-block Scheduler

Sa
m

pl
er

C
as

e2
: C

ho
os

e
Sp

at
ia

l M
ul

tit
as

ki
ng

0 2 3

CTA 1

CTA 8

CTA 2 CTA 3

CTA 1

CTA 7

CTA 2 CTA 3

CTA 4 CTA 6
CTA 7 CTA 8

CTA 9

CTA 6
CTA 7 CTA 8

CTA 9

CTA 1
CTA 4
CTA 12

CTA 14

CTA 10

CTA 11

CTA 13

CTA 0 CTA 1
CTA 4
CTA 12

CTA 14

CTA 2
CTA 5
CTA 7
CTA 15

CTA 3
CTA 6
CTA 8
CTA 9

CTA 0
CTA 10

CTA 11

CTA 13

CTA 2
CTA 5
CTA 7
CTA 15

CTA 3
CTA 6
CTA 8
CTA 9

CTA 4 CTA 5 CTA 6

CTA 6
CTA 8
CTA 9

CTA 10

CTA 11 CTA 12

CTA 13

CTA 10

CTA 14 CTA 15

CTA 11 CTA 12

CTA 13 CTA 14 CTA 15

1 Identify Sweet Point

Figure 4. Illustration of the proposed profiling strategy used in Warped-Slicer.

sampling period. The IPCscaled is the projected IPC based
on the adjusted new bandwidth Bscale and the new L2 cache
miss rate MPKIscaled . φmem is the portion of pipeline stalls
which are caused by long memory latency out of total
sampling cycles.

Empirically we observed that L2 MPKI changes mini-
mally with the number of CTAs. Intuitively, MPKI measures
misses normalized to thousand instructions. Hence, irrespec-
tive of the number of CTAs MPKI seem to fairly stable in
our empirical observations. Hence, ψ is directly proportional
to the bandwidth usage factors. The amount of bandwidth
consumed is proportional to the number of CTAs assigned
to an SM. As a result, for each SM we can simplify the ψ

computation as follows:

ψ ≈ CTAi

CTAavg
−1 (4)

The entire process flow for using dynamic profiling in-
formation to generate the CTA distributions is shown in
Figure 4. Since profiling is done only for a small fraction of
cycles over the entire kernel execution window the overhead
of profiling is negligible. The Profile% column in Table II
shows the profiling overhead. The resource partitioning
algorithm is O(KN), which is extremely fast in computing
the resource distribution. In all our results we show the net
performance after accounting for the profiling overhead.

To quantify the impact of using profiled data, rather than
the full application run, we compared the number of CTAs
assigned to each of the two kernels using the resource
partitioning algorithm using both the IPCscaled obtained from
sampling and the true IPC obtained from full application
runs in isolation. The number of CTAs that were assigned
to each of the two kernels is within, at most, one CTA for
more than 90% of the kernel pairs. The detailed distribution
of CTA allocations across all possible pairs of kernels that
we studied in this paper are shown in Table III.

B. Dealing with Phase Behavior

Note that our proposed approach already handles any
phase changes between different kernels by profiling every
new kernel at its launch time. One remaining concern with
profiling is that there is an implicit assumption that the per-
formance data collected will stay stable for the entire kernel
duration for that kernel. This concern can be resolved as

Figure 5. Sampling the program characteristics using a 5K cycles of
sampling window.

follows: First, IPC will be monitored during co-execution of
a kernel and if the IPC changes significantly and the change
is sustained over a long duration (say, at least the length of
profile run of 5K cycles), then a new sampling phase may
be initiated at that point in execution. During this sampling
interval, higher priority is assigned to the sampled kernel
while holding back other kernels. While this approach does
not provide complete isolation, it may be sufficient to rebuild
Qi and Mi for a kernel with reasonable accuracy. Once the
vectors are available we can re-run the resource partitioning
algorithm to determine the new resource distribution. But
more critically, we looked at significant and sustained IPC
changes in kernel execution across several GPU benchmarks.
The φmem and average IPC collected per SM during the first
5K cycles is highlighted and compared to a much larger 50K
cycle execution window for several benchmarks in Figure 5.
Evidently, the sampling window can provide a fairly accurate
characterization of the entire kernel execution.

V. EVALUATION

A. Performance
In this section, we evaluate our Warped-Slicer (repre-

sented as Dynamic in our figures) and compare it with
three multiprogramming alternatives that were described
earlier: namely, left-over partitioning, even partitioning, and
spatial multitasking (Spatial) [12], [13], [41]. Note that
spatial multitasking is an inter-SM partitioning scheme while
the other schemes are intra-SM partitioning schemes. For
generating multi-programmed workloads, we created three
categories of benchmarks by pairing compute, cache and
memory application types (See Table II). The three cat-
egories are Compute + Cache, Compute + Memory, and

7

1.06

(b) (c)

1.23
1.27

0.6
0.8

1
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 I
PC

(a)

Spatial Even Dynamic Oracle

Figure 6. Performance results of all 30 pairs of applications: (a) Compute + Cache. (b) Compute + Memory. (c) Compute + Compute. The results are
normalized to baseline Left-Over policy. GMEAN shows the overall geometric mean performance across the three workload categories.

Table III
RESOURCE PARTITIONING WHEN WARPED-SLICER (DYN) AND EVEN MULTIPROGRAMMING ALGORITHMS ARE USED.

Compute + Cache Compute + Memory Compute + Memory Compute + Compute
Workload Dyn Even Workload Dyn Even Workload Dyn Even Workload Dyn Even

DXT MVP (7,1) (4,4) DXT BFS (6,2) (4,1) IMG BFS (6,2) (4,1) DXT IMG (4,4) (4,4)
DXT NN (4,4) (4,4) DXT BLK (4,4) (4,4) IMG BLK (5,3) (4,4) HOT DXT (2,6) (1,4)
HOT MVP (3,1) (1,4) DXT KNN (4,4) (4,3) IMG KNN (4,4) (4,3) HOT IMG (2,6) (1,4)
HOT NN (2,4) (1,4) DXT LBM (5,3) (4,3) IMG LBM (7,1) (4,3) MM DXT (3,5) (2,4)
IMG MVP (7,1) (4,4) HOT BFS spatial (1,1) MM BFS spatial (2,1) MM HOT (2,2) (2,1)
IMG NN (3,5) (4,4) HOT BLK (2,4) (1,4) MM BLK (3,4) (2,4) MM IMG (3,5) (2,4)
MM MVP (5,1) (2,4) HOT KNN (2,4) (1,3) MM KNN (4,4) (2,3)
MM NN (3,5) (2,4) HOT LBM (3,1) (1,3) MM LBM (5,1) (2,3)

Compute + Compute. For each of the categories, we generate
all combinations of benchmarks from the two categories.
Thus, a total of 30 benchmark pairs were generated. While
executing these diverse pairs of benchmarks, one challenge
is to make sure that any given application pair executes the
same amount of work across different multiprogramming
approaches evaluated in this paper. To achieve this goal
we use the following approach. Recall that for collecting
individual application statistics in Table II we ran each
benchmark for two million cycles. We recorded the total
number of instructions executed during that two million cy-
cles for each benchmark in Inst. column. When running the
benchmark pair we run each benchmark until it reaches that
recorded instruction count. Once a benchmark finishes the
target instruction count that benchmark simulation is halted
and its assigned GPU resources are released. The slower
benchmark may then consume all the available resources to
reach its own instruction target. The total simulation time
is treated as the execution time for the application pair.
This way, each application simulates the same number of
instructions under all configurations. For warped-slicer, we
set the profiling phase to be 5K cycles long. We wait for 20K
cycles for GPU to warm up before starting the first profiling
phase. At the end of the profiling phase, the partitioning
algorithm reads the profile data and decides the number
of CTAs each application is going to get. We compare the
profiling cycles over average kernel execution time of each
benchmark in the Pro f ile% column in Table II. As such,
the profiling overhead is minimum for most applications.

Figure 6 shows the IPC of various multiprogramming
approaches normalized to the IPC of the Left-Over pol-
icy. The average IPC of concurrently executed kernels is

calculated by dividing the sum of all kernels’ instruction
count by execution time until all kernels finish. Note that
Left-Over policy performs very similar to the sequential
execution of the two applications since the second appli-
cation will not start execution until after the first application
is done with issuing all of its CTAs. Overall, the IPC of
the Left-Over policy when running the two applications is
3.2% higher than the average IPC of the two applications
running sequentially. The Oracle approach is the highest
performance we obtained for the application pair among all
multiprogramming approaches discussed in this paper (Left-
Over, Spatial and Intra-SM Slicing). To identify the best
results for intra-SM slicing, we exhaustively ran all possible
CTA combinations.

On average, all multiprogramming algorithms derived bet-
ter performance than the baseline Left-Over policy. The pro-
posed Warped-Slicer approach (Dynamic) outperformed the
other algorithms and is close to the oracle results for most
applications. Warped-Slicer partitions resources according
to the workload’s performance and CTA count relationship
as measured during the profiling phase. Spatial multitask-
ing achieved only minimal performance improvement over
Left-Over. Spatial partitions resources only across the SM
boundaries. As explained in the earlier sections, inter-SM
slicing can cause resource underutilization within an SM,
which cannot be handled by splitting workload across SMs.
As expected, the two Intra-SM slicing approaches, Even
and Warped-Slicer, derived better performance than Spatial.
Warped-Slicer derived an average of 23% performance im-
provement over Left-Over policy, which is widely used in
current GPUs, 14% better than even partitioning of an SM
and 17% better than Spatial multitasking.

8

0.8
1

1.2

A
LU

SF
U

LD
ST

R
EG

SH
M

N
or

m
al

iz
ed

 U
til

iz
at

io
n

(a)

0%
20%
40%
60%
80%

100%

Compute +
Cache

Compute +
Non-Cache

Compute +
Cache

Compute +
Non-Cache

L1D Cache L2 Cache

Left-Over Spatial Even Dynamic

Ca
ch

eM
iss

Ra
te

s

(b)

0%

20%

40%

60%

MEM RAW EXE IBUFFER Total

Pc
t.

of
 4

M
 C

yc
le

s Left-Over Spatial Even Dynamic

(c)

Figure 7. Various performance statistics: (a) assorted resource utilizations of the proposed Warped-Slicer normalized by even partitioning policy, (b) cache
miss rates, (c) breakdown of total stall cycles.

Table III shows how differently our Warped-Slicer parti-
tions resources than Even approach. When Intra-SM mul-
tiprogramming is chosen for the workload, the numbers
in the parenthesis indicate the number of CTAs run by
each of the two applications; each application is assigned
required resource per CTA × # CTAs. The workloads
that run Inter-SM multiprogramming are marked as Spatial
and each application is equally assigned eight SMs. Each
application pair has two numbers listed, the first number
corresponds to the number of CTAs assigned to the first
application and the second number corresponds to the
number of CTAs assigned to the second application. In
many cases, Warped-Slicer assigns more CTAs than Even.
For example, in HOT DXT of Compute+Compute category,
Warped-Slicer runs two HOT CTAs and six DXT CTAs
whereas Even only assigns one HOT CTA and four DXT
CTAs. Since each application can use up to 50% of the
intra-SM resources in the Even approach, resources may be
fragmented if the assigned 50% resource is not an integer-
multiple of the required resources of each application. On
the other hand, Warped-Slicer finds the optimal resource
assignment where performance degradation and resource
fragmentation is minimal for both applications.

In some cases, Warped-Slicer assigns the same number of
CTAs as the Even partition, as can be seen in MM MVP.
For this workload, the total number of CTAs assigned by
Even and Warped-Slicer is the same. However, Warped-
Slicer assigns fewer CTAs for MVP because MVP is a cache
intensive application. Hence, more CTAs can cause cache
trashing, and fewer CTAs improve overall performance.
On the other hand, the Even approach assigns the same
number of CTAs for both applications, which leads to worse
performance than the Warped-Slicer.

B. Resource Utilization

Figure 7a shows how the Warped-Slicer increases ALU
and SFU pipeline utilization, register file and shared memory
utilization over the Even partitioning approach. The ALU
utilization metric is the fraction of cycles when an ALU
pipeline is occupied over the total execution cycles. Overall,
Warped-Slicer derives over 15% higher utilization of all the
GPU resources. This is because the Warped-Slicer chooses
the optimal resource partitioning that can minimize the
resource underutilization. On the other hand, Even allows
each application to use up to half of each resource, regardless
each application’s resource demand. Therefore, the resource
utilization is lower due to resource fragmentation.

C. Cache Misses
When running multiple applications on an SM, the re-

source utilization can be improved as shown in the previous
sections. However, as each application accesses different
regions of memory space, cache contention might increase.
In Figure 7b, we measured cache miss rates in L1 and
L2 caches. We observed different behaviors from different
application categories. For Compute + Non-Cache applica-
tions, as expected, L1 cache miss rate is the lowest in Left-
Over and highest in Even and Warped-Slicer. Interestingly,
for Compute + Cache applications, Warped-Slicer achieves
the lowest miss rate, which is 2% lower than Even and 17%
lower than Left-Over. This is because Warped-Slicer runs
fewer cache-intensive CTAs concurrently, which leads to
lower L1 cache contention. L2 cache miss rate shows slightly
different trend because L2 caches are shared across multiple
SMs and hence, data of different applications can contend
in the L2 cache even under Spatial approach. Consequently,
Spatial derived higher L2 cache miss rate than Left-Over.
Warped-Slicer derives highest L2 miss rate in Compute
+ Cache category because its total L2 accesses reduced
significantly by 43% due to lower L1 cache miss rate.

D. Stall Cycles
Multiprogramming not only enhances the pipeline uti-

lization but also reduces stall cycles caused by resource
contention. By running compute-intensive and memory-
intensive applications together, the memory congestion can
be relieved because memory accesses are generated primar-
ily by only half of the concurrently running warps while the
other half of the warps stress computational resources.

Figure 7c shows various stall cycles under the multipro-
gramming approaches. As expected, long latency memory
stalls reduced most using the Warped-Slicer. Note that the
stall cycles are also reduced with Spatial multitasking that
does not share SMs because, when memory-intensive and
compute-intensive applications are multiprogrammed, the
memory-intensive applications are assigned to only half of
the total SMs and hence the memory congestion can be still
relieved. Overall, the Warped-Slicer encounters 15% fewer
accumulated total stall cycles than Left-Over.

E. Multiple Kernels Sharing SM
In this section, we show that our proposed scheme can

work on more than two kernels assigned to concurrently
execute on an SM. As described in our algorithmic de-
scription, the proposed approach is general and it does

9

46
 COMBO

1.32
1.40

0.8
1

1.2
1.4
1.6
1.8

BLK_IM
G_D

XT

BLK_M
M_D

XT

BLK_M
M_IM

G

KNN_IM
G_G

XT

KNN_M
M_D

XT

KNN_M
M_IM

G

LBM_IM
G_D

XT

LBM_M
M_D

XT

LBM_M
M_IM

G

NN_IM
G_D

XT

NN_M
M_D

XT

NN_M
M_IM

G

MVP_IM
G_D

XT

MVP_M
M_D

XT

MVP_M
M_IM

G

GMEAN

GMEAN of
 ALL

N
or

m
al

iz
ed

 IP
C

Spatial Even Dynamic

Figure 8. Performance result when combining three applications in an
SM.

0.9

1.1

1.3

1.5

2 Kernels 3 Kernels

Fa
ir

ne
ss Spatial Even Dynamic

(a) Fairness(Minimum Speedup)

1
1.5

2
2.5

3

2 Kernels 3 Kernels

A
N

TT

Spatial Even Dynamic

(b) Average Normalized Turn-around
Time

Figure 9. Comparison of fairness improvement (Normalized to Left-Over
Policy) and ANTT reduction between multiprogramming policies.

not depend on the number of concurrent kernels being
considered for execution. We evaluated all the combinations
of three applications which contain at least one compute
application. BFS and HOT are not included because of
their large CTA size, which prevents more than two kernels
from being executed. Figure 8 shows all the combinations
of memory/cache applications working with two compute
applications with the last bar showing the overall perfor-
mance improvement over all combinations. Warped-Slicer
consistently outperforms even partitioning and on average
by 21%.

F. Fairness Metrics
Figure 9a shows the minimum speedup across various

configurations evaluated. Compared with the Even partition-
ing, the proposed scheme improves fairness (as measured by
the minimum speedup metric) by 14% in 2 Kernels and 23%
in 3 Kernels.

Figure 9b shows the average normalized turnaround time
which is another important metric to measure fairness. The
Warped-Slicer improves this metric significantly over even-
partitioning. It improves by 15% when 3 kernels are running
on the SM.

G. Power and Energy Analysis
We use GPUWattch [42] and McPAT [43] for power eval-

uation. Compared with baseline Left-Over policy, Warped-
Slicer increases average dynamic power by 3.1% due to
the increased resource utilization. Overall, however, our
Warped-Slicer saves the baseline energy consumption by
16% through significantly reduced total execution time.

H. Sensitivity Analysis
We also investigated how the length of the profiling phase

influences the prediction correctness. We ran all 30 pairs of

0.97
0.98
0.99

1
1.01

5k

10
k

C
TA

1k

5k

10
k

Sampling Cycles Algorithm Delay

N
or

m
al

iz
ed

 IP
C

(a) Sensitivity to profiling length and
algorithm delay

0.9

1

1.1

1.2

1.3

Greedy Then Oldest Round Robin N
or

m
al

iz
ed

 IP
C

 Spatial Even Dynamic

(b) Sensitivity to warp schedulers

Figure 10. Performance sensitivity to profiling parameters and warp
schedulers.

applications with the Warped-Slicer while varying profiling
length from 5K, 10K cycles, and finally up to the total
number of cycles of an entire CTA execution. Figure 10a
shows the IPC under various profiling lengths, normalized
by the IPC when using 5K cycle for the profiling length. We
found that across all the application pairs, the IPC variations
are at most 2% with varying profiling lengths.

We then investigated how the algorithm execution delay
influences the overall performance. We again ran all 30 pairs
of applications with an additional delay varying from 1K
cycles, 5K cycles to 10K cycles. between finishing sampling
to start the new partition. We found that overall the IPC
change is less than 1.5%. The time for calculating the
resource-partitioning algorithm does not block the warps
from executing on the SM. While the decision is being made,
the CTAs already issued in the sampling phase can still
execute on the machine. Therefore, even when the additional
algorithm delay increases to 10k cycles, the performance
loss is still minimal.

Figure 10b studies the performance impact of different
warp schedulers. The IPC and speedup of using the Warped-
Slicer is not impacted by the underlying warp schedulers that
were studied in this paper: greedy then oldest scheduler and
the round-robin scheduler.

We also examined the impact of less contended SM
resources by evaluating the system with 256KB register file,
96KB shared memory, 32 maximum CTAs and 64 maximum
warps. Our Warped-Slicer still significantly improves the
performance and fairness of the baseline policy, both by
26%. Since software written for future GPUs will utilize
more and more registers and shared memory resources, we
believe that our schemes that target resource contention and
efficient partitioning will be increasingly important for future
generations of GPUs.

I. Implementation Overhead
We synthesized the various profiling counters and the

global sampling logic required by Algorithm 1 using NCSU
PDK 45nm library [44]. The set of counters for sampling
occupies 714um2 per SM and the global counters and logic
for Algorithm 1 occupies 0.04mm2. We also extract the
power and area of 16 SMs from GPUWattch [42], which
is 704mm2 and consumes 37.7W of dynamic power and
34.6W of leakage power. The total area overhead of our
proposed approach for 16 SMs is 0.05mm2, resulting in only
0.01% area overhead. The total dynamic power is 54mW and
the leakage power is 0.27mW, accounting for 0.14% of the
dynamic power and 0.001% leakage power overhead.

10

VI. RELATED WORK

Workload Selection and Task Scheduling in CPUs:
Several approaches have addressed the workload selection
and assignment problems in CPUs. Snavely et al. [28],
[45] first proposed the SOS scheduler which uses profile-
based knowledge to select the best symbiosis co-runners.
Several other approaches [30], [46]–[50] proposed CPU
performance models to construct optimal workload assign-
ments. For optimizing thread scheduling, on-line charac-
terization techniques have been explored for simultaneous
multithreaded (SMT) processors. For instance, Choi and
Yeung [33] proposed an on-line resource partitioning based
on performance monitoring. In SMT enabled CPUs, there
are only a few threads. Hence, continuous performance
monitoring to decide resource partitioning is acceptable.
Our approach monitors the performance versus resource
allocation using a small profile run to characterize the full
application behavior, which is inspired by existing leader-
follower style sampling techniques in CPU domain [32]. Our
sampling approach is similar to [33], but different in that we
sample with varying number of CTA counts concurrently
on different SMs in a GPU thereby collecting the required
profiling metrics in a single short profiling phase.

For partitioning on-chip resources, existing works in SMT
primarily focused on cache partitioning [29], [31], [32], [35],
[36]. In CPUs, the fraction of physical registers and cache
can be easily adjusted by controlling the number of in-
flight instructions of each thread. However, in GPUs, such
dynamic control is not available since each CTA gets all
its resources at once. Once a CTA is assigned to an SM,
register file and shared memory must be allocated statically
and cannot be released until the CTA is completed. Thus,
allocation-time resource scheduling is more important in
GPUs and hence we focused more on register file and shared
memory partitioning rather than caches. In addition, GPUs
have a much smaller L1 cache with lower hit rate, since
GPU’s L1 cache is shared by thousands of threads.

Multiprogramming on GPUs: Several software-centric
GPU multiprogramming approaches have been studied. Jiao
et al. [7] proposed power-performance models to identify the
optimal kernel pairs that can achieve better performance per
watt. Their models statically estimate energy efficiency of
any pair of applications so that the optimal kernel pair can
be multiprogrammed together. Pai et al. [8] proposed elastic
kernel design that adjusts each kernel’s resource usage
dynamically subject to the available hardware resources.
They modified application code to run a special function that
adjusts resource usage based on current resource utilization.
Zhong and He [10] proposed a dynamic kernel slicing
that partitions a kernel into several smaller kernels so that
multiple kernels can more efficiently share the resources.
Adriaens et al. [12] proposed spatial multitasking, which
runs multiple applications on different sets of SMs. Ukidave
et al. [41] explored several adaptive spatial multiprogram-
ming approaches. Aguilera et al. [51] pointed out the unfair-
ness of the spatial multitasking and examined several task
assignment methods for more fair resource usage and better
throughput by distributing workloads across SMs. Gregg et

al. [11] developed a run-time kernel scheduler that merges
two OpenCL kernels so that the kernels can run on a single-
kernel-capable GPU.

These software-centric multiprogramming methods im-
proved concurrency and performance significantly by refac-
toring kernels and rewriting application code. In many
situations, it may not be feasible to modify every application
for improving concurrency. Also, once a kernel is sliced,
the sliced kernel’s size cannot be adjusted in the run time,
which might cause another inefficiency. Our study proposes
a software-hardware mechanism that does not require any
application code modification. We also provide a novel
method to determine the best multiprogramming strategy in
the run time, which is not applicable to the software-centric
approaches.

Recently, several studies show a new trend of hardware
support for multiprogramming. The HSA Foundation [18]
standardized hardware and software specifications to run
multiple applications on heterogeneous system architectures.
In the specification, they also cover the execution of multiple
applications in the same GPU, which uses multiple simul-
taneous application queues which are similar in spirit to the
NVIDIA’s Hyper-Q. Still, there is not a detailed explanation
of how the applications are assigned to execution cores.

Wang et al. [52] proposed a dynamic CTA launching
method for irregular applications. They observed that CTA-
level parallelism is better than kernel-level parallelism for re-
source utilization, especially in irregular applications. They
proposed a runtime platform that supports dynamic CTA
invocation. This work is orthogonal to our approach. We
focus more on efficient multiprogramming strategy rather
than improving application parallelism. We used a perfor-
mance model to determine the optimal resource partitioning
between two different applications and each application’s
kernel parameters.

Preemptive scheduling on GPUs: Preemptive scheduling
essentially context switches one kernel with another kernel
to enable multiprogramming.The main challenge of preemp-
tive scheduling is the high overhead of context switching.
Tanasic et al. [53] explored classic context switching and
draining. Classic context switching stops running kernel
to save the current context to the memory and then a
new kernel is brought in. Park et al. [54] added another
preemptive scheduling algorithm, flushing. Flushing detects
idempotent kernels, which generate exactly the same result
regardless how many times the kernel is executed. Then,
to run an urgent kernel, they drop a running idempotent
kernel and yield corresponding resources to the urgent
kernel. Later, the dropped idempotent kernel is re-executed
from the beginning. Recently, Yang et. al. [55] proposed
a partial context switching technique to allow fine-grain
sharing by multiple kernels within each SM. This approach
tries to resolve the long context switching delay suffered
during preemption. These studies are orthogonal with our
study because our study focuses more on multiple kernels’
concurrent execution rather than temporal GPU sharing.

Dynamic execution parameter adjustment: Kayiran
et al. [38] explored dynamic workload characterization to

11

adjust the number of CTAs on the fly, which derives better
overall performance. Lee et al. [9] proposed a profiling-
based single kernel execution optimization for GPU. Lee
et al. [56] proposed a dynamic voltage scaling for better
throughput under a power budget. They periodically check
voltage, frequency and SM core count to adjust the three
parameters in the next epoch. Sethia and Mahlke [39]
proposed a hardware runtime system that dynamically mon-
itors and adjust several parameters, such as the number of
CTAs, core frequency, and memory frequency. The proposed
runtime system can be configured either to improve energy
efficiency by throttling underutilized resources or to improve
performance by boosting core frequency and adjusting the
number of CTAs. These four studies used single kernel
execution environment as their baseline. On the other hand,
our approach determines the optimal resource partitioning to
enable multiple kernels concurrently run on the same SM.

VII. CONCLUSION

In this paper, we present a novel approach for efficiently
partitioning resources within an SM across multiple kernels
in GPU. The algorithm we proposed follows the water-
filling algorithm in communication networks, but we apply
it to efficient resource sharing problem within an SM. We
demonstrate how to implement this algorithm in practice
using a short profile run to collect the statistics required for
executing the algorithm. We then evaluated our proposed
design on a wide range of GPU kernels and show that our
proposed approach improves performance by 23% over a
baseline Left-Over multiprogramming approach.

ACKNOWLEDGMENT

We thank Francisco Romero and anonymous reviewers
for their valuable comments on this work. We thank Con-
gyin Shi for helping with digital synthesis. This work was
supported by DARPA-PERFECT-HR0011-12-2-0020, NSF-
CAREER-0954211 and by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIP) (No. NRF-2015R1A2A2A01008281).

REFERENCES

[1] “Whitepaper: NVIDIA’s Next Generation CUDATM Compute
Architecture: FermiTM,” tech. rep., NVIDIA, 2009.

[2] “Whitepaper: NVIDIA’s Next Generation CUDATM Compute
Architecture: KeplerTM GK110,” tech. rep., NVIDIA, 2012.

[3] “Whitepaper: NVIDIA GeForce GTX980,” tech. rep.,
NVIDIA, 2014.

[4] “AMD GRAPHICS CORES NEXT (GCN) ARCHITEC-
TURE,” tech. rep., AMD, 2012.

[5] A. Munshi, “The OpenCL specification,” in Khronos OpenCL
Working Group, 2008.

[6] “NVIDIA CUDA compute unified device architecture -
programming guide.” https://docs.nvidia.com/cuda/cuda-c-
programming-guide/, 2008.

[7] Q. Jiao, M. Lu, H. P. Huynh, and T. Mitra, “Improving
GPGPU energy-efficiency through concurrent kernel execu-
tion and DVFS,” in Intl. Symp. on Code Generation and
Optimization (CGO), Feb. 2015.

[8] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improv-
ing GPGPU concurrency with elastic kernels,” in Intl. Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Mar. 2013.

[9] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and
S. Ryu, “Improving GPGPU resource utilization through
alternative thread block scheduling,” in Intl. Symp. on High
Performance Computer Architecture (HPCA), Feb. 2014.

[10] J. Zhong and B. He, “Kernelet: High-throughput GPU kernel
executions with dynamic slicing and scheduling,” in Tran. on
Parallel and Distributed System (TPDS), vol. 25, pp. 1522–
1532, 2014.

[11] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, “Fine-
grained resource sharing for concurrent GPGPU kernels,” in
Conf. on Hot Topics in Parallelism (HotPar), June 2012.

[12] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte,
“The case for GPGPU spatial multitasking,” in Intl. Symp.
on High Performance Computer Architecture (HPCA), Feb.
2012.

[13] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and
D. Chen, “Efficient GPU spatial-temporal multitasking,” in
Tran. on Parallel and Distributed Systems (TPDS), vol. 26,
pp. 748–760, 2014.

[14] P. Xiang, Y. Yang, and H. Zhou, “Warp-level divergence
in GPUs: Characterization, impact, and mitigation,” in Intl.
Symp. on High Performance Computer Architecture (HPCA),
Feb. 2014.

[15] Q. Xu and M. Annavaram, “PATS: Pattern aware scheduling
and power gating for GPGPUs,” in Intl. Conf. on Parallel
Architecture and Compilation Techniques (PACT), Aug. 2014.

[16] Q. Xu, H. Jeon, and M. Annavaram, “Graph processing
on GPUs: Where are the bottlenecks?,” in Intl. Symp. on
Workload Characterization (IISWC), Oct 2014.

[17] H. Jeon and M. Annavaram, “Warped-DMR: Light-weight
error detection for GPGPU,” in Intl. Symp. Microarchitecture
(MICRO), Dec. 2012.

[18] H. Foundation, “Heterogeneous system architecture (HSA):
Architecture and algorithms,” in Intl. Symp. on Computer
Architecture tutorial (ISCA), June 2014.

[19] M. Schulte, M. Ignatowski, G. Loh, B. Beckmann, W. Brant-
ley, S. Gurumurthi, N. Jayasena, I. Paul, S. Reinhardt, and
G. Rodgers, “Achieving exascale capabilities through hetero-
geneous computing,” vol. 35, pp. 26–36, July 2015.

[20] B. Coon, J. Nickolls, J. Lindholm, R. Stoll, N. Wang,
J. Choquette, and K. Nickolls, “Thread group scheduler for
computing on a parallel thread processor,” May 2012. US
Patent 8732713.

[21] D. Palomar and J. Fonollosa, “Practical algorithms for a fam-
ily of waterfilling solutions,” in Tran. on Signal Processing
(TSP), vol. 53, pp. 686–695, Feb. 2005.

[22] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron, “Rodinia: A benchmark suite
for heterogeneous computing,” in Intl. Symp. on Workload
Characterization (IISWC), Oct. 2009.

[23] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.
Chang, N. Anssari, G. D. Liu, and W. mei Hwu, “Parboil:
A revised benchmark suite for scientific and commercial
throughput computing.,” tech. rep., Mar. 2012.

[24] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simula-
tor,” in Intl. Symp. on Performance Analysis of Systems and
Software (ISPASS), Apr. 2009.

[25] S. Jones, “Introduction to dynamic parallelism,” in Nvidia
GPU Technology Conference (GTC), May 2012.

12

[26] K. Wilcox, D. Akeson, H. Fair, J. Farrell, D. Johnson, G. Kr-
ishnan, H. Mclntyre, E. McLellan, S. Naffziger, R. Schreiber,
S. Sundaram, and J. White, “4.8 A 28nm x86 APU optimized
for power and area efficiency,” in Intl. Solid- State Circuits
Conf. (ISSCC), Feb. 2015.

[27] M. K. Yoon, K. Kim, S. Lee, W. W. Ro, and M. Annavaram,
“Virtual Thread: Maximizing thread-level parallelism beyond
gpu scheduling limit,” in Intl. Symp. on Computer Architec-
ture (ISCA), June. 2016.

[28] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling
for a simultaneous multithreaded processor,” in Intl. Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Nov. 2000.

[29] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez, “Dy-
namically controlled resource allocation in SMT processors,”
in Intl. Symp. on Microarchitecture (MICRO), Dec. 2004.

[30] F. J. Cazorla, P. M. Knijnenburg, R. Sakellariou, E. Fernan-
dez, A. Ramirez, and M. Valero, “Predictable performance
in SMT processors: Synergy between the OS and SMTs,” in
Tran. on Computers (TOC), vol. 55, pp. 785–799, 2006.

[31] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and
partitioning in a chip multiprocessor architecture,” in Intl.
Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sept. 2004.

[32] M. K. Qureshi and Y. N. Patt, “Utility-based cache partition-
ing: A low-overhead, high-performance, runtime mechanism
to partition shared caches,” in Intl. Symp. on Microarchitec-
ture (MICRO), Dec. 2006.

[33] S. Choi and D. Yeung, “Learning-based SMT processor
resource distribution via hill-climbing,” in Intl. Symp. on
Computer Architecture (ISCA), June 2006.

[34] O. Mutlu and T. Moscibroda, “Parallelism-aware batch
scheduling: Enhancing both performance and fairness of
shared dram systems,” in Intl. Symp. on Computer Architec-
ture (ISCA), June 2008.

[35] R. Wang and L. Chen, “Futility scaling: High-associativity
cache partitioning,” in Intl. Symp. on Microarchitecture (MI-
CRO), Dec. 2014.

[36] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos,
R. Singhal, and R. Iyer, “Cache QoS: From concept to reality
in the Intel R© Xeon R© processor E5-2600 v3 product family,”
in Intl. Symp. on High Performance Computer Architecture
(HPCA), Mar. 2016.

[37] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson,
and U. C. Weiser, “Many-core vs. many-thread machines:
Stay away from the valley,” in Computer Architecture Letters
(CAL), vol. 8, pp. 25–28, 2009.

[38] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither
more nor less: Optimizing thread-level parallelism for GPG-
PUs,” in Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT), Sept. 2013.

[39] A. Sethia and S. Mahlke, “Equalizer: Dynamic tuning of
GPU resources for efficient execution,” in Intl. Symp. on
Microarchitecture (MICRO), Dec. 2014.

[40] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin,
N. Chatterjee, S. W. Keckler, M. T. Kandemir, and C. R.
Das, “Anatomy of GPU memory system for multi-application
execution,” in Intl. Symp. on Memory Systems (MEMSYS),
Oct. 2015.

[41] Y. Ukidave, C. Kalra, D. R. Kaeli, P. Mistry, and D. Schaa,
“Runtime support for adaptive spatial partitioning and inter-
kernel communication on GPUs,” in Intl. Symp. on Computer
Architecture and High Performance Computing (SBAC-PAD),

Oct. 2014.
[42] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,

T. M. Aamodt, and V. J. Reddi, “GPUWattch: Enabling en-
ergy optimizations in GPGPUs,” in Intl. Symp. on Computer
Architecture (ISCA), June 2013.

[43] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: an integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in Intl. Symp. on Microarchitecture (MICRO),
Dec. 2009.

[44] “The freepdk process design kit.” http://www.eda.ncsu.edu/
wiki/FreePDK.

[45] A. Snavely, D. M. Tullsen, and G. Voelker, “Symbiotic job-
scheduling with priorities for a simultaneous multithreading
processor,” in Intl. Conf. on Measurement and Modeling of
Computer Systems (SIGMETRICS), June 2002.

[46] S. Eyerman and L. Eeckhout, “Probabilistic job symbiosis
modeling for SMT processor scheduling,” in Intl. Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Mar. 2010.

[47] P. Radojković, V. Čakarević, M. Moretó, J. Verdú, A. Pajuelo,
F. J. Cazorla, M. Nemirovsky, and M. Valero, “Optimal
task assignment in multithreaded processors: A statistical ap-
proach,” in Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), Mar.
2012.

[48] A. El-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas,
“Compatible phase co-scheduling on a CMP of multi-
threaded processors,” in Intl. Symp. on Parallel and Dis-
tributed Processing (IPDPS), Apr. 2006.

[49] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting
inter-thread cache contention on a chip multi-processor ar-
chitecture,” in Intl. Symp. on High-Performance Computer
Architecture (HPCA), Feb. 2005.

[50] A. Settle, J. Kihm, A. Janiszewski, and D. Connors, “Archi-
tectural support for enhanced SMT job scheduling,” in Intl.
Conf. on Parallel Architecture and Compilation Techniques
(PACT), Sept. 2004.

[51] P. Aguilera, K. Morrow, and N. Sung Kim, “Fair share: Allo-
cation of GPU resources for both performance and fairness,”
in Intl. Conf. of Computer Design (ICCD), Oct. 2014.

[52] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dy-
namic thread block launch: A lightweight execution mech-
anism to support irregular applications on GPUs,” in Intl.
Symp. on Computer Architecture (ISCA), June 2015.

[53] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro,
and M. Valero, “Enabling preemptive multiprogramming on
GPUs,” in Intl. Symp. on Computer Architecuture (ISCA),
June 2014.

[54] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative
preemption for multitasking on a shared GPU,” in Intl. Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Mar. 2015.

[55] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang,
and M. Guo, “Simultaneous multikernel GPU: Multi-tasking
throughput processors via fine-grained sharing,” in Intl. Symp.
on High Performance Computer Architecture (HPCA), Mar.
2016.

[56] J. Lee, V. Sathisha, M. Schulte, K. Compton, and N. S. Kim,
“Improving throughput of power-constrained GPUs using
dynamic voltage/frequency and core scaling,” in Intl. Conf. on
Parallel Architectures and Compilation Techniques (PACT),
Oct. 2011.

13

