
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2012

Flexible, lightweight requirements modeling with FlexiSketch

Wüest, Dustin; Seyff, Norbert; Glinz, Martin

Abstract: Early stage requirements models are often documented using paper and pencil-based ap-
proaches. In our current research, we are exploring lightweight modeling tools and approaches that could
provide a beneficial alternative. We have developed the FlexiSketch tool prototype which combines sup-
port for free-form sketching with lightweight metamodeling capabilities. This creates the possibility for
an automatic transcription of the documented information in later modeling stages. The tool is designed
to be used on tablet devices.

DOI: 10.1109/RE.2012.6345826

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: http://doi.org/10.5167/uzh-72267

Originally published at:
Wüest, Dustin; Seyff, Norbert; Glinz, Martin (2012). Flexible, lightweight requirements modeling with
FlexiSketch. In: 20th IEEE International Requirements Engineering Conference, Chicago, USA, 24
September 2012 - 28 September 2012, 323-324. DOI: 10.1109/RE.2012.6345826

http://doi.org/10.1109/RE.2012.6345826
http://doi.org/10.5167/uzh-72267
http://doi.org/10.1109/RE.2012.6345826

Flexible, Lightweight Requirements Modeling with FlexiSketch

Dustin Wüest
University of Zurich
Zurich, Switzerland
wueest@ifi.uzh.ch

Norbert Seyff
University of Zurich
Zurich, Switzerland

seyff@ifi.uzh.ch

Martin Glinz
University of Zurich
Zurich, Switzerland

glinz@ifi.uzh.ch

Abstract—Early stage requirements models are often docu-

mented using paper and pencil-based approaches. In our cur-
rent research, we are exploring lightweight modeling tools and
approaches that could provide a beneficial alternative. We
have developed the FlexiSketch tool prototype which combines
support for free-form sketching with lightweight metamodeling
capabilities. This creates the possibility for an automatic tran-
scription of the documented information in later modeling
stages. The tool is designed to be used on tablet devices.

Keywords-requirements modeling; free-form sketching;
lightweight meta-modeling; sketch recognition

I. INTRODUCTION
Paper and pencil-based tools seem to be the most wide-

spread support for early requirements modeling activities.
Requirements engineers use flip charts, white boards, or just
a simple sheet of paper to document early ideas. Although
these tools have a lot of benefits and allow for free-form
sketching, there are negative effects as well. As the docu-
mented information is not available in a structured form,
changes and post-processing opportunities are limited. In
order to allow for further modifications, a time-consuming
and costly re-modeling of the early sketches is necessary.
This can be done using software tools for desktop platforms
that often follow more formal state-of-the-art modeling ap-
proaches such as UML (e.g. [1]). In several projects, those
models can be seen as drivers for later software design and
development activities.

With the availability of mobile tablet devices and digital
whiteboards, we envision a more seamless integration of
early RE activities in the software development process [5].
Our research focuses on methods and tools that combine the
benefits of paper and pencil-based approaches with more
formal software modeling methods to support early RE
sketches. We have therefore developed a conceptual solution
that supports lightweight, sketch-based RE modeling [4]. It
focuses on free-form sketching support for requirements
engineers, but also allows for a seamless transformation of
the sketched information such that it can be imported into
well-established modeling tools. In this regard, our solution
is thought to be a combination of tools for free-form sketch-
ing, e.g. [6], and tools that recognize certain diagram types,
e.g. [7]. So the requirements engineer can choose in which
situations she wants to focus on sketching and at which
points she provides the meta-model information needed for

further processing. We have identified three key aspects
regarding our conceptual solution:

Sketching: Free-form sketching with the help of paper
and pencil based approaches is widely used and accepted
[2,3]. Such approaches do not limit requirements engineers
in any way. They can draw whatever they feel is appropriate
in order to document the relevant information. Limitations,
for example, the fact that documented information can’t be
modified quicky, are accepted as the price for flexibility.

Allowing for free-form sketching is an important require-
ment regarding our envisioned approach. From our point of
view, it is the main reason why people stick to paper and
pencil-based approaches. To further support the paper and
pencil metaphor, we also aim for a solution that can be used
anytime, anywhere.

Metamodeling: While drawing a sketch, people often fo-
cus on the actual information the model should convey and
often ignore more formal modeling conventions. Individual
differences, when modeling certain information, lead to dif-
ferent models. These sketched models sometimes might only
be readable and understandable by the creator herself. In
most cases, information defining the underlying meta-model
or syntactical information is missing.

In order to allow for the later transformation of the mod-
eled information, lightweight metamodeling capabilities are
needed that support the requirements engineer to define
model elements and provide syntactical information.

Sketch recognition: As soon as the user adds a meaning
to a certain element, it is necessary to detect all other appear-
ances of that element type in order to allow automatic pro-
cessing of drawn models.

We consider that our solution provides sketch recognition
support in an interactive manner. The user is encouraged to
take part in the recognition process in order to avoid mislead-
ing definitions. However, this will happen in an unobtrusive
way which does not distract the requirements engineer.

II. THE FLEXISKETCH TOOL
The FlexiSketch tool prototype we have developed is

based on our conceptual solution. It is available for the An-
droid OS and is recommended to be used with tablet devices
sized 7 inches and larger. In order not to break the paper and
pencil metaphor, we consider using a stylus for working with
FlexiSketch. However, the tablet screens are optimized for
multi-touch finger gestures. Figure 1 presents a screenshot of
FlexiSketch.

Figure 1. FlexiSketch Tool Prototype

The main aspects of the tool are highlighted with
numbers (1-9). Similar to using paper for sketching, the user
sees a white drawing canvas after starting FlexiSketch (1). A
menu bar (2) providing some general options for saving and
clearing the drawing space is presented at the bottom.
Furthermore, there are two menu bars (4, 5) that are folded
up by default and can be pulled out on demand so as not to
distract the user from sketching. An additional button (3) in
the top right corner activates scrolling. The drawing canvas
can also be zoomed with the usual two-finger zooming
gesture.

After starting FlexiSketch, the user can use the white
canvas to sketch freely. The upper FlexiSketch menu bar (4)
provides a list of simple geometric shapes and a palette for
changing the drawing color and thickness of a stroke. Once a
particular drawing step is finished and the user lifts the finger
for a predefined amount of time, the drawing is converted
into a distinct symbol. This symbol can then be selected by
tapping (6), and a context menu appears (7). A selected sym-
bol can be dragged around, deleted, and resized. The user
can label symbols by adding text boxes using the context
menu (7). For example, the stickman shown in Figure 1 is
labeled customer. Those labels basically move together with
their parent symbol, but can also move independently in
order to place the label where it is needed. The context menu
also allows starting lightweight metamodeling. In the type
dialog (8), the user can define the meaning of a symbol by
assigning a type. This can be done using the virtual keyboard
to input a new type or by selecting one of the already defined
types from a drop-down list.

Defined symbols can be re-used. As soon as the menu-
bar (5) is expanded, it highlights all the defined symbol

types. For example, Figure 1 shows that the user already de-
fined the stickman as being of the type actor. Those defini-
tions facilitate further diagram sketching in two ways. First,
the user can get copies of defined symbols by dragging them
from the container to the drawing canvas (instead of drawing
them by hand). Second, as soon as the user draws a symbol
similar to a defined one, the sketch recognition algorithm
detects the symbol. It unobtrusively shows a popup box at
the bottom of the screen with type suggestions for the sym-
bol. The user can then tap on a suggestion to confirm the
type. This also allows the user to replace the current drawing
with the defined symbol of the same type in order to make
all instances of a particular type look the same. Confirmed
symbols also help to improve sketch recognition as they are
taken into account for further sketch analysis.

As soon as a requirements engineer has defined all sym-
bols needed for a particular type of diagram, it is also possi-
ble to store them permanently. The container menu (9) pre-
sents this option, and in addition, it allows the loading of
defined types. Furthermore, types can be modified, particular
symbols can be deleted, and new symbols can be added. This
strengthens the re-use of individually created diagram types.

III. CONCLUSIONS AND FUTURE WORK
Informal feedback from requirements engineers trying

FlexiSketch is highly encouraging. However, also some
problems emerged. Future work will address usability
improvements. We also plan to extend the tool’s meta-
modeling capabilities. We will investigate how much meta-
modeling can be done by requirements engineers, and how
information relevant for metamodeling can be inferred by the
tool itself. Future work will also focus on exporting and re-
using models and meta-models made with FlexiSketch. This
will eventually enable us to semi-automatically transcribe the
documented information in order to support a more seamless
integration of early RE sketches in the software development
process.

REFERENCES
[1] H. Ossher et al., “Flexible modeling tools for pre-requirements

analysis: conceptual architecture and research challenges,” in Proc.
ACM Int. Conf. OOPSLA, 2010, pp. 848–864.

[2] M. D. Gross and E. Y.-L. Do, “Ambiguous intentions: a paper-like
interface for creative design,” in Proc. ACM Symposium on User
Interface Software and Technology, 1996, pp. 183–192.

[3] S. Branham, G. Golovchinsky, S. Carter, and J. T. Biehl, “Let’s go
from the whiteboard: supporting transitions in work through
whiteboard capture and reuse,” in Proc. Int. Conf. on Human Factors
in Computing Systems, 2010, pp. 75–84.

[4] D. Wüest, “Bridging the gap between requirements sketches and
semi-formal models,” in Doc. Symp. IEEE Int. Req. Eng. Conf. (RE),
2011. [Online]. Available: http://dx.doi.org/10.5167/uzh-55675

[5] N. Seyff, F.Graf, and N. Maiden, “Using mobile RE tools to give end-
users their own voice,” in Proc. IEEE Int. Req. Eng. Conf. (RE),
2010, pp. 37–46.

[6] N. Mangano, A. Baker, M. Dempsey, E. Navarro, and A. van der
Hoek, “Software design sketching with Calico,” in Proc. IEEE/ACM
Int. Conf. on Automated Software Engineering, 2010, pp. 23–32.

[7] Q. Chen, J. Grundy, and J. Hosking, “SUMLOW: early design-stage
sketching of UML diagrams on an e-whiteboard,” Softw. Pract.
Exper., vol. 38, no. 9, pp. 961–994, 2008.

