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Abstract—This paper considers the problem of target handoff
between Unmanned Aerial Vehicles (UAVs) in a GPS denied
environment, and focuses on the design and evaluation of an
estimation strategy for determining the relative pose of the
aircraft. The estimation approach presented in this paper has
three distinct components that act in concert to achieve the
overall objective. First, a novel cooperative control and estimation
strategy is used to determine relative pose from IMU and peer-to-
peer ranging radio data without any a priori knowledge of either
aircraft’s pose. Next, a relative pose measurement is calculated
using extracted features from downward looking cameras on the
two UAVs. The computer vision technique first uses an indexing
scheme based on a hierarchical statistical model to determine
which frames from the two cameras have overlapping coverage,
aligns the overlapping frames, and then calculates the relative
pose estimate. Finally, a nonlinear Kalman Filter, which has been
initialized with the a priori solution from the initialization filter
is used to estimate relative pose by predicting it through the
integration of IMU data of both UAVs with measurement updates
from peer-to-peer radio ranging radios, magnetometers and the
computer vision estimates.

Index Terms—GPS-Denied Navigation, Relative Inertial Navi-
gation, Relative Pose Computer Vision

I. INTRODUCTION

A. Background and Motivation

ACCURATE relative navigation of groups of UAVs is de-
sirable for many applications involving surveillance, dis-

aster response, formation flight and rendezvous applications,
such as aerial re-fueling. Many of these applications require
maintaining accurate navigation in environments in which GPS
is not always available, either due to malicious GPS jamming
and spoofing [1] or due to natural signal blockages from urban
canyons, dense foliage, caves, or tunnels. For this work, our
specific motivation is to enable target handoff between two
UAVs flying in a GPS-denied environment. As such, this paper
details and assesses the performance of a relative navigation
algorithm that estimates the position and attitude of a UAV
with respect to the body-frame of another UAV without the
use of GPS.

The goal of this paper is to characterize the sensitivity of the
proposed relative pose estimation approach when considering
different sensor characteristics, sensor update frequency, initial
condition errors and flight dynamics. Through a Monte Carlo
analysis, the most important filter design parameters are iden-
tified. This will support a candidate design for future hardware
implementation and flight testing.

B. Previous Works

Recent work involving relative or cooperative navigation
assuming GPS denied environments successfully make use of
communicating relative heading and range updates between
platforms in order to counteract IMU drift. For example,
Sharma and Taylor [2] implement the concept in a simplified
two dimensional simulation of several Miniature Air Vehicles
(MAVs) and report improvements in pose error compared to
IMU only estimation. Additionally, Knuth and Barooah further
demonstrate the advantages in [3] by conducting a simulation
in which teams of mobile platforms communicate with one
another using IMU and relative pose data to estimate pose
with respect to an assigned starting point. Knuth and Barooah
also confirm this improvement in an experimental setting in
which two rovers use optical methods to develop relative pose
measurements. Although both of the referenced works above
take advantage of information provided by other surrounding
platforms to improve pose estimation, both of these examples
estimate the pose of all involved vehicles with respect to a
common, stationary origin. In contrast, this paper explicitly
estimates the pose of one aircraft with respect to the body
frame of another aircraft.

The remainder of this paper is organized as follows. Sec-
tion II details the formulation of algorithm for relative pose
estimation developed for this study. Section III outlines the
process used in the simulation environment and presents the
characteristics of the Monte Carlo setup. Section IV presents
the results of the Monte Carlo analysis. Finally, Section V
offers conclusions and discusses plan for future continued
work on this topic.

II. ALGORITHM FORMULATION

Figure 1 shows the assumed sensor payload on the two
UAVs simulated for testing in this study, where platform A is
assumed to be the UAV currently tracking a target of interest
and platform B is having the target handed off to it. Both
platforms are assumed to have a downward facing camera,
a peer-to-peer ranging radio system, and tri-axial IMU and
magnetometer sensors. A communication link for transmitting
IMU and magnetometer data and information for the computer
vision updates is also assumed. The diagram also displays
the assumptions of negligible differences in the magnetic and
gravitational fields between platforms, which are leveraged in
the filter formulation.
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Fig. 1. UAV Platform Payload Diagram and Assumptions

A. Relative Position Initialization Filter
For complete details of this filter’s formulation and a

performance analysis, the reader is pointed to a companion
paper [4]. Here, we motivate the high-level concept behind its
design.

In this method, there is no prior information needed about
the relative pose of each platform. Instead, the motion of
each platform is used to construct a graph with the range
measurements between platforms and principal component
distance traveled over multiple locations. The constructed
graph presented in Figure 2 is analogous to a five bar linkage.

Fig. 2. Trajectories of platforms A and B for three locations where r1, r2,
r3, r4, and r5 are the link lengths

The distance measurements obtained from the ranging
radios and the principal component distance traveled over
multiple locations form the links, and the platform position
at each location form the joints. To form this linkage, the
platforms are required to travel at constant velocities. As listed
below, there are four possible scenarios for the solution of
this problem while the platforms are traveling at constant
velocities. For each of these cases, there is exactly one solution
for the relative orientation, but the singularity and the number
of solutions of the relative position varies depending on the
path of the platforms.

1) If the platforms are traveling along intersecting lines,
there are exactly four solutions for the relative position.

2) If the platforms are traveling parallel with different
velocities, there are exactly two solutions for the relative
position.

3) If the platforms are traveling parallel with equal veloc-
ities, there are an infinite number of solutions for the
relative position.

4) If the platforms are traveling along the same line in
opposite directions, there is exactly one solution for the
relative position.

In this problem, only case 1 and case 2 are considered
because case 3 and case 4 are easily detectable and are not
as likely as case 1 and case 2. Using the constructed linkage,
the relative position in polar coordinates can be obtained by
solving the loop closure equations of the linkage.

α cos θ3 = β (1)

a tan2 (θ2/2) + b tan (θ2/2) + c = 0 (2)

In Equation 1, α and β are constant and are a function of
the link lengths. In Equation 2, a, b, and c are constant and
are a function of the θ3 and the link lengths. If the system
is free of noise, Equation 1 and Equation 2 can simply be
solved substituting the appropriate values for the ranging radio
measurements and the principal component distance. Since the
measurements are noisy, linear least squares is used to solve
for the cosine of the relative orientation since this value is
constant over any number of time steps. Using the least squares
estimate of the cosine of the relative orientation, each of the
four possible solutions for the relative position are estimated
in polar coordinates using nonlinear least squares to solve
Equation 2. Note the value being estimated in Equation 2
is the angular coordinate of the relative position. The radial
coordinate is obtained from the ranging radio measurements.
Since this formulation is sensitive to noise, the solutions
are smoothed using exponential smoothing, then an extended
Kalman Filter (EKF) is formed for each solution using INS
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for predicting the relative pose and the smoothed angular
coordinate for updating the measurements. Once the filters
converge, the coordinate frame transformation is calculated for
each of the four solutions. At this point, one of the platforms
must turn in a different direction and continue traveling at a
new constant velocity. Using the estimated coordinate frame
transformation, the relative position is propagated during this
maneuver using INS. Now, the expected distance between
platforms can be calculated using the INS solution. Using
the difference between the ranging radio measurement and the
expected distance, the likelihood is calculated for each of the
four solutions. The solution with the highest likelihood is the
solution nearest to the correct solution.

B. Computer Vision Relative Pose Estimation

A commonly used model of image formation is the pinhole
camera model, which assumes that the model for a camera p
can be parameterized using 3 elements: a 3×3 upper triangular
intrinsic camera parameter, Kp, a 3× 3 rotation matrix, Rp

W ,
representing a rotation of 3D world points to camera-centered
3D points, and lastly a 3 element vector representing camera
p’s position in world coordinates, cp. Given these parameters
the full 3× 4 perspective projective matrix can be defined by
Equation 3.

P p = Kp[Rp
W −R

p
W cp] (3)

Then the transformation projecting a 3D world point y onto
2D image point xp using the homogeneous coordinate repre-
sentation can be defined by Equation 4.

x̃p = P pỹ (4)

Supposing that two such camera models for cameras A and B
were available the relative pose can be directly calculated by
subtracting the positions and calculating the rotation matrix
between camera A and B.

RB
A = RB

W (RA
W )T (5)

With the goal of associating pixels between two images and
calculating the relative transformation a three step process is
employed. First, the set of images is searched from the two
cameras to find corresponding images using a modification of
the latent Dirichlet allocation (LDA) [5] coupled to a Hidden
Markov Model (HMM). We extract features from the imagery
and perform vector quantization in feature space to create a
discrete set of ”words” (so named because the LDA model
was developed for document analysis). The LDA model is a
hierarchical statistical model that captures the co-occurrence
of features in imagery. Finding corresponding images proceeds
by using the statistical model to calculate the maximum
likelihood match of the set of features from platform B to
the models learned on the images of platform A. The HMM
is used to enforce time consistency between observations.

Next, we use a frame-to-frame matching to align the top
matching candidate images from the set of corresponding im-
ages. A feature-matching approach using the Scale Invariance
Feature Transform (SIFT) [6] is used in this study.

Lastly, given the set of correspondences between any two
images and the 3×3 intrinsic camera parameter matrix, K, the
five-point algorithm [7] can be used to compute an estimate
of the essential matrix.

E = RB
A [tBA ] (6)

Where RB
A represents the relative rotation from platform A’s

coordinate frame to platform B’s and tBA represents the relative
translation between the two coordinate frames. Thus, a 3D
point from platform A’s coordinate frame can be transformed
into platform B’s coordinate frame given the true relative pose.

xB = RB
Ax

A + tBA (7)

Since E is being recovered from correspondences, only the
direction of tBA can be computed due to the projective ambi-
guity.

The relative pose from those correspondences is calculated
using the five-point algorithm in a RANdom Sampling and
Consensus (RANSAC) [8] loop for robustness.

C. Relative Navigation Filter

The nonlinear estimator used is an unscented Kalman filter
(UKF). For details on UKF implementations, the readers are
referred to [9] and [10]. The states estimated by the filter
are relative position, relative velocity, and relative orientation
between platform B and platform A. All of the estimated states
are represented in the body frame of platform B.

x =



xBAB

yBAB

zBAB

ẋBAB

ẏBAB

żBAB

αB
AB

βB
AB

γBAB


=

r
B
AB

vBAB

θBAB

 (8)

Where xBAB represents the relative position of platform A
with respect to platform B in the x-axis of the body frame
of platform B. Similarly, αB

AB represents the relative rotation
of platform A around the x-axis of platform B’s body axis
in order to match orientation with platform B. The nonlinear
Kalman filter predicts relative pose using relative INS integra-
tion and issues measurement updates provided by computer
vision, peer-to-peer ranging radio, and magnetometer sensor
data. The filter estimates the relative position and velocity
vectors of platform A in the body-frame of platform B, as
well as the attitude that represents the transformation from
platform A to B, RB

A .
1) Relative Inertial Navigation: The inertial navigation

formulation used in this study was also used by Frosbury and
Crassidis in [11], where the authors derived full navigation
equations and error-state expressions for relative navigation
applications. Frosbury and Crassidis presented this work for its
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implications in formation flight control systems and conducted
a simulation to prove the validity of the derived equations. In
this paper, we slightly deviate from [11] by assuming that there
is no gradient in the gravity field between the two platforms.

For predicting relative attitude, a relative quaternion is
integrated using data from both platforms IMUs based on state
transition relationship derived in [12].

q+AB = [Ω(ωB)Γ(ωA)]q−AB (9)

Where Ω(ωB) are Γ(ωA) are given by:

Ω(ωB) =

[
−[ωB̂ ] ωB

−ωT
B 0

]
(10)

and

Γ(ωA) =

[
[ωÂ] −ωA

ωT
A 0

]
(11)

Where ˆ indicates the skew-symmetric matrix of the rotation
vector. Using the updated attitude the relative velocity between
platforms A and B must take into account the Coriolis accel-
eration terms due to the rotating body frame of platform B.

vB,+
AB = vB,−

AB − (ω̇B × rB,−
AB )τs − ([ωB̂ ][ωB̂ ]rB,−

AB )τs−
2(ωB × vB,−

AB )τs + ∆vB −RB
A∆vA

(12)

Where ∆vA and ∆vB are the IMU incremental velocity
changes measured in the body-frame of platforms A and B,
respectively. It can be noted that there is no modeled acceler-
ation due to gravity present in this equation. It is assumed that
the two platforms are close enough to consider the gravity term
in the Earth Centered Inertial (ECI) coordinates to be the same
for both platforms. Finally, the relative position is predicted
using the updated relative velocity estimates as follows:

rB,+
AB = rB,−

AB + (vB,−
AB )τs (13)

The above equations make up the nonlinear state transition
functions f of the filter used in this study. The diagonal process
noise covariance matrix, Q, is constructed using IMU param-
eters. Velocity Random Walk (VRW) and Angular Random
Walk (ARW) are used to construct the matrix in the same
way they would for a single platform INS, with the exception
that the matrix is multiplied by a scalar

√
2 to account for

the addition of two random error sources (from two separate
platforms) instead of one.

2) Measurement Updates: Measurement updates from
peer-to-peer ranging radio, magnetometer, and computer vi-
sion methods help to minimize the drift present in the relative
INS. The observation model for ranging radio measurements is
the magnitude of the predicted relative position. The estimated
distance, ||rB,+

AB ||2, can be compared to the measured distance
provided by ranging radio sensor data. Here we build upon
recent work that has used Ultra Wideband (UWB) peer-to-
peer radio in a GPS-degraded setting for relative navigation
applications for formation flight in [13].

||rB,+
AB ||2 =

√
(xB,+

AB )2 + (yB,+
AB )2 + (zB,+

AB )2 (14)

The magnetometer observation model assumes the same
magnetic field vector is acting on each aircraft due to their
assumed proximity. Using this assumption the relative attitude
between the platforms is used to rotate body axis magnetome-
ter data from platform A into platform B’s body frame. Then,
the actual measurement from the magnetometer sensors on
platform B can be compared to the estimation made from the
equation below.

MB = RB
AMA (15)

The computer vision technique described in Section II-B
directly provides relative pose estimates in the form of a unit
vector from platform B to platform A, as well as a relative
orientation measurement. The measurement error-covariance
matrix, R, in the Kalman filter is a diagonal matrix made
up of the squares of assigned error values used in the sensor
simulation. For magnetometers and ranging radios this is
straightforward. The covariance for the computer vision mea-
surements was generated by bounding the empirical statistical
error model derived from image data with a Gaussian that
included 99% of the errors.

III. ALGORITHM SENSITIVITY ANALYSIS

To assess performance sensitivity, a Monte Carlo study was
conducted to investigate the effects of varying flight geometry,
sensor accuracy, sensor measurement frequency, and initial
condition error. As an example, Figure 3 and 4 display the
geometry of Flight Path 2. The three flight paths differ in
the initial separation between each platform, with Flight Path
1 having the largest separation between aircraft and Flight
Path 3 having the smallest. Each of these simulated paths
is approximately 8 minutes long, during which the aircraft
converge closer to one another to simulate the use of a control
system which would navigate platform B to platform A for
target hand-off. In reality, this control would be driven by the
initialization filter described in [4]. These simulations were
conducted in an environment developed at WVU and modified
for the purposes of this study, more details of the simulation
environment can be found in [14].

The error characteristics of the HG1930-CA50 IMU was
used as a baseline for this study and where scaled to error
ranges of various grade IMUs [15] and shown in Table I .
The baseline Honeywell sensor has a gyroscope bias in-run
stability of 1.0deg

hr , a accelerometer bias in-run stability of
0.3mg, a Velocity Random Walk (VRW) of 0.3 fps√

hr
and an

Angular Random Walk (ARW) of 0.125 deg√
hr

in the roll axis
and 0.09 deg√

hr
in the pitch and yaw axes [16]. Additionally,

the simulation assumed baseline error characteristics for the
ranging radio to be white Gaussian noise σ = 5cm and
magnetometer measurement errors of white noise Gaussian
with σ = 250, 000nT, respectively. Tables II and III show the
update rates and error characteristics (Error Scale Factor, ESF)
used for the magnetometer, computer vision, and ranging radio
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as well as the distribution of initial condition errors used in
the Monte Carlo analysis.

Fig. 3. North v East Representation of Flight Path 2

Fig. 4. ENU Representation of Flight Path 2

TABLE I
INERTIAL MEASUREMENT UNIT SCALING FACTORS

IMU Characterization ESF

Automotive Grade 50
Tactical Grade 1
Intermediate Grade 1/100
Aviation Grade 1/1000

Tables IV - VII show the distribution of different character-
istics of the simulation runs included of the 500 Monte Carlo
trials that were executed.

IV. RESULTS

A. Initialization Filter

The performance analysis of the initialization filter are
described in [4]. In this study, we assume an a prior initial
condition error for the relative pose Kalman filter as shown in
Table III.

TABLE II
MAGNETOMETER, RANGING RADIO, AND COMPUTER VISION MONTE

CARLO CHARACTERISTICS

Sensor Scaling Frequency (Hz) ESF

Magnetometer 100 1-5
Ranging Radio 5, 10, 25, 50, 100 1-5
Computer Vision 1, 2, 5, 10, 25 1

TABLE III
INITIAL CONDITION ERROR DISTRIBUTIONS

Characteristic Mean Std. Dev.

Position (m) 0 5
Velocity (m

s
) 0 10

Attitude (deg) 0 2

TABLE IV
IMU QUALITY MONTE CARLO DISTRIBUTION

IMU Quality # of Runs

IMU 1 126
IMU 2 112
IMU 3 124
IMU 4 138

TABLE V
COMPUTER VISION UPDATE FREQUENCY MONTE CARLO DISTRIBUTION

Computer Vision
Frequency (Hz) # of Runs

1 105
2 95
5 101
10 111
25 88

TABLE VI
RANGING RADIO UPDATE FREQUENCY MONTE CARLO DISTRIBUTION

Ranging Radio
Frequency (Hz) # of Runs

5 89
10 108
25 108
50 108

100 87

TABLE VII
FLIGHT PATH MONTE CARLO DISTRIBUTION

Flight Path # of Runs

1 164
2 169
3 167
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B. Standalone Computer Vision

In order to evaluate computer vision measurements, a
two-component Gaussian mixture error model of the five-
dimensional relative pose parameter space was estimated. The
model was estimated by comparing rotation and translational
direction from the computer vision pose estimate on a set
of measured data compared to the solution using GPS/INS
output. Using 241 test images the best matching images were
computed using the LDA-HMM model. Then SIFT matching
followed by the five-point algorithm was applied on the query
image and the top matching image to estimate the relative
pose. The RANSAC estimation process required at least 100
inliers to improve robustness, reducing the number of data
points to 159.

The error was computed in both the estimated rotation
angles and the difference between the estimated translation
vector and the true translation vector in 3 dimensions. An
example of the error in rotation angles in shown in Figure 5.
Each of the 3 plots shows error in a different angle, computed
with respect to the ground-truth axis-angle representation; thus
the angles do not directly correspond to roll, pitch, and yaw,
but with the error in local coordinates. For the majority of the
sequence the error is within a degree, with some earlier parts
of the sequence having a larger error. The beginning portion
of the sequence is less feature-rich, and therefore, the five-
point algorithm is not quite as robust as later in the sequence.
Similarly, in Figure 6, the error in translation vector estimate is
shown. Note here the clear mode at the origin, with erroneous
translation vectors also scattered about space.

Fig. 5. Error in Rotation Estimate from Five-Point Algorithm

From this data a two-component 6D Gaussian error model
for computer vision-based measurements of relative pose was
inferred. This model is used in the simulation of computer
vision measurements and the variance of the error is used in
the relative pose filter.

C. Relative Navigation Filter

For each flight path simulated, the UAVs start far away from
one another and eventually converge to a similar trajectory.
Over this profile, the most important period for target handoff
is after the UAVs have converged to a similar trajectory. During
the initial period of the flight when the UAVs are far apart, the
estimation error of the filter is relatively poor because errors

Fig. 6. Error in Translation Vector Estimate from Five-Point Algorithm

in the computer vision system’s direction of translation update
are projected over a long baseline and the relative dynamics
between the UAVs are more exaggerated. As such, our analysis
primarily considers the performance over the last 2/3 of each
flight. For reference, Figure 7 compares the median error of
the 500 Monte Carlo trials over the last 2/3 of each flight
where the median is 12 m 3D RSS for position error and 0.5
3D RSS for attitude error.
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Fig. 7. CDF of Position and Attitude Error from 500 trials (considering last
2/3 of each flight)

All the remaining figures show distributions based upon
last 2/3 of each simulated flight separated by run various
characteristics. Figures 8 - 14 display Cumulative Distribution
Functions (CDFs) for specified simulation characteristics. The
position and attitude errors displayed in these plots are the
two norm of the Root Mean Square (RMS) error. These plots
show the performance of the relative pose filter during the
Monte Carlo analysis for a specific simulation characteristic,
while all other values of the simulation remain random. For
example, Figure 9 displays the results of each filter run sorted
by the quality of IMU used during the simulations, while all
other Monte Carlo variables are randomized. This allows for
the evaluation of the effect IMU quality has on the filter’s
ability to estimate relative pose.

Figure 8 shows a change in filter accuracy based on flight
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geometry, where the closer the starting positions of the aircraft
the more accurate the pose estimation than the two with larger
initial seperation.
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Fig. 8. CDF of Position and Attitude Error from Varying Flight Geometry
(considering last 2/3 of each flight)

We believe that this discrepancy is likely attributed to the
flights with smaller initial separation containing fewer and less
dramatic dynamic maneuvers coupled with the fact that as the
separation of the UAVs increases, the errors in the computer-
vision based estimates of the direction of translation result in
a larger cartesian error.

Figure 9 shows that IMU grade is not very critical for
positioning accuracy (i.e. all CDFs are similar), though, as ex-
pected, the automotive grade IMUs shows noticeable attitude
estimation performance degradation.
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Fig. 9. CDF of Position and Attitude Error from Varying IMU Quality
(considering last 2/3 of each flight)

However, the most pronounced differences in estimation
accuracy is a result of the computer vision update frequency.
Figure 10 displays an obvious trend, in which the filter
provides less accurate pose estimations at lower computer
vision frequency updates, indicating that these updates are
crucial to the filters ability to combat IMU drift.

Interestingly, the remainder of the sensitivities considered as
shown in Figures 11 - 14 indicate that there is relatively little
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Fig. 10. CDF of Position and Attitude Error from Varying Computer Vision
Update Frequency (considering last 2/3 of each flight)

sensitivity on the filter’s estimation performance when varying
ranging radio update rate, ranging radio and magnetometer
error magnitudes, and initial condition errors. That is, each of
the CDFs are quite similar for each remaining case.
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Fig. 11. CDF of Position and Attitude Error from Varying Ranging Radio
Update Frequency (considering last 2/3 of each flight)

The fact that the filter formulation produces reasonably
accurate position and attitude estimates when considering the
ranges of sensor quality and availability tested as shown in
Figure 7, is an important determination as we move toward
filter and payload design for flight demonstrations. For a
baseline design if we only consider trials that use the HG-
1930 IMU tactical grade IMU, 5 Hz computer vision updates
and assume a favorable flight path, such as flight path 3, the
median 3D RSS position error of 13 Monte Carlo trials 21
meters and the median 3D RSS attitude error is 2.7 degrees.

V. CONCLUSIONS AND FUTURE WORK

This study presents a relative pose estimation algorithm
and show its sensitivity to flight geometry, sensor character-
istics and initial condition errors. The algorithm is a GPS-
denied relative navigation filter that primarily consists of an
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Fig. 12. CDF of Position and Attitude Error from ESF Values of Ranging Radio and Magnetometer Sensors (considering last 2/3 of each flight)
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Fig. 13. CDF of Position Error from Initial Condition Errors in Position and Velocity Estimation (considering last 2/3 of each flight)
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Fig. 14. CDF of Position and Attitude Error from Initial Condition Errors in Attitude Estimation (considering last 2/3 of each flight)

integration of inertial navigation and computer vision. For
computer vision updates, a statistical model was used to
rapidly determine overlapping content between two sets of
imagery such that relative pose can be extracted. Using a set
of flight data imagery, a statical error model was developed

and used to assess updates of this nature being fused with
other sensors. Based on this analysis, it is shown that this
algorithm can provide relative pose estimates in a GPS-
denied setting with enough accuracy to assist in the problem
of platform target handoff. In particular, considering overall
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sensitivity to sensor quality and availability, simulated trials
were shown to have 10-meter-level position accuracy and 0.5
degree accuracy in a median sense. Our Monte Carlo analysis
also shows that the update rate of computer vision relative
pose measurements, quality of IMU, and the separation of
flight paths have the most prominent impact of performance.
Furthermore, the incorporation of magnetometer updates, the
quality of ranging radio measurements, and initial condition
errors are shown to not have a significant impact on the overall
algorithm performance. Future work will include end-to-end
system development for experimental testing.
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