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ABSTRACT

Accurate segmentation of tissue microarrays is a challenging

topic because of some of the similarities exhibited by nor-

mal tissue and tumor regions. Processing speed is another

consideration when dealing with imaged tissue microarrays

as each microscopic slide may contain hundreds of digitized

tissue discs. In this paper, a fast and accurate image segmen-

tation algorithm is presented. Both a whole disc delineation

algorithm and a learning based tumor region segmentation ap-

proach which utilizes multiple scale texton histograms are in-

troduced. The algorithm is completely automatic and compu-

tationally efficient. The mean pixel-wise segmentation accu-

racy is about 90%. It requires about 1 second for whole disc

(1024×1024 pixels) segmentation and less than 5 seconds for

segmenting tumor regions. In order to enable remote access to

the algorithm and collaborative studies, an analytical service

is implemented using the caGrid infrastructure. This service

wraps the algorithm and provides interfaces for remote clients

to submit images for analysis and retrieve analysis results.

Index Terms— Segmentation, Tissue Image Analysis

1. INTRODUCTION

Breast cancer accounts for about 30% of all cancers and 15%

of all cancer deaths in women in the United States. Current

therapies and treatment regimens are based upon classifica-

tion strategies which are limited in terms of their capacity

to identify specific tumor groups exhibiting different clinical

and biological profiles. Tissue microarray (TMA) technique

enables investigators to extract small cylinders of tissue from

histological sections and arrange them in a matrix configu-

ration on a recipient paraffin block such that hundreds can

be analyzed simultaneously [1, 2]. An alternate, but less uti-

lized approach is to sequentially digitize each specimen for

subsequent semi-quantitative assessment [3]. Both strategies
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ultimately involve the interactive evaluation of TMA samples

which is a slow, tedious process that is prone to error. Pro-

cessing the specimen using a reliable, image-based analysis

system could reduce the cost and patient morbidity. There

has been increasing interest in investigating the image anal-

ysis algorithm for digitized TMA tissue microarray images

[4]. However, to our knowledge, most of these studies run as

stand-alone programs, which limits the scale and throughput

as a result of the computational complexity required by many

of the algorithms used for analysis.

The biomedical research community has recognized the

importance of collaborative use of databases and analysis

systems, developed by independent research groups and/or

hosted by different institutions, in order to target complex

diseases. There are several large scale projects, driven by

community needs, that develop tools and infrastructure to

support federation of information and analytical resources for

basic, clinical, and translational research. An example in the

cancer research field is the cancer Biomedical Informatics

Grid (caBIG R©, http://cabig.nci.nih.gov) program, sponsored

by the National Cancer Institute. The goal of this program

is to develop informatics standards, a common suite of ap-

plications, and a Grid infrastructure to assist more effective

sharing of data and analytical resources across institutions

and support coordinated multi-institutional projects. The

CardioVascular Research Grid (CVRG, http://cvrgrid.org) is

another example. The CVRG is developing a suite of tools,

applications, and a federated infrastructure (building on the

caBIG R© caGrid architecture[5]) to support information shar-

ing and collaborative studies in the cardiovascular research

community.

In this paper, we describe a learning based segmentation

algorithm for analyzing digitized breast tissue specimens. In

Section 2 we present the details of the segmentation algo-

rithm. The implementation using caGrid for remote access

and collaboration is described in Section 3. Section 4 pro-

vides the experimental results and Section 5 concludes the

paper.

2. SEGMENTATION

Image segmentation is the process of delineating an image

into ”homogeneous” regions based on the similarity of pixel

attributes. In our applications, the pre-processing step of
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Fig. 1. TMA-Miner Prototype Client Interface.

the segmentation algorithm automatically detects the outer

contour of imaged tissue discs. An Adaboost classifier was

trained using a multiscale texton histogram as the feature vec-

tor. The whole procedure has been implemented as a caGrid

analytical service and can be launched remotely by remote

clients. The Java based image analysis interface is shown in

Figure 1.

2.1. Whole Disc Delineation

The algorithm begins by finding the outer contour of each

whole breast tissue disc. This is achieved by first applying

a simple adaptive threshold to provide a binary mask for the

tissue disc. The algorithm then roughly estimates the outer

boundary of the binary disc as the region of interest (ROI).

Given a set of point set S, with points p1, ..., pN , the outer

envelop is given by the following equation:

H =

⎧
⎨
⎩

N∑
j−1

λjpj : λj � 0 for all j and

N∑
j−1

λj = 1

⎫
⎬
⎭ . (1)

A deformable model [6] is further applied to extract the breast

cancer disc from the background.

In Figure 2, we show the unsupervised delineation of the

outer boundary of a few representative tissue discs. After seg-

menting the whole disc mask, the segmentation of the ROI is

performed using texton histograms.

2.2. Learning Based Tumor Region Segmentation

Textons [7] are defined as repetitive local features that humans

perceive as being discriminative between textures. We use the

multiple scale Schmid filter bank [8] composed of 13 rotation

invariant filters:

F (r, σ, τ) = F0(σ, τ) + cos
(πrτ

σ

)
e−

r2

2σ2 (2)

The image filtering responses are clustered using K-

means to generate a large code book. A texton library is

(a)

(b)

Fig. 2. The classification results. (a) A sample imaged tissue

microarray. (b) The delineation of the outer contours of a few

representative breast tissue discs.

constructed from the corresponding cluster centers. The

pixel-wise segmentation of imaged breast tissue is performed

by classification. Based on the labeled ground truth masks,

2000 positive and negative pixels are extracted from the tu-

mor and non-tumor regions in the image. The appearance of

the neighbors of each training pixel is modeled by a compact

quantized description - texton histogram, where each pixel is

assigned to its closest texton using the following equation:

h(i) =
∑
j∈I

count(T (j) = i) (3)

Here I denotes breast tissue image, i is the i-th element of

the texton dictionary, and T (j) returns the texton assigned to

pixel j. The windowed texton histogram is computed around

each individual training pixel.

After normalization, the texton histogram actually rep-

resents the texton channel frequency distribution in a local

neighborhood around the centered pixel. In order to com-

pensate for scale changes, the texton histogram is extracted

from 5 different window sizes (4, 8, 16, 32, 64 pixels, respec-

tively) and concatenated into one large feature vector. This

concatenated texton histogram is used as features to train the

classifiers. The integral histogram [9] is used to calculate

the windowed texton histogram. The algorithm starts by ex-

ploiting the spatial arrangement of data points. It then recur-

sively propagates an aggregated histogram. The aggregated

histogram starts from the origin and traverses through the re-

maining points along a scan-line. At each step, a single bin is

updated using the values of the integral histogram at the pre-

vious visited neighboring data points. The integral histogram

method speeds up feature extraction significantly.

The Adaboost is chosen as the classifier for segmentation.

AdaBoost works by sequentially applying a classification al-

gorithm on a reweighed version of the training data and pro-

duces a sequence of weak classifiers. The weak leaner used in

our experiments is classification stump. The strong classifier

is assembled from all the weak classifiers to minimize the cost

function representing the classification accuracy. Given a test
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Input: Given the input imaged tissue specimen.

Training:

• Extract the multiple-scale texton histogram as the input

features x.

• Initialize the weights wi = 1/n, i = 1, ..., n. Set b(x) =
0.

• For j = 1...J

– Each training sample is assigned its weight wi.

Find the decision stump hj(x) which minimizes the

total weighted classification errors.

– Update using b(x) = b(x) + hj(x).

– αj = 1
2

ln
1−εj

εj
.

– Update the weights wi = wie
−yiαjhj(x) and

renormalize wi.

– Save the j-th decision stump hj(x).

Testing:

• Apply the adaptive threshold

• Calculate the initial position by finding the outer pixels

• Apply deformable model to delineate the outer contour

• Construct the multiple-scale texton histogram using the

same procedure in training stage

• Utilize the trained classifier to provide the output label for

each pixel: sign [b(x)] = sign
[∑J

j=1 hj(x)
]
.

Fig. 3. The segmentation procedure which applied de-

formable model to find outer contour and multiple scale tex-

ton histogram for tumor region segmentation.

image, we apply the trained strong classifiers for each pixel

and separate the image into tumor and non-tumor regions.

Using the multiscale texton histogram, integral histogram

and AdaBoost, a fast and accurate pixelwise segmentation al-

gorithm can be implemented for delineating the tumor region

in an imaged breast cancer specimen. The pseudocode of the

algorithm is shown in Figure 3

3. IMPLEMENTATION OF GRID SERVICES FOR
REMOTE ACCESS AND COLLABORATION

One of our goals in this project is to facilitate remote ac-

cess to analysis methods and analysis results by researchers

and among collaborating teams and to enable efficient exe-

cution of expensive analysis on high-end systems. We em-

ploy Grid computing and high performance computing frame-

works for this purpose. In this work we have adopted a service

oriented implementation to support remote access to analy-

sis programs. This implementation encapsulates an analy-

sis method or application as a service. The analysis appli-

cation’s functionality is accessed remotely and programmat-

ically through application-specific service interfaces. With a

service oriented design and implementation, a heterogeneous

collection of analysis programs (which may be implemented

as Matlab scripts, Java codes, or C++ programs) can be ac-

cessed through well-defined and published interfaces. This

facilitates more effective and easier federation of multiple an-

alytic resources in a collaborative environment. Moreover,

the backend analysis program can be deployed on a paral-

lel machine for faster execution of requests without requir-

ing modifications to client programs. We use the caGrid in-

frastructure [5] for Grid-enabled deployment of our analysis

methods. caGrid is the core Grid architecture of caBIG R©.

It is implemented as a service oriented architecture with ex-

tended support on service metadata, interoperability through

published XML schemas and common data elements, and se-

curity.

Our choice of caGrid as the underlying infrastructure is

motivated by several factors. First, caGrid is employed by

both the caBIG program and the CVRG project. Implement-

ing our Grid services using caGrid would enable us to inter-

operate with tools and resources developed by those commu-

nities. Second, caGrid provides higher level tools and core

services such as Introduce [10] for service development and

deployment and GAARDS [11] for security support on top

of low level Grid middleware. These tools make it easier

to develop and deploy interoperable services and implement

Grid-enabled authentication and authorization support for a

service. Third, a service oriented system provides flexibility

in organizing and combining the steps of an analysis process

into services. For instance, each step may be implemented as

a separate service or multiple steps can be combined into one

service.

We have developed a suite of services for analysis of TMA

data. One implementation treats each step in the analysis pro-

cess as a separate service. The advantage of this approach is

that the client can compose different analysis processes using

a subset of these services. The client can also replace a service

(a step) with another semantically equivalent service, which

may be implementing a different algorithmic variation of the

analysis step. The disadvantage is that it introduces overheads

because of multiple service invocations and because data is

exchanged through service interfaces, rather than using na-

tive data formats and file or memory copies. A more recent

implementation combines multiple steps (each of which is im-

plemented as a stand-alone program) into a single caGrid an-

alytical service. This implementation has less overhead, but

offers less flexibility to clients. The implementation of this

service has been done using the caGrid Introduce toolkit. We

have implemented a service interface and skeleton using In-

troduce. The service interface accepts a TMA disc image and

input parameters used by the analysis programs. It returns a

texton histogram as the analysis result. When an image is re-

ceived by the service, the service stores the image into a file

and invokes the backend analysis programs passing them the

image file. Once the analysis of the image has been com-

pleted, the service converts the results into an object, which
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Fig. 4. The representative segmentation results . The seg-

mented mask is overlayed on the original images.

represents the texton histogram, and returns the object to the

client. We are in the process of extending this service to ac-

cept a collection of images and make use of a parallel machine

so that multiple images can be processed concurrently reduc-

ing the overall execution time.

4. EXPERIMENTAL RESULTS

The tissue microarrays used in our experiments were pre-

pared by different institutes: the Cancer Institute of New Jer-

sey, Yale University, University of Pennsylvania and Imgenex

Corporation, San Diego, CA. Diaminobenzidine (DAB) and

hematoxylin were used to stain the tissue samples. To date

over 300 immunostained microscopic specimens, each con-

taining hundreds of tissue image, were digitized at 40 volume

scan using the Trestle/Zeiss MedMicro, the whole slide scan-

ner system. The output images typically contain a few billions

of pixels and are stored as a compressed tiled TIFF file sized

at about two gigabytes.

We obtained 100 breast cancer specimens for which

ground truth tumor masks were hand-drawn by a board-

certified anatomic pathologist. Compared with the doctor’s

annotation, the algorithm provided a pixel-wise segmenta-

tion accuracy around 90% with the average false positive rate

6.62% and the average false negative rate 3.15%. Some of the

segmentation results are shown in Figure 4. The algorithm

is implemented using C++ and computationally efficient. On

a PC with Duo Core Processor 1.8GHz and 2G memory, the

whole disc delineation took only 1 second for a 1024*1024

images, while the segmentation of the tumor region took less

than 5 seconds.

5. CONCLUSIONS

In this paper, we have presented a robust, fast and accurate

segmentation algorithm for digitized tissue microarray im-

ages. A novel aspect of this algorithm is that instead of build-

ing specific models of the specific problem, all the major steps

in the segmentation process are based on learning. This char-

acteristic of the algorithm makes it possible to extend the al-

gorithm to other types of digitized pathology specimen seg-

mentation. Our implementation leverages emerging service

oriented Grid architectures for remote access to the algorithm

for collaborative studies. We believe the availability of exten-

sible algorithms deployed as services has tremendous poten-

tial to significantly improve scientific research that makes use

of biomedical imaging.
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