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ImageMiner: a software system for comparative
analysis of tissue microarrays using content-based
image retrieval, high-performance computing, and
grid technology

David J Foran,1 Lin Yang,1 Wenjin Chen,1 Jun Hu,1 Lauri A Goodell,1 Michael Reiss,1

Fusheng Wang,2 Tahsin Kurc,2,3 Tony Pan,2 Ashish Sharma,2,3 Joel H Saltz2

ABSTRACT
The 1design and implementation of ImageMiner,
a software platform for performing comparative analysis
of expression patterns in imaged microscopy specimens
such as tissue microarrays (TMAs), is described.
ImageMiner is a federated system of services that
provides a reliable set of analytical and data
management capabilities for investigative research
applications in pathology. It provides a library of image
processing methods, including automated registration,
segmentation, feature extraction, and classification, all of
which have been tailored, in these studies, to support
TMA analysis. The system is designed to leverage high-
performance computing machines so that investigators
can rapidly analyze large ensembles of imaged TMA
specimens. To support deployment in collaborative,
multi-institutional projects, ImageMiner features grid-
enabled, service-based components so that multiple
instances of ImageMiner can be accessed remotely and
federated. The experimental evaluation shows that: (1)
ImageMiner is able to support reliable detection and
feature extraction of tumor regions within imaged
tissues; (2) images and analysis results managed in
ImageMiner can be searched for and retrieved on the
basis of image-based features, classification information,
and any correlated clinical data, including any metadata
that have been generated to describe the specified
tissue and TMA; and (3) the system is able to reduce
computation time of analyses by exploiting computing
clusters, which facilitates analysis of larger sets of tissue
samples.

INTRODUCTION
Tissue microarray (TMA) technology preserves
limited tissue resources and reagents by providing
the means of producing large numbers of individual
core biopsy samples (histospots) rather than
a limited number of standard-sized histology
sections. A carefully planned array can be
constructed using TMAs such that a 20-year
survival analysis can be performed on a cohort of
600 or more patients using only 100e200 ml of
antibody.1 TMAs can provide insight into the
underlying mechanisms of disease progression and
can be used as a tool to improve prognostic accu-
racy and personalize treatment regimens for specific
subpopulations of patients.1e3

The dense matrix configuration of histospots
utilized in the TMA technology lends itself to

high-throughput quantitative analysis. However,
unlike DNA microarrays, wherein each tiny spot
within a given array is homogeneous and represents
a unique cloned complementary DNA or oligonu-
cleotide, individual spots within a TMA often
consist of a complex, heterogeneous mix of tissues.
These factors complicate quantitative analysis of
TMA specimens tremendously. Currently, the
primary methods used for such evaluations involve
manual and interactive review of TMA samples,
while they are subjectively analyzed and scored.
An alternate, but less utilized, strategy is to
sequentially digitize specimens for subsequent
semi-quantitative assessment.4 5 Both procedures
ultimately entail the interactive evaluation of
specimens, which makes for a slow and tedious
process which is prone to both inter- and intra-
observer variability. Together, these factors signifi-
cantly reduce the reliability and reproducibility of
the assessment.
Since about 2001, the idea of developing more

effective methods and protocols to conduct the
quantitative analysis of TMA specimens has
become an extremely active area of research.6e12 For
example, the automated quantitative analysis
(AQUA) system was developed to help automate
the process of characterizing the staining intensities
of tissue samples. The AQUA system is a molecular
based approach for quantitatively assessing protein
expression with the intent to reduce the degree of
variability associated with pathologist-based evalu-
ation of samples.13 Several other groups have also
undertaken projects to read immunohistochemistry
TMA specimens using commercial complementary
DNA microarray readers.14 15 Although significant
progress has been made in the development of
automated methods for assessing TMAs, most of
the existing efforts are limited by the fact that they
are closed and proprietary, do not exploit the
potential of advanced computer vision techniques,
do not integrate well with a TMA data manage-
ment system, and/or do not conform with
emerging data standards. Future advances in histo-
pathology imaging will rely on the availability of
reliable, portable algorithms and computational
tools that can provide automated data management
operations, perform high-throughput quantitative
analysis, and support query and retrieval of image-
based analysis results in collaborative environments.
In this paper we present the design and imple-

mentation of ImageMiner, an open source and
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novel software platform, designed to address many of the stated
challenges and requirements. ImageMiner is designed to provide
scientists and physicians with a set of portable, reliable investi-
gative tools for performing high-throughput comparative anal-
ysis and reproducible characterization of expression profiles in
imaged TMAs. The distinguishing characteristics of the system
are the capacity to support queries and perform comparisons
across large datasets originating from both standard robotic and
virtual microscopes and the capacity to automatically locate and
retrieve those imaged tissue discs from within distributed, ‘gold
standard’ archives that exhibit expression patterns that are most
similar to those of a given query disc. The ImageMiner system
encapsulates the following three main functions to support
quantitative and comparative TMA analysis.

Objective, computer-based analysis of TMA images
The system implements a library of image processing operations,
including automated registration, segmentation, feature extrac-
tion, and classification. This functionality is designed and imple-
mented for use in both stand-alone mode and in conjunction with
high-performance computing platforms. The ImageMiner image
analysis methods have been successfully executed on parallel
machines and in distributed environments, making it practical to
reliably assess multiple imaged specimens concurrently, thereby
facilitating rapid high-throughput analysis.

Management of TMA image datasets and analysis results
ImageMiner provides support for investigators to manage and
reliably search through TMA image data and corresponding
analytical and experimental results. The ImageMiner data
model is designed to capture imaged specimen information,
correlated clinical data, and image markups and annotations.16

The design of this model is based on input from a panel of
consulting medical oncologists and pathologists.17 The image
archival subsystem and data management software modules
are developed in keeping with emerging guidelines from the
cancer Biomedical Informatics Grid (caBIG) program and the
Association for Pathology Informatics.

Remote access to and federation of ImageMiner instances
Our implementation uses a service-based architecture and grid-
computing technologies. The data analysis and data manage-
ment components of ImageMiner can be accessed from remote
clients via service interfaces, and multiple ImageMiner deploy-
ments can be federated in a distributed setting. This function
allows collaborating investigators to manage local analytical and
database resources and share these resources with other project
participants across institutions.

To evaluate the system in real-case scenarios and conditions,
a multi-institutional, grid-enabled consortium has been estab-
lished among investigators located at strategic sites at the
Cancer Institute of New Jersey, Emory University School of
Medicine, the Ohio State University, Rutgers University,
University of Texas, and the University of Pennsylvania School
of Medicine.

BACKGROUND AND RELATED WORK
Microscopy image analysis
Automatic quantification or computerized processing of TMA
specimens remains an extremely active and challenging area of
research because: (1) high-throughput microscopy imaging easily
generates thousands of cores for each TMA study; (2) there is
a relatively limited number of pathologists who are available and
experienced with the process of evaluating TMAs; (3) it is

generally accepted that the development of reliable algorithms
could lead to objective and reproducible measures while reducing
or eliminating the tedium and fatigue associated with manual
assessment; and (4) since all the cores on a TMA slide are stained
using the same, identical protocol as well as the same processing
times and temperature, large-scale, computerized analysis of
these specimens is facilitated.
As of this writing, only a few TMA management systems

have been reported that provide algorithmic support for
applying automatic methods to quantify and assess TMAs,18 19

and, because several commercial projects are proprietary with
development taking place in isolation, they cannot be easily
adopted by the general research community. At the same time,
there are few efforts that have been shown to successfully
support high-performance computing applications in TMA
analysis.20

Recently, because of the advances that have been made with
regard to computational capacities and pattern recognition
technologies, there has been renewed interest throughout the
research community in applying content-based image retrieval
(CBIR) techniques to the analysis and mining of image data
in biomedical applications.21e24 Individual strategies and
approaches used in these systems differ as to the degree of
generality (general vs domain specific), level of feature abstrac-
tion (primitive vs logical), overall dissimilarity measure used in
retrieval ranking, level of user intervention (with or without
relevance feedback), and the methods used to evaluate the
system’s performance. One of the early systems reported by the
Pittsburgh Supercomputing Center used global characteristics of
images to provide a measure of the Gleason grade of prostate
tumors.25 26 Results obtained using this system exhibited
a strong correspondence between the image distance generated
by the computer algorithm and the pathological significance as
judged by certified anatomical pathologists. Wang et al from
Pennsylvania State University introduced the use of wavelet
technology and integrated region matching distances for char-
acterizing pathology images.27 Over the years, a rich set of
techniques have been used to classify pathology images. An
excellent recent review of this active area of research has been
produced by Gurcan et al.28 While our work draws from some of
these earlier efforts, the algorithms that our team are developing
have been directed towards, and optimized for, performing
automated analysis of TMA specimens. In an earlier study, we
reported using a mixed set of 3744 breast tissue samples,
including normal tissue, ductal hyperplasia, fibroadenoma,
atypical ductal hyperplasia, ductal carcinoma in situ, and inva-
sive lobular carcinoma, to carry-out experiments to determine
the efficacy of those algorithms for their capacity to systemat-
ically classify imaged tissue discs.29 During the course of those
experiments, the system provided an average correct classifica-
tion performance rate of 89% when used to distinguish between
primary breast carcinomas and non-cancerous breast tissue
including normal tissue, ductal hyperplasia, fibroadenoma, and
atypical ductal hyperplasia. During subsequent experiments, the
algorithms provided an average accuracy of 80% when the
prototype was used to discriminate between two subgroups of
breast cancer and non-cancerous breast tissue samples.29 As an
extension of this work, ImageMiner now features a quick, reli-
able segmentation module which has been integrated with the
CBIR module, making it possible to perform classifications based
on the texton signatures of specific sub-regionsdthat is, tissue,
cell, or subcellular level within a given histospot rather than on
the signatures of an entire disc. This new feature improves the
performance significantly and expands the range of applications
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for which the system can be used. ImageMiner now also features
options that enable investigators to automatically locate,
retrieve, characterize, and display high-resolution versions of
imaged discs individually or lower-resolution ensembles of
ranked retrievals based on their similarity to a gold standard
image archive of previously classified cases.

In an attempt to address the challenges of high-throughput
analysis, several investigators have begun to exploit distributed
computing technologies. For example, our own team recently
demonstrated the use of a high-performance computing system
for automatic analysis of imaged histopathology breast tissue
specimens.30 Gurcan et al reported the successful application of
distributed computing in a pilot project to support automated
characterization of neuroblastoma using the Shimada classifi-
cation system.31 The ImageMiner system that we are developing
is a logical extension of our early successful efforts developing
network-based clinical decision support systems32e36 and large-
scale, feasibility studies that we conducted on IBM’s World
Community Grid in July 2006, using more than 100 000 imaged
tissue samples.29 30

TMA data model and data management
Because of the high density of histospots and the intrinsic diffi-
culties that arise during their evaluation, TMA analysis requires
tight communication and coordination among the modules that
are used to conduct computerized data management and those
responsible for digital imaging. To address the increasing need for
interoperable ways of exchanging TMA slides and related data
within the clinical and research communities, the tissue micro-
array data exchange specification (TMA DES) was published in
2004 as a guideline for standardizing TMA data exchange.6 Several
systems that were subsequently developed adopted these specifi-
cations and can export compatible XML datasets. However, the
fact that this specification was designed to be sufficiently general
and flexible to accommodate any user-defined tags, parsing, and
sharing of TMA information among institutions and/or systems
was still highly problematic. The updated TMA DES,37 published
in 2005, provided a well-defined XML document type definition
(DTD) for validating documents to improve compliance with
emerging standards. It also allowed extensions to the core DES
DTD by permitting local data element definitions.

Several object-oriented TMA data models and data manage-
ment systems have been developed to work with a backend,
relational database. Aside from the ‘donorecore locatione
imageeevaluation’ relations, which are common across each,
these designs vary significantly with regard to the following
features and capabilities: (1) the system developed by Barsky
et al38 was integrated with a custom constructed arrayer to
allow it to directly manage the construction process, whereas
commercially available arrayers lacked such capabilities; (2)
varying levels of flexibility are supported to enable investigators
to manage clinical information and other salient data which are
gathered throughout the course of a research study. For instance,
most systems do not provide adequate support for multiple
simultaneous users to evaluate the same TMAs, nor do they
provide sufficient flexibility for creating user-defined data tables;
(3) only a few models and systems provide computational
support for image segmentation and classification; and (4) the
crucial role of semantic interoperability has not yet been
addressed in the research community. Recent TMA data models
and data management systems have adopted one or more
standards including the NCI Thesaurus.18 39e41

The ImageMiner data model that we are developing is based
on input from a panel of consulting oncologists and pathologists

and designed to capture imaged specimen information, corre-
lated clinical data, and image markups and annotations. It has
been implemented to support quantification and classification of
imaged tissue specimens and it provides extensions to accom-
modate new data types resulting from human and computer
analyses. The ImageMiner system is implemented with the goal
of interoperability (by leveraging caBIG standards and interop-
erability guidelines) and enables investigators to export XML
data compliant with TMA DES standards.

Grid services for resource federation
Group efforts are critical to the study of scientific problems that
require complementary sets of expertise and resources. During
the course of many modern collaborative projects, it is necessary
to provide collaborating teams with access to datasets and
analysis methods that may be distributed across multiple insti-
tutions. We have designed the ImageMiner system to allow
secure federation of local ImageMiner instances across distrib-
uted networks. To implement this functionality, we have used
a service-oriented architecture design and we have leveraged
grid-computing technologies.
Grid computing has been successfully used in an increasing

number of large-scale, biomedical research efforts. The Biomed-
ical Informatics Research Network (BIRN) project,42 43 for
example, is funded by the National Institutes of Health (NIH) to
provide collaborative access to, and analysis of, distributed
datasets generated from neuroscience studies. The MammoGrid
and eDiamond projects44e46 build and federate medical image
databases for mammography datasets and to facilitate collabo-
ration among researchers and clinicians throughout the Euro-
pean Union. The Cardio Vascular Research Grid provides
applications and software tools in a service-oriented grid
framework for cardiovascular research groups (http://cvrgrid.
org). Another large-scale informatics effort is the caBIG (https://
cabig.nci.nih.gov) program, which has its primary focus on
advancing cancer research.47e49 The overarching goal of caBIG is
to develop the requisite grid infrastructure, standards, processes,
and applications to allow more effective sharing of data and
analytical resources across institutions, while providing support
to facilitate collaborative, multi-institutional projects. Our work
draws from the principles, architectures, and tools being devel-
oped in these efforts. In particular, we leverage the service-based
tool design guidelines of caBIG and the grid infrastructure, called
caGrid,49 50 developed in that program in order to create services
that are customized to support collaborative, multi-site TMA
studies.

DESIGN OBJECTIVES
The primary design criteria for ImageMiner is to develop a soft-
ware platform that enables investigators to perform rapid, large-
scale, and reproducible comparative analysis of expression
patterns in digitized TMAs. Using ImageMiner, investigators
can apply cascades of computerized image-processing methods
on multiple arrays, each of which contains hundreds or even
thousands of imaged tissue discs. These methods segment each
disc image into spatial structures, compute a set of features for
each segmented structure, and classify the disc images on the
basis of the resulting feature signature.
Another central objective of this work is to support mining of

imaged specimens and experimental data. Toward that end,
metadata about TMAs, analysis results (ie, image segmenta-
tions, features, and classification results), and metadata about
analyses (eg, which methods and input parameters were used for
a given set of results) are stored in the system in a format that
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can be queried by users. The types of queries supported by the
system include: (i) retrieval of TMAs and imaged discs based on
TMA metadata; (ii) queries to search for image discs that exhibit
expression and staining patterns which are most similar to those
of a given image disc; (iii) spatial queries on assessing the relative
prevalence of features or classified objects, or assessing spatial
coincidence of combinations of features or objects; and (iv)
queries to support selection of collections of segmented regions,
features, objects for further machine learning or content-based
retrieval applications.

The third objective of the design is to facilitate more efficient
use of the TMA technology multi-site studies. The ImageMiner
system is designed such that multiple deployments of the
system can be federated in multi-institutional settings. The
members of a collaborative project can remotely access each
ImageMiner instance, execute TMA analyses, and query analysis
results across those instances. The ability to choose various
analysis algorithms can assist algorithm developers in algorithm
evaluation and validation as well as researchers in comparative
analyses. For example, an algorithm researcher could select
similar algorithms implemented and hosted as services by other
researchers and compare the results from those algorithms with
his/her own results. Similarly, biomedical researchers could use
results from multiple algorithms, which might extract different
types of information (eg, texture vs anatomic structures), to
create different views of the specimens under study and compare
results from these different views.

SYSTEM DESCRIPTION
The design objectives described above are realized by three
components. The first component implements data analysis
functionality and supports image segmentation and feature
extraction operations. The second component provides support
for data management and content-based search and retrieval of
imaged specimens. The third component enables grid-based
concurrent execution of image analysis operations on cluster
machines and standards-based mechanisms for data and algo-
rithm sharing. Figure 1 illustrates the architecture and main
components of the ImageMiner system. Each of these compo-
nents is described in detail in the sections that follow. The
dependencies between these components are shown in table 1.

Data analysis component
This component implements a library of operations to perform
automatic analysis of TMA arrays and can leverage parallel
computing platforms to speed up analysis of multiple TMA
images.

Image analysis library
The current library includes operations to correct for artifacts
and compensate for mechanical distortions and other artifacts
within an imaged specimen and to perform automatic segmen-
tation, feature extraction, and classification of tissue samples.
Figure 2A shows a representative TMA exhibiting bowing of

rows and columns. In order to develop a reliable means to
compensate for the mechanical distortion of arrays, it is neces-
sary to devise an algorithm that could accurately extract the
exact grid location of each disc throughout the specimen. To
achieve this objective, our algorithms were designed to operate
on a low-resolution image map of the array. The registration
algorithm uses a combination of template matching and Hough
transformation to effectively identify tissue cores and accurately
model the rows and columns of the matrix structure.51 52

The feature extraction operation is subsequently performed
by automatically generating texton measurements for each
tissue disc. Textons were first defined by Bela Julesz, the late
cognitive scientist, as conspicuous repetitive local features that
humans perceive as being discriminative among textures.53 A
computational model for textons was later introduced by Leung
and Malik, using cluster centers in a feature space which are
generated in response to a fixed set of filter banks.54 Textons
have been successfully used to perform texture classification by
a host of investigators.55e57 In the ImageMiner system, the
feature extraction process computes multi-scale texton histo-
grams for each imaged disc using the Schmidt58 and LM54 filter
banks. We demonstrated that trained strong classifiers can be
successfully used to automatically delineate the tumor and non-
tumor regions within a breast cancer specimen.59 60 Thus we
have developed an automated means of performing classification
of the tissue discs using an Adaboost classifier.61 Our library also
includes the soft margin support vector machine (SVM) and the
boosting techniques to improve classification accuracy. The
SVM is a set of supervised learning methods for classification

Figure 1 Architecture of ImageMiner.
The system consists of three
components. The image analysis
component encapsulates a library of
image processing operations. These
operations can be run on parallel and
distributed computing systems in order
for the system to concurrently process
multiple arrays and image discs. The
data management component stores
and manages metadata about TMA
images and analysis results in the form
of image markups and annotations. The
Grid service and federation component
enables remote federated access to
ImageMiner instances across
institutions.
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and regression. Boosting is one of the most important recent
developments in machine learning. It works by sequentially
applying a classification algorithm on a reweighted version of
the training data while the final label is determined by weighted
voting.

Over the course of the past 12 months, the key computational
and imaging tools have been migrated to the histopathology and
imaging shared resources at the Cancer Institute of New Jersey
for use in ongoing investigative studies. During the course of the
deployment of these Java-based software tools, it was shown

that they pose minimal requirements in terms of client
computers (Windows XP or Windows 7, 2 GHz, 2 GB RAM).
They have been successfully used to analyze microarrays
consisting of cancers of the breast, head and neck, and prostate.
As part of a fairly recent study, the automated software was used
to quantify Beclin1 expression, which was shown to be predic-
tive of autophagy.62 Our team has since conducted a series of
manemachine performance studies. In the first experiments, we
used the TMA analysis tools to evaluate immunohistochemical
staining intensity on imaged breast cancer TMA specimens
comprising 1407 tissue cores. The results showed that the
computer software algorithms achieved similar interpretations
to those provided by a panel of three board-certified pathologists
and was consistent with inter-pathologist concordance. These
results were presented at the 2010 Annual Conference of the
United States and Canadian Academy of Pathology.63

High-performance computing
Processing of large micro-tissue arrays takes excessive amounts
of time using a client’s workstation. Although each image disc is
relatively small, an array may contain hundreds of tissue discs,
and a large-scale study may use hundreds to thousands of arrays.
To address the computational requirements of analyses, we have
designed the data analysis component to take advantage of
computing clusters. The high-performance computing support
draws from the DataCutter framework.64e66 DataCutter is
designed and implemented as a stream-filter framework in
which a data processing pipeline can be composed as a network
of interacting components, referred to as filters. The filters
interact with each other by sending and receiving data through
communication channels referred to as streams. In our current
implementation, we use the bag-of-tasks execution model using
DataCutter. A single image processing operation or a group of
interacting operations is treated as a single task. Multiple
instances of these tasks are instantiated on different computa-
tion nodes of a cluster. Images received by ImageMiner for
analysis are distributed to these instances using a demand-driven
strategy (to balance computational load among the task
instances).

Data management and image search component
The ImageMiner system is designed to support both indexing
and querying of imaged tissue samples and correlated clinical
data based on the staining characteristics and expression signa-
tures of a given specimen. In addition to providing CBIR
capability, it also provides support for queries using standard,
text-based criteria, such as the diagnosis of record, histological
type, tumor grade, and biomarker used in a given study and
queries based on the measurable parameters of a given disc, such
as effective staining area and staining intensity. Figure 2B shows
the client interface of the prototype image search and retrieval
module. The client interface allows users to interactively select
any region or object of interest within a given disc and initiate
a query based on the texton histogram of that particular sub-
region, tissue, or cell. Users can subsequently refine queries by
clicking on any one of the ranked retrievals, in which case the
selected ranked retrieval serves as the new query input image.
This feature makes it possible to iteratively modify the search
until the desired image ensemble has been obtained. The
ImageMiner system is compliant with TMA DES.6 37 It is able
to export valid TMA data for exchange in accordance with these
specifications.
The data model underlying the ImageMiner database16 is

developed on the basis of input from a panel of consulting

Table 1 Dependencies between the various ImageMiner core
components

ImageMiner
component Description Dependencies

ImageMiner system Integrated ImageMiner
software system

ImageMiner analysis methods,
ImageMiner analytical service,
graphical user interface, PAIS
database, ImageMiner database

ImageMiner database Database on pathology
imaging-related data and
TMA image data

ImageMiner data model,
relational database system

PAIS database Database on pathology
and microscopy image
analysis results
(markups and
annotations),
provenance information

PAIS data model, relational
database with spatial query
capabilities (eg, IBM DB2)

ImageMiner analytical
service

Analytical service
with parallel
computing backend

caGrid service infrastructure,
parallel computing backend
system (eg, Message Passing
Interface program, DataCutter,
and job scheduler)

TMA, tissue microarray.

Figure 2 (A) Tissue microarray (TMA) mechanical distortion. (B)
ImageMiner Prototype Client Query Interface.
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oncologists and pathologists.36 The main classes of the data
model are shown in figure 3. The data model is designed to host
quantitative and qualitative information derived from the phys-
ical and digital specimens, including clinical data and research
data. The implementation of a generic table solution, ‘TmaDa-
taPanel’, provides flexibility in managing polymorphous datasets
that are derived from TMA studies (classes rendered in green). In
the design phase, researchers are free to design and reuse different
data tables, which are then stored in the generic TmaDataPanel
table. In later phases of the research, the data can be reorganized
into specialized classes that are optimized to facilitate search and
interoperability. The ‘Evaluation’ classes (rendered in purple) of
the model are designed specifically to support TMA evaluation
studies using registered TMA images. The model supports eval-
uation studies while providing flexibility in terms of the config-
uration of tissue discs within the specimens, which evaluators are
to participate in the studies, and which question sets are used.
Once a study has been completed, the organizer is free to finalize
and transform the data into a TmaDataPanel for sharing and
searching the study results. The data model version 1.0 consists
of 58 classes and 262 data elements (attributes). It has undergone
review by the NCI Enterprise Vocabulary Services program to
ensure compliance with caBIG standards and has been loaded
into the Cancer Data Standards Repository (caDSR). The model
can be viewed and retrieved via caBIG CDE Browser (https://
cdebrowser.nci.nih.gov/CDEBrowser/).

The classes associated with image analysis results (classes
rendered in yellow in figure 3) are used to manage image analysis

results and metadata about the image analysis methods and
parameters. Our team is currently working to extend and
harmonize the analysis results component of the ImageMiner
data model with the PAIS (Pathology Analytical Imaging Stan-
dards) model67 to support markup and annotations in TMA,
pathology, and microscopy imaging applications, while main-
taining interoperability with corresponding standards in the
radiology domain. The PAIS model was motivated by the
requirements of our ongoing TMA project as well as the general
problem of analyzing whole-slide microscopy images. PAIS is
being developed in keeping with the Annotation and Image
Markup (AIM) model,68 69 which is under development in the
caBIG In-Vivo Imaging Workspace to support radiological image
annotation and markup in healthcare and clinical trial environ-
ments. The PAIS model can take advantage of the AIM model to
represent observations and markups (geometric shapes) for
image segmentations. However, PAIS has been optimized for
representing fine-grained markups and annotations and provides
additional information for data provenance, such as algorithms
and parameters used for image segmentation.
Figure 4 shows the major components of PAIS. Please note

that the figure illustrates the main classes and class relationships
in the model, whereas the attributes of each individual class is
not shown. (1) ‘ImageReference’ provides metadata that
describe an image or a group of images (eg, DICOM images,
TMA images, and whole-slide microscopy images), which are
used as the base for markup and annotation and can be used to
identify and retrieve the images from an image archive. The

Figure 3 Overview of ImageMiner data model. Only the main classes and class relationships are illustrated; class attributes are not shown. Tma,
tissue microarray.
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‘Region’ class is used to identify the area of interest from an
image. (2) ‘Markup’ delineates a spatial region in the images and
represents a set of values derived from the pixels in the images.
Markup symbols are associated with an image. They can be
geometric objects, surfaces, or fields such as scalar, vector,
matrix, and more generally tensors. Geometric shapes can be
one-, two-, or three-dimensional and may vary with time.
Surfaces include finite element meshes as well as implicit
surfaces. While both geometric shapes and surfaces represent
boundaries in space, a field can be used to contain the actual data
values within a spatial region. Examples of fields are pixel values,
binary masks, gradient fields, and higher order derivatives. (3)
‘Annotation’ associates semantic meaning with markup entities
through coded or free text terms that provide explanatory or
descriptive information. Annotations and markups may be made
by humans or machines. The annotation model holds informa-
tion about: (a) the interpretation of a markup or another
annotation entity in one or more images, including visual
features, morphological or physiological processes, and diseases;
(b) the quantitative results from mathematical or computational
calculations; and (c) the disease diagnosis derived by observing
imaging studies and/or medical history. (4) ‘Provenance’ is
information that helps to determine the derivation history of
a markup or annotation. This information includes the algo-
rithm name, specification of input datasets, and the values of the

input parameters to the algorithm. (5) ‘Project’ and ‘Group’ are
the set of classes that represent the aggregation of related
images, markup, or annotations, from which conclusions may be
drawn.

Grid services and federation component
In order to support federation of ImageMiner deployments, we
have introduced grid computing and service-oriented architec-
tures into our design. We use caGrid as an enabling technology
to provide grid access to the constituent modules that make up
the ImageMiner software suite. In addition to tooling for service
development and deployment, caGrid provides a common set of
services and run-time environment support service discovery, the
management of grid-wide security, federated queries across
multiple data services, and orchestration of services into analysis
workflows. The ImageMiner system provides analytical services,
which implement the algorithms described above 2for feature
extraction from TMA disc images. Since these services are
regular caGrid services, we can leverage caGrid core services for
support, such as service discovery, workflows, and security as
shown in Table 2.
The analytical resources in ImageMiner are wrapped as

caGrid-compatible services with well-defined interfaces. The
backend of the analysis service can be a single machine or
a cluster. An ImageMiner client can communicate to these

Figure 4 PAIS data model. Only the
main classes and class relationships are
illustrated; class attributes are not
shown.
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services remotely using standard method invocation mecha-
nisms and information exchange protocols. A depiction of the
ImageMiner grid-enabled architecture is included in online
supplemental material. In our current implementation, an image
feature extraction module has been implemented as a caGrid
service with a cluster backend and has been successfully
deployed at the Cancer Institute of New Jersey, Emory, and
Ohio State University. These sites serve as a test-bed for
performance analysis. A client program can use the client
application programming interface (currently bound to Java) of
the service to compose and submit requests to the service and
retrieve the results of the analysis. As part of the ongoing
project, our team regularly implements additional analytical
services, which are subsequently optimized for deployment.

SYSTEM PERFORMANCE
In this section, we present an experimental evaluation of the
ImageMiner system, describing performance results from auto-
mated segmentation and content-based retrieval of image data.
We also gauge performance from a high-performance, grid-
enabled technology perspective.

Automated segmentation and CBIR
Results from analysis of TMA images using our library are given
in figure 5. In figure 5A, we show the delineation of the outer
boundary of individual tissue discs. After the whole disc masks
have been obtained, a refined region-of-interest segmentation is
executed using texton histograms to delineate the boundaries of
stromal and epithelial sub-regions throughout the specimens.

Table 2 ImageMiner provides analytical services for feature extraction from tissue microarray disc images. Various caGrid core services can be
leveraged to support service discovery, multi-service workflows, and secure access to ImageMiner services

Service Description

ImageMiner analytical service Regular caGrid application service. Encapsulates algorithms for feature extraction

caGrid index service An ImageMiner service can register to the caGrid index service. Clients could query the index service to discover the ImageMiner services

caGrid workflow service A client can use the workflow service to compose and execute workflows that may involve multiple analytical and data services. In our
implementation, our client program does not provide support for composing workflows using multiple services. The caGrid workflow service
could be leveraged for that purpose

caGrid security services
(Dorian, GridGrouper,
GTS, CDS)

These services can be used to limit access to an ImageMiner service. The ImageMiner service can be deployed as a secure service requesting
a client have a grid identity (using Dorian) and limit access to service and service operations based on the groups (GridGrouper) a client
belongs to

Figure 5 Analysis results from the
image analysis library. (A) The
delineation of the outer contours of the
breast tissue disc. (B) The
segmentation results for four
representative breast cancer tissue
discs showing delineation of tumor
versus non-tumor regions using texton-
based descriptor and an integral
histogram approach. (C) The
classification accuracy using different
regions for searching. KNN, K nearest
neighbors; SVM, support vector
machine.
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The Adaboost method is chosen as the classifier for segmenta-
tion. In the current implementation, the strong classifier is
assembled from all of the weak classifiers to minimize the cost
function representing the classification accuracy.

Some representative segmentation results are shown in
figure 5B. When the segmentation results were compared with
those that had been hand-drawn by a board-certified anatomical
pathologist for 100 cancer tissue discs, the average pixel wise
false positive rate was 6.62% and the average pixel wise false
negative rate was 3.15%.

A comparative performance analysis of classification accuracy
was carried out using three different algorithms: the K nearest
neighbors (K¼5), the soft margin SVM, and the boosting. The K
nearest neighbor classifier is a simple classifier based on the
Euclidean distance among feature vectors. Because the training
data are not linearly separable, we chose the soft margin SVM,
which allows training vectors to be on the wrong side of the
support vector classifier with certain penalty. The key parame-
ters, which affect the accuracy of soft margin SVM, are the
penalty and the kernel. The penalty parameter was selected
according to cross-validation (CV) errors in our case. For the
kernel selection, we tested linear, polynomial, and Gaussian
kernel, where the last one outperformed all the others. For the
boosting method, instead of using Adaboost with a simple linear
classifier as the weak classifier, we apply boosting using an eight-
node classification and regression decision tree (CART) as the
weak learner, which empirically provided higher accuracy. The
number of nodes of CARTcan be selected using CV. The number
of iterations was chosen as 40 to achieve satisfactory accuracy
while avoiding over-fitting.

These algorithms were applied to the region masks of the
tissue image. It is clear that the maximal margin classifiers, such
as boosting and SVM, provides significantly better performance
than simple classifiers such as K nearest neighbors. Figure 5C
shows that using the tumor region mask provided appreciable
improvements in classification and CBIR accuracy. Figure 5C
also shows the results when queries are formulated using the
texton histograms corresponding to three different sub-regions
within the breast cancer specimens (tumor region alone, whole
tissue sample, and non-tumor region alone). The tumor and
non-tumor regions were automatically delineated using the
segmentation algorithms.

As new therapy options become available, it has become
increasingly important to distinguish among subclasses of
pathology to determine which medications are appropriate and
what level of risk is justified for a given patient population. The
subtle visible differences exhibited by the digitized TMA speci-
mens can sometimes give rise to inconsistent scoring and

interpretation of results. Passing specimens through a reliable
high-throughput, computer-based system, however, could
potentially improve the accuracy with which patient popula-
tions are assigned to specific treatment regimens, improve the
accuracy of prognosis, and reduce the costs of drug discovery.

High-performance computing
The current implementation of the ImageMiner analysis
component supports the processing of multiple disc images on
a computation cluster using a mastereslave parallelization
scheme. One of the computation nodes (or the head node of the
cluster) is designated as the master node; the other nodes
become slave nodes (processing nodes). When a slave node is
idle, it sends a request for work to the master node. The master
node fetches the next disc image from the disc and sends it along
with processing parameters to the slave node.
We have experimented with the implementation in order to

evaluate its performance. The evaluation was performed on
a cluster system at the Ohio State University. Each node of the
cluster has AMD Dual 250 Opteron CPUs, 8 GB DDR400 RAM,
and 250 GB SATA hard drive. The computing nodes are
connected through dual GigE Ethernet. The performance
numbers obtained on 2 to 32 nodes are shown in figure 6. The
graph in figure 6A displays the execution time when the number
of processors is increased with the number of disc images fixed at
64. The processing time decreases almost linearly as more
processors are added. The mastereslave scheme with the
demand-driven assignment of tasks to the processing nodes
results in good computational load balance among the
processing nodes. This is a feasible approach, since each imaged
disc can be processed independently of other disc images.
Figure 6B shows the execution time when both the number of
disc images and the number of processing nodes are scaled
simultaneously. The processing times remain almost the same
across all data points, indicating good scalability of the system.
As an extension of these experiments, we have also processed
a dataset containing 624 imaged tissue discs, wherein each image
originated from a different patient. These studies were carried
out on 16, 32, and 48 nodes, respectively, resulting in execution
times of 6, 3, and 2.1 h. Using this large dataset as a test
ensemble showed that the use of parallel computing enabled us
to execute in several hours what would otherwise require several
days using a standard workstation.
The experimental evaluations reported in this article show

that parallelization provides a viable mechanism for researchers
to manipulate large datasets consisting of many imaged tissue
samples. As the resolution and speed of digitized microscopy
instruments improve, we can anticipate that modern

Figure 6 Performance assessment of
the grid-enabled implementation. (A)
Performance of processing 64 images
while number of processors used varied
from 2 to 32. (B) The number of
processors and the number of images
are scaled proportionatelydthat is, the
number of images is doubled when the
number of processors is doubled.
Please notice that the y axis is at the
same scale as in (A).
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collaborative research studies will continue to generate increas-
ingly large amounts of data for analysis. In addition, it is likely
that, with advances in machine-learning and pattern recognition
techniques, it will be desirable to analyze a given dataset or
image ensemble many times, using a range of different algo-
rithms in order to systematically identify which provides
optimal results for a given application. In fact, such multi-
analysis strategies may be invaluable for enabling investigators
to objectively evaluate the efficacy of using different combina-
tions and permutations of algorithmic modules and identify
additional feature measurements that may be salient to a given
classification. The processing power of a desktop machine is not
sufficient for performing rapid, high-throughput analyses in
such scenarios.

Grid-enabled feature extraction service
We have implemented a caGrid analytical service to provide
remote access to the ImageMiner analysis component as well as
to support federation of multiple instances of the component.
The backend implementation of the analysis component can be
a sequential program, which can be deployed on a single
machine, or a parallel program (as described above), which can
be deployed on a cluster machine. A client can submit a batch of
input images and analysis parameters to the service remotely.
After the processing of all the images is completed, the service
returns the results (eg, histograms) to the client.

The service implementation facilitates access to remote
resources without a client having to know the details of the
resource or whether the analysis component is deployed on
a cluster machine or not. The default clienteservice interaction
protocols used in web services, and hence in caGrid, are SOAP
and XML. The caGrid infrastructure provides a transfer service
to address performance issues that may arise because of encoding
large volumes of data in XML and using SOAP as a communi-
cation protocol. We used the caGrid transfer service in our
ImageMiner services. Our experimental evaluation of the caGrid
transfer service has shown that it achieves much lower transfer
times than the XML and SOAP mechanisms for large datasets.

DISCUSSION
The primary focus of this research is to design, develop, and
evaluate a software system for scoring and performing
comparative analysis of expression patterns in TMAs. To
summarize this work, we have identified several core require-
ments that are needed to facilitate multi-site, collaborative
studies involving TMAs:
1. A suite of analysis methods that investigators can use for

reproducible analysis of TMA images.
2. Both image data and analysis results (from expert reviews as

well as computerized methods) should be managed in
a coordinated way along with rich metadata about the
images and results. This is an important requirement so that
investigators can carry out additional mining of data, perform
validation of analysis methods, and share information with
collaborators.

3. Secure and remote access to data and tools should be
implemented in collaborative projects.
These requirements have driven our design objectives. Towards

that end, we have established a framework of image analysis,
data management, and grid modules to support these functions
and have evaluated their utility for performing comparative
analysis of expression patterns in histology specimens.

Our system can detect and delineate tumor regions
within imaged tissue discs and generate the texton histogram

corresponding to the specified region of interest. This informa-
tion can be used to formulate queries into a ‘gold standard’
database of cases and identify those tissue discs that contain
lesions exhibiting staining signatures most similar to that of the
query (ie, the test image). This capability would allow
a researcher to retrieve data from multiple samples based on
image characteristics. In addition, the PAIS model allows for
queries that compare and contrast results obtained from one
algorithm with results from other algorithms for algorithm
evaluationdsuch queries may look for features and classifica-
tions obtained by multiple algorithms, or features that are
different across algorithms. The annotation component of the
combined ImageMiner and PAIS data model provides limited
support for storing and managing semantic information. We
plan to extend this component and enable more comprehensive
semantic query capabilities in our future work to facilitate
exploration of analysis results using semantic queries as well as
better interoperability and sharing of the data.
By incorporating distributed execution capabilities, Image-

Miner enables investigators to carry out large-scale analytical
studies, which may not be feasible on a desktop machine. The
current implementation achieves good performance for
processing of TMA discs by taking advantage of the fact that
TMA discs can be processed independently. In the next phase of
development, this implementation will be extended to support
parallel extraction and processing of disc images originating
from a single TMA slide. It will require a more sophisticated
parallelization of the registration to compensate for mechanical
distortions during image acquisition and disc segmentation
algorithms.
We have designed and implemented the ImageMiner system

as a clienteservice system, using caGrid as the enabling
middleware infrastructure for services. Having a standards-based
and service architecture as the underlying foundation has a few
advantages. First, the architecture facilitates access to remote
resources, and the backend systems of these remote resources
can be changed or upgraded with minimal impact to the existing
ImageMiner clients, as long as the service interfaces remain the
same. Second, the client program does not need to know
whether the service has a single-machine backend or is deployed
on a cluster system. This simplifies the implementation of the
client. Third, ImageMiner resources can be federated and
accessed along with other types of services by client applica-
tions. This enables investigators to leverage aggregate processing
power on a high-performance system and scale to much larger
volumes of data than can be managed on a workstation. Lastly,
in our current implementation, the core services of the caGrid
infrastructure can be leveraged (see table 1) for service discovery,
security, federated queries, and workflows.
During the course of developing ImageMiner, the computa-

tional and imaging tools have been migrated to core research
facilities at the Cancer Institute of New Jersey for use in ongoing
investigative studies. They have been used to analyze micro-
arrays consisting of cancers of the breast, head and neck, and
prostate. As part of a recent study the automated software was
used to quantify Beclin1 expression, which was shown to be
predictive of autophagy.62 Our team has since conducted a series
of manemachine performance studies. In the first experiments,
we used the TMA analysis tools to evaluate immunohisto-
chemical staining intensity on imaged breast cancer TMA
specimens comprising 1407 tissue cores. The results showed that
the computer software algorithms achieved similar interpreta-
tions to those provided by a panel of three board-certified
pathologists and was consistent with inter-pathologist
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concordance. These results were presented at the 2010 Annual
Conference of the United States and Canadian Academy of
Pathology.63 As an extension of those studies, we examined the
expression patterns of a cohort array of several hundred tissue
samples originating from patients with head and neck squamous
cell carcinoma. Receiver operating characteristics curve analysis
showed that the automated and manual scoring were generally
consistent with area under the curve values of 0.9677 for Smad2
and 0.885 for Smad3.70

Limitations and future directions
As a result of the experience gained during the course of the
project, we have learned the importance of sustaining
a conscious effort to avoid the pitfalls of developing these tools
in isolation and then later testing them in a clinical setting.
Accordingly, our team is working closely with medical oncolo-
gists and surgical pathologists to enable us to remain focused on
clinically relevant applications.

After completing these studies, we recognize the fact that the
primary limitation of the image analysis algorithms currently
used in ImageMiner is that a large labeled training dataset is
required. To address this issue, our team is developing semi-
supervised and online learning techniques to reduce the cited
dependence.

While the parallel computing approaches described in this
paper offer a solution for addressing the computational
requirements of high-throughput analyses, such approaches also
present limitations. For example, the high-level organization of
the imaged TMAs lends itself to a bag-of-tasks type of paral-
lelism, in which multiple imaged tissue samples can be processed
concurrently on a parallel machine. This approach provides an
efficient, yet relatively easy to implement, strategy for use of
parallel computers to process images. In order to decrease the
processing time for each image, our team has already begun to
investigate the feasibility of automatically splitting each whole-
slide image into image patches before processing. On the basis of
experience gained during the course of these experiments, our
team has begun to improve the efficiency of the data storage and
management infrastructure used in ImageMiner. Specifically, we
are exploring the use of a parallel database setup and compare
the performance with a setup consisting of multiple database
instances controlled by a frontend system in order to address the
issue of conducting multi-analysis studies involving thousands
of images and hundreds of algorithm variations.

In the current design of the system, multiple services can be
federated at the client leveldthat is, the same client application
can submit requests to multiple services, allowing a researcher to
aggregate analysis resources from multiple sites in a collabora-
tive study. However, the current system does not support
load-balancing across services nor does it take into account
computational power and load of individual services. An alter-
native approach would be to implement an aggregator service,
which could control multiple analytical services using a demand-
driven strategy, similar to the one implemented in the high-
performance computing component, to distribute requests
across multiple services.

Another key lesson learned during the course of these studies
relates to the value of mitigating risks while trying to meet the
primary design and development objectives of a project. To help
mitigate risk in the ImageMiner project, the repository of
imaged tissue samples and database has been designed and
developed so that, in addition to supporting multi-modal
indexing, querying, and retrieval of imaged tissue and correlated
clinical data based on visual content, which was the primary

goal of our efforts, the system also enables users to submit
standard queries using the diagnosis of record, histological type,
tumor grade, and image metrics for immunohistochemical
staining intensities in order to retrieve the corresponding
digitized arrays exhibiting those profiles.
To further mitigate risk in this project, the CBIR engine and

interface was developed to achieve a user-friendly approach for
conducting routine browsing and navigation through the data-
sets. For example, the interface enables users to interactively
select any region or object of interest within a disc and initiate
a query based on the texton signature of that particular sub-
region, tissue, or cell. The ImageMiner interface also enables
users to refine queries by clicking on any one of the ranked
retrievals in order to initiate subsequent (refined) queries using
the selected ranked retrieval as the new query input image. By
integrating these capabilities into the design to accompany the
fully automated modules, we believe that the ImageMiner
toolset and system is poised to achieve an added level of
usability, versatility, and acceptance throughout a broader range
of microscopy imaging applications.
We are currently expanding the scope of cancer types, tissues,

and biomarkers under study and investigating the use of the
system in performing sub-classifications in terms of the differ-
ential diagnosis, histological type, and tumor stage. These next
steps will undoubtedly present new challenges and require the
use of much more sophisticated statistical approaches for
combining texton signatures and carrying out queries. Having
recently established a multi-site consortium (Cancer Institute of
New Jersey, Emory, Ohio State University, University of Penn-
sylvania, University of Texas) for performing iterative proto-
typing of the system throughout the course of its development,
our team will begin to conduct retrospective and prospective
performance analysis of real case scenarios and conditions.

CONCLUSIONS
Advances in imaging technologies have opened the door for
investigators to employ high-resolution and high-throughput
image data in their projects. While such data offer tremendous
amounts of biomedical information, the size of datasets and
labor-intensive nature of analyses create obstacles to more
effective extraction and application of this information. Future
advances in digital pathology will rely on the availability of
reliable, portable algorithms and computational tools that can
provide automated data management operations, perform high-
throughput quantitative analysis, and support query and
retrieval of image-based analysis results in collaborative envi-
ronments. Our work aims to allow communities of end users to
use standard, ‘off-the-shelf ’, client-end software that can seam-
lessly access large image analysis libraries and grid-computing
tools to reduce the obstacles of conducting collaborative research
projects while supporting investigators through the efficient use
of available resources.
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