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Abstract

Enterprise Web applications are moving towards server-
side scripting using managed languages. Within this shifting
context, event-driven programming is emerging as a crucial
programming model to achieve scalability. In this paper, we
study the microarchitectural implications of server-side script-
ing, JavaScript in particular, from a unique event-driven pro-
gramming model perspective. Using the Node.js framework,
we come to several critical microarchitectural conclusions.
First, unlike traditional server-workloads such as CloudSuite
and BigDataBench that are based on the conventional thread-
based execution model, event-driven applications are heavily
single-threaded, and as such they require significant single-
thread performance. Second, the single-thread performance
is severely limited by the front-end inefficiencies of today’s
server processor microarchitecture, ultimately leading to over-
all execution inefficiencies. The front-end inefficiencies stem
Jfrom the unique combination of limited intra-event code reuse
and large inter-event reuse distance. Third, through a deep
understanding of event-specific characteristics, architects can
mitigate the front-end inefficiencies of the managed-language-
based event-driven execution via a combination of instruction
cache insertion policy and prefetcher.

Categories and Subject Descriptors

C.1 [Processor Architecture]: General

Keywords

Microarchitecture, Event-driven, JavaScript, Prefetcher

1. Introduction

Processor architecture advancements have been largely driven
by careful observations made of software. By examining
and leveraging the inherent workload characteristics, such
as instruction-, thread-, and data-level parallelism, processor
architects have been able to deliver more efficient computing
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by mapping software efficiently to the hardware substrate.
We must continue to track the developments in the software
ecosystem in order to sustain architecture innovation.

At the cusp of the software evolution are managed script-
ing languages, which provide portability, enhanced security
guarantees, extensive library support, and automatic memory
management. In particular, JavaScript is the peak of all the
programming languages, surpassing C, C++, and Java to be
the most widely used language by developers [1]. From inter-
active applications in mobile systems to large-scale analytics
software in datacenters, JavaScript is ushering in a new era of
execution challenges for the underlying processor architecture.

In this paper, we focus on server-side JavaScript, specifi-
cally its implications on the design of future server processor
architectures. While there are numerous studies that have fo-
cused on various aspects of dynamic languages on hardware,
such as garbage collection [2], type checking [3], exploiting
parallelisms [4, 5], and leveraging hardware heterogeneity [6],
we study the implications of the programming model that
is emerging in server-side JavaScript applications, i.e., asyn-
chronous event-driven programming.

In server-side asynchronous event-driven programming [7,
8], user requests are treated as application events and inserted
into an event queue. Each event is associated with an event
callback. The event-driven system employs a single-threaded
event loop that traverses the event queue and executes any
available callbacks sequentially. Event callbacks may initi-
ate additional I/O events that are executed asynchronously
to the event loop in order to not block other requests. The
event-driven model has a critical scalability advantage over the
conventional thread-based model because it eliminates the ma-
jor inefficiencies associated with heavy threading, e.g., context
switching and thread-local storage [9, 10]. Thus, the event-
driven model has been widely adopted in building scalable
Web applications, mainly through the Node.js [11] framework.

We find that event-driven server applications are fundamen-
tally bounded by single-core performance because of their
reliance on the single-threaded event loop. However, unlike
conventional single-threaded benchmarks (e.g., SPEC CPU
2006) for which current processor architectures are highly
optimized, event-driven server applications suffer from severe
microarchitecture inefficiencies, particularly front-end bottle-
necks, i.e., high instruction cache and TLB misses and branch
misprediction rate. Moreover, unlike conventional heavily
threaded enterprise workloads that also suffer from front-end
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Figure 1: In the thread-based execution model, each incoming
client request is assigned to a unique thread, which is respon-
sible for returning a request to the client.

issues, the front-end bottleneck of an event-driven server appli-
cation stems from the single-threaded event execution model,
rather than microarchitectural resources being clobbered by
multiple threads. With the front-end constituting up to half of
the execution cycles, it is clear that current server processor
designs are suboptimal for executing event-driven workloads.

To improve the front-end efficiency of event-driven server
applications, we study them from an event perspective. We
find that the severe front-end issue arises fundamentally be-
cause events have large instruction footprints with little intra-
event code reuse. Recent studies on client-side event-driven
applications also derive similar conclusions [12, 13]. We take
this research a step further to make the key observation that
event-driven programming inherently exposes strong inter-
event code reuse. Taking the L1 I-cache as a starting point,
we show that coordinating the cache insertion policy and the
instruction prefetcher can exploit the unique inter-event code
reuse and reduce the I-cache MPKI by 88%.

In summary, we make the following contributions:

* To the best of our knowledge, we are the first to systemati-
cally characterize server-side event-driven execution ineffi-
ciencies, particularly the front-end bottlenecks.

* We tie the root-cause of front-end inefficiencies to charac-
teristics inherent to the event-driven programming model,
which gives critical microarchitectural optimization insights.

* We show that it is possible to drastically optimize away the
instruction cache inefficiencies by coordinating the cache
insertion policy and prefetching strategy.

The remainder of the paper is structured as follows. Sec. 2
provides a background into asynchronous event-driven pro-
gramming and why it has emerged as a crucial tipping point
in server-side programming. Sec. 3 presents the workloads we
study and shows the event-driven applications’ single-threaded
nature. Sec. 4 discusses our microarchitecture analysis and
presents the extreme front-end bottlenecks. Sec. 5 shows that
it is possible to leverage the inherent event-driven execution
characteristics to largely mitigate instruction cache inefficien-
cies through a combined effort between cache insertion policy
and a suitable prefetcher. Sec. 6 discusses the related work,
and Sec. 7 concludes the paper.
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Figure 2: In the event-based execution model, each incoming
client request is handled by the single-threaded event loop.
I/0 operations are handled asynchronously.

2. Background

Web applications employ server-side scripting to respond to
network requests and provide dynamic content to end-users.
The traditional approach to providing responsiveness to end-
users at scale has been thread-based programming, i.e., to
increase the number of threads as the number of incoming
requests increases. Recently, because of several fundamental
limitations of heavy multi-threading that limit system scalabil-
ity, many industry leaders, such as eBay, PayPal, and LinkedIn,
have started to adopt event-driven programming as an alterna-
tive to achieve scalability more efficiently.

In this section, we first discusses thread-based execution
and its limitations (Sec. 2.1). On that basis, we explain why
event-driven programming is emerging as an alternative for
developing large-scale Web applications (Sec. 2.2).

2.1. Thread-based Programming

Traditional server-side scripting frameworks, such as PHP and
Ruby, pair user requests with threads, commonly known as
the “thread-per-request” or “single-request-per-script” execu-
tion model. These thread-based execution models, shown in
generality in Fig. 1, consist of a dispatch thread that assigns
each incoming request to a worker thread for processing. The
result is that at any given time, the server abounds with the
same number of threads as the number of requests.

While the thread-based execution model is intuitive to pro-
gram with, it suffers from fundamental drawbacks. As the
number of client requests increases, so does the number of
active threads in the system. As a result, the operating system
overhead, such as thread switching and aggregated memory
footprint, grows accordingly. Therefore, operating systems
typically have a maximum number of threads that they support,
which fundamentally limits the server scalability [10].

To address the scalability limitations of thread-based ex-
ecution on a single node, modern datacenters scale-out the
hardware resources. Instead of scaling the number of threads
on a single compute node, threads are distributed and balanced
across a large number of compute nodes. However, increasing
the number of physical compute notes has direct financial im-



Table 1: Summary of event-driven server-side Node.js workloads studied in this paper

Workload Domain

Description

Etherpad Lite [14] Document Collaboration

An online word processing engine, similar to services such as Google Docs and Microsoft

Office Online, for real-time document editing and management. The users we simulate
create documents, add and edit document contents, and delete documents.

Let’s Chat [15] Messaging

Multi-person messaging platform, akin to Google Chat and WhatsApp, where users partici-

pate in group chats. Each enters a group chat and then sends and receives messages.

Lighter [16] Content Management A blogging platform comparable to Blogspot. Each of the users requests resources, such as
HTML, CSS, JavaScript, and images, corresponding to blog post webpages.

Mud [17] Gaming A real-time multi-user dungeon game with multiple users playing the game simultaneously.

Todo [18] Task Management A productivity tool and service, similar to the Google Task list management service within

Gmail. Users create, modify, and delete multiple tasks within their task lists.

Word Finder [19] API Services

A word search engine that finds words matching a user-specified pattern. The pattern is

searched against a 200,000-word corpus. Users execute several pattern queries.

plications for the service provider. Scaling out requires more
power, cooling, and administrative demands which directly
affect total cost of ownership [20].

2.2. Event-driven Programming

A more scalable alternative to the conventional thread-per-
request execution model is event-driven execution, as em-
ployed in Node.js [11]. Fig. 2 shows the event-driven execu-
tion model. Incoming I/O requests are translated to events,
each associated with an event handler, also referred to as a
callback function. Events are pushed into an event queue,
which is processed by the single-threaded event loop. Each
event loop iteration checks if any new I/O events are waiting
in the queue and executes the corresponding event handlers
sequentially. An event handler may also initiate additional /O
operations, which are executed asynchronously with respect
to the event loop in order to free the main event loop.

Event-driven server designs achieve orders of magnitude
performance improvements over their thread-based counter-
parts in both industry [21,22] and academia [9, 10], because
they are not limited by the number of threads a system sup-
ports. Rather, their scalability depends on the performance of
the single-threaded event loop. As such, event-driven program-
ming restores the emphasis on scale-up single-core processor
designs for large-scale Web applications.

3. Event-driven Server Applications

Event-driven server-side scripting has not been extensively
investigated in the past. In this section, we identify several
important Web application domains that have embraced event-
driven programming and describe the workloads we use to
represent them (Sec. 3.1). These applications use Node.js,
which is the most popular server-side event-driven platform
based on JavaScript [11]. Numerous companies [23] such as
eBay, PayPal, and LinkedIn have adopted it to improve the
efficiency and scalability of their application services [21,22,
24]. We then describe how we generate loads to study realistic
usage scenarios of these applications (Sec. 3.2).

Given the selected applications and their loads, we conduct
system-level performance analysis on the Node.js software
architecture to understand its various applications’ execution
behaviors (Sec. 3.3). The key observation is that while Node.js
is multi-threaded, the single-threaded event loop that sequen-
tially executes all the event callbacks dominates the CPU time.
We use this observation as our rationale to focus on analyzing
the event loop execution in the rest of the paper.

3.1. Workloads

We study important Web application domains that have be-
gun to adopt event-driven programming on the server-side, as
shown in Table 1. To enable future research, as well as for
reproducibility of our results, we intentionally choose applica-
tions that are open-sourced. We release the workload suite at
https://github.com/nodebenchmark.

Document Collaboration Services such as Google Docs
and Microsoft Office Online allow multiple users to collabo-
rate on documents in real-time. As users edit documents, they
communicate with the application server to report document
updates. We study Etherpad Lite [14], a real-time collaborative
text editing application. Each user creates a new document,
makes several edits to that document, and then finally deletes
it once all edits have been made.

Messaging Messengers are amongst the most popular ap-
plications used today [25]. Each user sends and receives
messages by communicating with the application server that
manages a message database. We study the Let’s Chat [15]
messaging application. Each user initiates a new chat, sends
multiple messages to other users, and exits the service.

Content Management Many applications and services
from news outlets (e.g. CNN) to blogging platforms (e.g.
WordPress) rely on content management platforms to serve
a variety of file resources to users. We study Lighter [16],
which is a blogging platform that serves webpage resources
corresponding to a blog post. We focus on users who request
different blog entry resources using a regular Web browser.

Gaming Online computer gaming, already very popular, is
increasingly moving to support multiplayer interaction. These
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Figure 3: Execution time distribution of the single-threaded event loop within the Node.js workloads we study.

games, such as Farmville and Words With Friends, have to
manage the shared game state across multiple users. We study
the multiplayer game Mud [17], wherein each player is as-
signed a position on a grid. The players can then update their
positions to navigate the environment.

Task Management Cloud-based task management tools
such as Asana and Trello have become increasingly popular
for organizations and individuals to stay organized. Tasks
can be created, modified, and deleted based on what the user
desires. We study a simplified form of task management, using
the Todo [18] task management application. Users can create,
view, and modify various tasks in a task list.

API Services Third-party API services provide functional-
ities that otherwise would not be available in an application.
On such example is the Google autocomplete API that aids
applications automatically filling out forms [26]. We restrict
our study to Word Finder [19]. It is a pattern matching API
service used for autocompletion and spell checking. Each user
queries the API with various word patterns, which are matched
against an English dictionary of 200,000 words.

3.2. Load Generation

Our study is focused on processor design at the microarchi-
tecture level, thus we focus on a single instance of Node.js.
Typically, a production server will run multiple instances of
Node.js to handle a massive number of requests [27]. How-
ever, by design, a single instance of Node.js runs primarily in
a single thread, coupled with a handful of helper threads.

All of our applications run at the most recent stable software
release of Node.js at the time of writing (version 0.12.3). To
exercise the Node.js applications, we develop a query genera-
tor to emulate multiple users making requests to the Node.js
application under study. We model individual users making
requests to the server under realistic usage scenarios, which
we obtain by observing requests made by real users. We also
interleave and serialize concurrent user requests to the server.
This does not change the internal execution characteristics of
Node.js application—because events will eventually be seri-
alized by the single-threaded event loop—but enables crucial
reproducibility across experiments. Unless otherwise noted,
our results are based on simulating 100 users to minimize
experiment runtime, as our detailed microarchitectural anal-
yses are based on simulations. We verified that load-testing
with a larger number of users or using different request inter-

leavings did not change the results and conclusions presented
throughout the paper.

3.3. Performance Analysis

In order to understand how these applications exercise the
Node.js runtime and guide the simulations used throughout
the remainder of the paper, we conduct a system-level perfor-
mance analysis using the Intel VTune system profiler tool on
a quad-core Intel i5 processor. Because we are running on real
hardware, in this section we are able to conduct performance
analysis using 100,000 users for each application.

While Node.js is actually multi-threaded, we find that the ex-
ecution time of each Node.js application is primarily compute-
bound within the single-threaded event loop that is responsible
for executing JavaScript-based event callbacks. Our measured
results emphasize the need to deeply understand the event-
driven execution nature of these workloads.

Event Loop Although the Node.js architecture possesses
multiple threads for handling asynchronous I/O, its compu-
tation is bounded by the single-threaded event loop. The
thread-level parallelism (TLP [28]) column in Table 2 shows
that Node.js applications are effectively single-threaded, indi-
cating the importance of single core performance. This aligns
with the experience reported from industry [24,29].

To further understand the importance of single core perfor-
mance, we study the compute versus memory boundedness of
the single-threaded event loop by measuring how the perfor-
mance changes with the CPU frequency. Fig. 4 shows each
application’s normalized execution time as the CPU frequency
scales from the peak (3.2 GHz) down to 50%. We observe
that the overall performance scales almost linearly with the
CPU frequency. For example, for Mud, halving the CPU fre-
quency translates to almost 2X slowdown, emphasizing the
importance of single-core performance.
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Figure 4: Application performance as CPU frequency scales.



Table 2: Execution characteristics of Node.js applications.

System-level Callback-level
Application User System TLP | Generated VM Code Gen
Etherpad Lite 98% 2%  1.002| 798% 1921%  0.5%
Let’s Chat 95% 5% 1.010| 56.0% 3821% 53%
Lighter 9% 4% 1.011| 556% 40.59%  4.2%
Mud 9% 1% 1.000| 53.7% 44.09% 1.8%
Todo 8% 15% 1.002| 631% 3395%  3.1%
Word Finder 99% <1% 1.000| 63.8% 30.66%  5.2%

Due to the dominant nature of the event loop thread, we pro-
vide an execution breakdown of the event loop for all Node.js
applications in Fig. 3. We divide the event loop execution time
into four major categories: event callback execution, event
loop management (through libuv [30]), idle, and other. We
see that event callback execution dominates the event loop
execution time. It consumes between 85% (Let’s Chat) and
nearly 100% (Word Finder) of the event loop execution time.
In contrast, the event loop management overhead is minimal.
In all applications but Mud, the event loop management is
responsible for less than 1% of the execution time. Idleness
due to I/O is also relatively small across all of the applica-
tions. Except for Let’s Chat whose idleness is 10%, the other
applications exhibit idleness of less than 5%.

Event Callbacks Because of the dominance of event call-
back execution in the event loop thread, we provide further
details of callback execution behaviors. Event callbacks are
written in JavaScript. To execute event callbacks, Node.js
relies on Google’s V8 JavaScript engine [31]. V8 supports
JavaScript callback execution through various functionalities
such as just-in-time (JIT) compilation, garbage collection, and
built-in libraries. Table 2 dissects the callback function exe-
cution time into three major categories. Generated indicates
the execution of dynamically compiled code of callback func-
tions. VM corresponds to the virtual machine management
such as garbage collection and code cache handling. Code-
Gen corresponds to the JIT compilation.

We make two important observations. First, the majority
of the callback time is spent executing the application code
(Generated). Second, V8 spends little time generating code
(Code-Gen), with the largest time spent in Let’s Chat at 5.3%.
This is important to verify because it confirms that our analysis
is conducted on each application’s steady state, which is the
normal state for server applications.

4. Microarchitectural Analysis

Given the single-threaded nature of the event loop, we con-
duct microarchitectural analysis to identify the bottlenecks for
efficient processing of event-driven server applications. We
conduct microarchitectural bottleneck analysis using cycle-per-
instruction (CPI) statistics to show that instruction delivery
dominates execution overhead (Sec. 4.1). Our finding moti-
vates us to perform analysis on the three major microarchi-
tectural structures that impact instruction delivery efficiency:
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Figure 5: CPI stacks for the different Node.js applications.

the L1 I-cache (Sec. 4.2), branch predictor (Sec. 4.3), and L1
I-TLB (Sec. 4.4) to understand execution behavior.

Throughout our analysis, we compare the Node.js appli-
cations against SPEC CPU 2006 because the latter has long
been the de facto benchmark for studying single-threaded per-
formance. A head-to-head comparison between Node.js and
SPEC CPU 2006 workloads reveals critical insights into the
unique microarchitecture bottlenecks of Node.js. Other server-
side applications, such as CloudSuite [32], MapReduce [33],
BigDataBench [34], and OLTP [35] do not specifically empha-
size single-thread performance.

We focus on CPU microarchitecture due to the importance
of single-core performance. Hence, our experimental setup is
geared toward studying core activities and does not capture
the I/O effects (i.e., storage and network). Node.js applica-
tions may also be I/O intensive. However, a complete I/O
characterization is beyond the scope of our paper.

4.1. Microarchitectural Bottleneck Analysis

We analyze the microarchitecture bottlenecks for event-
driven Node.js applications by examining their cycle-per-
instruction (CPI) stacks. A CPI stack breaks down the ex-
ecution time of an application into different microarchitectural
activities (e.g., accessing cache), showing the relative contri-
bution of each activity. Optimizing the largest component(s)
in the CPI stack leads to the largest performance improve-
ment. Therefore, CPI stacks are used to identify sources of
microarchitecture inefficiencies [36, 37].

We use SniperSim [38] to simulate all the Node.js applica-
tions and generate their corresponding CPI stacks. The CPI
stack for the main event loop thread within each application
is shown in Fig. 5. Components on each bar represents the
percentage of cycles that an application spends on a particular
type of microarchitectural activity. For example, the base com-
ponent represents an application’s execution time if there were
no pipeline stalls. The ifetch and branch components indicate
the total processing overhead due to instruction cache misses
and branch mispredictions, respectively. The mem- compo-
nents indicate the time spent accessing different memory hi-
erarchy levels. The sync- and imbalance-end components
correspond to multithreaded execution overheads.

We make two observations from Fig. 5. First, about 80%
of the processing time is spent on various types of on-chip
microarchitectural activities. Amongst all sources of overall
processing overhead, fetching instructions (ifetch) and branch
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Figure 6: I- and D-cache MPKIs comparison for Node.js appli-
cations and SPEC CPU 2006.

prediction (branch) emerge as the two most significant sources.
These two components alone contribute about 50% of the total
execution overhead, which implies that delivering instructions
to the backend of the pipeline is of critical importance to
improve the performance of event-driven Node.js applications.

Second, the processing overhead for synchronization (sync-
sleep and sync-futex) is negligible. We corroborate this result
by performing VTune analysis on 50,000 users. We find that
the time spent on synchronization is only about 0.5%. This
is not an unexpected result because Node.js uses a single
thread to execute event callbacks, and all I/O operations are
asynchronous without having to explicitly synchronize. This
implies that improving the performance of synchronization
primitives in the processor will likely not yield much benefit
for event-driven server applications.

Thus, we devote the rest of the section to performing de-
tailed analysis on the three microarchitectural resources that
significantly impact the front-end’s execution efficiency: the
L1 instruction cache and L1 instruction TLB (for instruction
fetching) and the branch predictor (for branch prediction).

4.2. Instruction Cache Analysis

To understand the front-end execution inefficiency of Node.js
applications, we start by examining the workloads’ instruction
cache (I-cache) behavior. We sweep a wide range of cache
configurations in order to study the workloads’ instruction
footprints. We show that all the Node.js applications suffer
from significantly higher misses per kilo-instruction (MPKI)
than the vast majority of SPEC CPU 2006 applications on
a standard cache configuration. To achieve SPEC CPU-like
MPKI, the processor core would require an I-cache so large
that it cannot be practically implemented in hardware.
Current Design Performance Implications We study a

modern CPU cache with 32 KB capacity, 64-byte line size,
and 8-way set associativity. At this default configuration, we
examine the I-cache’s efficiency using the MPKI metric. We
compare the Node.js programs against the SPEC CPU 2006
workloads’ MPKIs, and present the results in Fig. 6a.

We make two important observations. First, the average
I-cache MPKI of Node.js applications is 4.2 times higher than
that of the SPEC applications. Even Etherpad, which has the
lowest I-cache MPKI of all the Node.js applications, shows
over twice the MPKI of the SPEC average (indicated by the
horizontal dotted line in the figure). At the other extreme,
Word Finder and Mud have I-cache MPKIs higher than all but
one of the SPEC applications.

Second, the typical behavior of event-driven applications is
on par with the worst-case behavior of single-threaded SPEC
CPU 2006 applications that are known to stress the microar-
chitecture. The event-driven Node.js applications have MPKIs
comparable to some of the worst MPKI of SPEC applications,
such as gobmk, omnetpp, and cactusADM.

To understand the reason for the poor I-cache performance,
we study the instruction reuse distance to quantify the ap-
plications’ working set size. Reuse distance is defined as the
number of distinct instructions between two dynamic instances
of the same instruction [39]. Fig. 7 shows the instruction reuse
distances for all of the Node.js application. Each (x, y) point
corresponds to the percentage of instructions (y) that are at
or below a particular reuse distance (x). For comparative
purposes, we also include two extreme applications from the
SPEC CPU 2006 suite: /bm has the lowest I-cache MPKIs and
omnetpp suffers from the one of the highest I-cache MPKIs.

The event-driven Node.js applications have very large reuse
distances. The instruction footprint of omnetpp, the worst
SPEC CPU 2006 application, can be effectively captured
within a reuse distance of 2!, In our measurement, the av-
erage instruction size is about 4 bytes; this means an I-cache
of just 8 KB would be sufficient to capture omnetpp’s instruc-
tion locality (assuming a fully-associative cache). In contrast,
Let’s Chat has a significantly larger reuse distance of up to 2!
instructions, requiring a cache of 1 MB to capture.

For comparison purposes, we also examine the data cache
behavior of Node.js applications, and compare and contrast it
against the SPEC CPU 2006 applications. Fig. 6b shows the
D-cache MPKI of Node.js and SPEC CPU 2006 applications.
Event-driven Node.js applications do not appear to stress the
data cache heavily. All the Node.js applications have MPKIs
that are significantly lower than the SPEC CPU average. Even
the extreme cases, Word Finder and Mud, which have the
highest MPKIs of 37 and 34, are comparable to the lowest
MPKI of SPEC CPU applications.

Ideal Resource Requirements To determine the ideal in-
struction cache resource requirements for our event-driven
Node.js applications, we sweep the I-cache size and determine
application sensitivity under a variety of resource configu-
rations. We find that the instruction working set sizes ap-
proach 1 MB, which far exceeds the typical L1 cache capacity.



o
o

44— 120
e
Z 4

v

@
o
T
<
S

W

—»— omnetpp
—4 lbm

D
o
T

—o— Word
—&— Todo
—A— Mud
—¥— Etherpad
—— Let's chat
Lighter

ey
o
T
|I-Cache MPKI

5%
s

Dynamic Instructions (%) _,
]
T

L 1 1

—— Word Finder —#— Todo
—A— Mud —¥— Etherpad
—@— Let's Chat

Y- &3

-
N
o

@ 4-way
—&— 8-way

Lighter]|

o
=]

SPEC CPU 2006

|I-Cache MPKI_,
o]
o

0
AR A A M L L 1 16 64

Reuse Distance (log)

Figure 7: Instruction reuse distances for
Node.js and SPEC CPU applications.

Figure 8:

In Fig. 8, the cache size is swept from 16 KB to 1024 KB
on the x-axis (in log-scale) and the resulting MPKIs of the
Node.js applications are shown on the y-axis. The SPEC CPU
2006 average I-cache MPKI for a cache of 32 KB is indicated
by the horizontal dotted line.

The most significant observation from Fig. 8 is that the
I-cache MPKI keeps improving as the cache size increases
for all of the Node.js applications. Some applications such as
Word Finder and Etherpad show a knee in their MPKIs at the
128 KB cache size. However, it is not until 256 KB, or even
512 KB, that all the event-driven applications have MPKIs
that are comparable to the SPEC CPU 2006 average. Such a
large L1 I-cache is infeasible for practical implementation.

Instruction cache performance on the event-driven appli-
cations cannot be easily improved by adjusting conventional
cache parameters, such as line size and associativity. Using
Mud, which has an MPKI close to the average of all Node.js
applications, as an example, Fig. 9 shows the impact of line
size and associativity while keeping the same cache capacity.
The line size is held constant while sweeping the associativity
from 4 to 16 ways, and then holding the associativity at 8 ways
while sweeping the line size from 32 to 128 bytes. The I-cache
MPKI is improved when the two parameters are properly se-
lected. For example, increasing the line size from 64 bytes
to 128 bytes improves the MPKI by nearly 25%, indicating
that Node.js applications exhibit a noticeable level of spatial
locality in their code execution behavior. However, the 43
MPKI on a 128-byte line is still significantly higher to the
average 14 MPKI of SPEC CPU 2006 applications.

Comparing the impact of the two parameters, cache line
size and associativity, changing the associativity has less im-
pact than changing the cache line size. Increasing the cache
associativity actually worsens the MPKI on average by about
10 for Mud. Between increasing associativity and line size
while keeping the cache size the same, increasing the line
size to capture spatial locality is a better design trade-off than
increasing the associativity to reduce cache conflict misses.
But even this cannot reduce the cache misses to the average
level of SPEC CPU 2006 workloads. The difference is still as
much as two orders of magnitude or more.

4.3. Branch Prediction Analysis

Event-driven Node.js applications suffer from bad branch pre-
diction performance. Such behavior stems from the large

I-Cache size (KB)

I-Cache MPKI sensitivity of
Node.js applications to cache sizes.

256 1024 32 128

64
Cacheline Size (Bytes)

Figure 9: Mud's MPKI with respect to
cache line size and associativity.

number of branch instructions in the Node.js applications. In
SPEC CPU 2006, only 12% of all dynamic instructions are
branches. In Node.js applications, 20% of all instructions are
branches. As such, different branch instructions tend to alias
into the same branch prediction counters and thus are likely to
pollute each other’s predictions. We further show that reduc-
ing branch aliasing by attempting to simply scale the branch
predictor structures would require excessive resources that are
infeasible to implement.

Current Design Performance Implications We com-
pare Node.js applications with SPEC CPU 2006 applications
under three common branch predictor designs—global, local,
and tournament predictor. Intel and AMD do not provide the
necessary details to mimic the actual implementation. How-
ever, they do provide sufficient information about program
optimization [40] that indirectly indicate reasonable predic-
tor parameters. Based on those informational resources, we
mimic branch predictor parameters that are typically adopted
in today’s processors. For all three predictors, we use history
registers of 12 bits, which leads to 4 K unique bimodal predic-
tors. The local predictor is configured to use 256 local branch
histories. The tournament predictor further utilizes another
4 K bimodal prediction array of its own.

Branch misprediction results are shown in Fig. 10. We
draw two conclusions. First, even under the best-performing
predictor (the tournament predictor), Node.js applications have
an average misprediction rate (8.8%) over 2 times higher than
that of SPEC CPU (3.7%). Four Node.js applications (Todo,
Mud, Let’s Chat, and Lighter) are as hard to predict as the
hardest of the SPEC CPU programs (e.g., gobmk and astar).

Second, the performance difference between the local and
global predictors depends heavily on the applications. There-
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Figure 10: Comparison of Node.js and SPEC CPU 2006 appli-
cations under three classic branch predictor designs.
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Figure 12: The sensitivity of branch misprediction rate with
respect to global predictor size and local history table size.

fore, a tournament predictor is necessary to achieve better
prediction results. The local predictor is equivalent to or more
accurate than the global predictor for Word Finder and Ether-
pad but performs worse in the other four applications.

To understand the high branch misprediction rate for the
event-driven applications, we study the possibility for destruc-
tive branch aliasing to occur. Destructive branch aliasing arises
when two or more branch instructions rely on the same pre-
diction counter. We quantify branch aliasing by capturing the
number of unique branches between two dynamic instances
of the same branch instruction being predicted. We call this
number the “branch aliasing distance,” which, conceptually,
is similar to instruction reuse distance that indicates the num-
ber of unique instructions that occur between two dynamic
instances of a specific static instruction.

We bin the branch aliasing distance of all the bimodal pre-
dictors into 18 bins, each represents a single distance from 0 to
16 and 17+. Zero-aliasing distance is ideal because it indicates
that the branch predictor predicts for the same branch instruc-
tion back-to-back without any intervening interference from
the other branches. A non-zero value for the reuse distance
indicates the degree of branch aliasing.

Fig. 11 shows the branch aliasing distances for Node.js
applications. It also includes the average for SPEC CPU 2006
applications. Each (x, y) point in the figure corresponds to the
percentage of dynamic branch instruction instances (y) that
are at a particular branch aliasing distance (x).

Node.js applications suffer from heavier branch aliasing
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Figure 13: I-TLB and D-TLB MPKIs for the Node.js applications
and SPEC CPU 2006 applications.

than SPEC CPU 2006. For the global predictor, Fig. 11a
shows that about 90% of the branch predictions in the SPEC
applications have zero-aliasing distance. By comparison, in
the Node.js applications that figure drops to about 60%. Fur-
thermore, about 10% of the predictions in Node.js applications
have an aliasing distance 17+. SPEC has none that far.

The contrast between Node.js and SPEC applications is
more prominent in the local predictor (Fig. 11b). Over 50% of
the Node.js predictions have aliasing distance 17+ while only
about 10% do in the SPEC applications. The local aliasing
is higher than the global aliasing because local histories are
more varied than the global history. Note that we omit the
tournament predictor’s aliasing as it is indexed identically to
the global predictor and so would produce the same results.

Ideal Resource Requirements To determine whether scal-
ing the hardware resources will address the branch prediction
and aliasing issues, we sweep the global and local predictor
sizes. Even with much larger predictors, the full set of Node.js
applications never becomes universally well-predicted.

Fig. 12a shows the misprediction rates of the Node.js appli-
cations as the number of prediction table entries in the global
predictor changes from 128 (27) to 64 K (2'%). Even with
64 K entries, Word Finder, Todo, Let’s Chat, and Lighter still
exceed the average SPEC CPU 2006 misprediction rate at the
much smaller 4 K entry predictors. In addition, for most of the
applications, as predictor size increases, we observe a remark-
ably linear trend without a knee of the curve. This indicates
that the branch misprediction is far entering the diminishing
return area, and further reducing the misprediction requires
significantly more hardware resources.

Local predictor trends are similar to the global predictor
trends. Fig. 12b shows the misprediction rates as the number
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Figure 14: I-TLB sensitivity to varying Figure 15:
TLB sizes for Node.js applications.

of local histories increases from 128 (27) to 16 K (2'%). Mud is
a notable example in that it approaches the prediction accuracy
of Word Finder and Etherpad, which are the easier to predict
(see Fig. 10). The remaining three applications, however,
require heavy branch prediction hardware investment to even
approach the average of SPEC CPU 2006 applications.

4.4. Instruction TLB Analysis

Traditionally, I-TLBs have not been the primary focus in TLB-
related studies due to their extremely low miss rates [41-43].
However, I-TLB performance is crucial because every instruc-
tion fetch requires a TLB lookup, and TLB misses result in
expensive page table walks. Our analyses show that the event-
driven Node.js applications suffer from high I-TLB misses.
Scaling the number of TLB entries reduces the miss ratio, but
only at prohibitive hardware cost.

Current Design Performance Implications We simulate
a TLB using a Pin tool that resembles the TLB found in mod-
ern Intel server processors with 64 entries and 4-way set as-
sociativity. Because TLB results are typically sensitive to
system-level activities and Pin only captures user-level code,
we validated our tool’s accuracy using hardware performance
counters. Its accuracy is within 95% of the measured hardware
TLB results on an Intel processor.

The I-TLB MPKISs of Node.js applications dwarf those of
the SPEC CPU 2006 suite. Fig. 13a compares the I-TLB MPKI
of Node.js applications with the SPEC applications. SPEC
applications hardly experience any I-TLB misses whereas al-
most all Node.js applications have close to 3 MPKI. In stark
contrast, Node.js applications fall far short of the worst ap-
plications in SPEC in terms of D-TLB MPKIs. As Fig. 13b
shows, Node.js are roughly comparable to the average D-TLB
miss rate of SPEC applications.

To understand whether the poor I-TLB performance is
caused by a large code footprint, we analyze the contribu-
tion of static code footprint to dynamic instruction execution
behavior. Specifically, we study if the event-driven Node.js
applications contain a few hot instructions or a lot of cold
instructions that contribute to a majority of the dynamic in-
structions that impact the TLB’s performance.

We discover that Node.js applications have a small number
of hot instructions that contribute to a large percentage of the
total dynamic instruction count. Fig. 16 shows the hotness
of static instructions as a cumulative distribution function.

I-TLB MPKI significantly re-
duces to almost zero with superpages.

Figure 16: Hotness of instructions as a
CDF for Node.js applications.

On average, 5% of the static instructions are responsible for
90% of the dynamic instructions. This behavior is similar to
many SPEC CPU 2006 applications whose code footprints are
attributed to a few hot static instructions [44] and yet do not
suffer from poor I-TLB performance.

The data in Fig. 16 suggests that the poor I-TLB perfor-
mance of Node.js applications is not due to a lack of hot code
pages; rather it must be due to the poor locality of execution.
Sec. 3.3 showed that the Node.js applications rely heavily on
native call bindings that are supported by the V8 VM, thus we
hypothesize that the user-level context switches between the
Node.js event callbacks and native code (inside the VM) are
the main reason for the poor I-TLB performance.

Ideal Resource Requirements The event-driven Node.js
applications require unconventionally large I-TLB sizes to
achieve SPEC-like I-TLB performance. Fig. 14 shows the
I-TLB behavior as the TLB size is progressively increased
from 8 to 512 entries. In order to get SPEC-like behavior
(indicated by the arrow and so close to the O line as to be
nearly indistinguishable from it), the I-TLB would have to be
increased to 256 or more entries.

Building such a large I-TLB is inefficient. Current TLB
lookups already impose non-negligible energy costs, and there-
fore scaling the TLB sizes will likely increase energy per ac-
cess [45,46]. In fact, TLB sizes have largely remained stable
over the past several generations [47].

The alternative to increasing the TLB size is to use super-
pages. In event-driven applications, switching to a large page
size reduces the MPKI significantly. Fig. 15 compares the
I-TLB MPKI under 4 KB and 2 MB (i.e., superpage) page
sizes. Although superpages are traditionally used for reducing
D-TLB misses [43,48], our results indicate that large pages
would be helpful for improving I-TLB performance.

5. Event-based Optimizations

To improve the execution efficiency of event-driven applica-
tions, we must mitigate several front-end inefficiencies. How-
ever, given all of the major bottlenecks in the front-end, this
section specifically focuses on alleviating the instruction cache
inefficiencies. The insights are likely to be generalizable to
the other structures (i.e., TLB and branch predictor).

We study I-cache misses from an event callback perspective.
We find that individual events have large instruction footprints
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Figure 17: Frequency of instruction reuse across intra-event and inter-event execution behavior for Node.js applications.

with little reuse, which leads to cache thrashing. Fortunately,
event-driven programming inherently exposes strong inter-
event instruction reuses (Sec. 5.1). Such heavy inter-event
instruction reuse exposes a unique opportunity for improving
the instruction cache performance. We demonstrate that it
is necessary to coordinate cache insertion policy and instruc-
tion prefetcher (Sec. 5.2). The combined efforts reduce the
instruction cache MPKI by 88% (Sec. 5.3).

5.1. Optimization Opportunity

We examine event execution along two important dimensions
to discover opportunities for mitigating I-cache inefficiencies:
intra-event and inter-event. In the intra-event case, execution
characteristics correspond to one event, whereas in inter-event
execution the characteristics correspond to the shared execu-
tion activity across two or more events.

We analyze intra-event and inter-event instruction reuse to
understand the poor I-cache behavior of event-driven appli-
cations. Fig. 17 shows the percentage of instructions (y-axis)
that are reused a certain amount of times (x-axis) both within
and across events for all six Node.js applications. The reuses
are reported as buckets on the x-axis. The n’" bucket repre-
sents reuses between X,,_; and X,, with the exception of the
first bucket, which represents less than 32 reuses and the last
bucket which represents 256 or more reuses.

When we consider the event callbacks in isolation (i.e.,
intra-event) almost 100% of the instructions across all the
Node.js are reused less than 32 times. The low intra-event
reuse is inherent to event-driven programming. Developers
consciously program the event callbacks to avoid hot, compute-
intensive loops to ensure application responsiveness. Recall
that events in the event queue are executed sequentially by the
single-threaded event loop, thus all of the events must execute
quickly, similar to interrupts (Sec. 3.3).

When the low intra-event code reuse is coupled with the
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Figure 18: Event footprints. Figure 19: Events similarity.

large instruction footprint of each event, it leads to the large
instruction reuse distance that results in poor I-cache perfor-
mance (as previously shown in Fig. 7). In Fig. 18, we show
the code footprint (i.e., total byte size of static instructions)
for all the events in each application. Each (x, y) point in the
figure indicates the percentage of events (x) whose footprints
are at or below a particular size (y). We overlay a 32 KB line
marker to indicate the L1 I-cache capacity. Almost all of the
events have a footprint greater than the standard 32 KB I-cache
capacity. In some events, the footprints exceed 1 MB.

In contrast, instruction reuse is much higher for inter-event
application activity. Fig. 17 shows that over 40% of the instruc-
tions are reused over 256 times in the inter-event case. Such
frequent reuse implies that events share a considerable number
of instructions, otherwise the inter-event behavior would be
similar to intra-event behavior.

Inter-event reuse is the direct result of the event-driven
programming paradigm: events exercise the same JavaScript
VM system functionalities (i.e., the VM category in Table 2).
In particular, for Node.js applications, different event callbacks
need the same V8 JavaScript runtime features, which provides
support for compiler optimizations, inline cache handling,
garbage collection, various built-in functions, etc.

To quantitatively demonstrate that different events indeed
share similar code paths within V8’s VM, we show instruction-
level similarity between different events. Fig. 19 is a heat map
where each (i, j) point in the figure corresponds to an event
pair (i, j), where event i appears earlier than event j in the
application. Each (7, j) point indicates the percentage of V8
instructions that event j uses that can also be found in event i.
The darkness of the heatmap at any given point is proportional
to the percentage of code sharing between those two events, as
indicated by the color scale on the right side of the figure. For
the purposes of presentation, we limit the data in the figure
to 100 randomly chosen consecutive events. We verified that
the results hold true when we expand the graph to include all
events in the application. The figure confirms that most of the
events share close to 100% of the V8 code.

5.2. Optimization Strategy

The low intra-event reuse coupled with large event footprints
suggests that even an optimal cache cannot fully capture the
entire working set of all the events. However, the heavy inter-
event reuse indicates the potential available locality. Intu-
itively, the instruction cache needs to first retain the “hot”



fraction of the event working set in the cache so that at least
that portion reduces cache misses. In addition, it is necessary
to deploy an instruction prefetcher that can always prefetch in-
structions that are not fully retained in the cache by capturing
the instruction-miss sequence pattern.

Caching We propose to use the LRU Insertion Policy
(LIP) [49] for the instruction cache (while still maintaining
the LRU eviction policy) to retain the hot portion of the event
footprint. LIP is known for being able to effectively preserve
a subset of a large working set in the cache by inserting all the
incoming cache lines into the LRU way instead of the MRU
way and only promoting the LRU way to the MRU way if
it has a cache hit. As such, the less frequently-used instruc-
tions that cause the instruction footprint to exceed the cache
capacity will be quickly evicted from the LRU way instead
of thrashing the cache. A critical advantage of LIP is that it
requires little hardware and design effort and can be readily
adopted in existing designs. LIP was originally proposed for
last-level caches and used primarily for addressing large data
working sets. To the best of our knowledge, we are the first to
apply LIP to the instruction stream and show its benefits.

Prefetching Although LIP preserves a subset of event foot-
prints in the I-cache, improvement is still fundamentally lim-
ited by cache capacity. As discussed in Sec. 4.2, simply in-
creasing the cache size will lead to practical design issues. To
compensate for cache capacity limitations, we must orches-
trate the prefetcher to accurately fetch instructions in the miss
sequence. Our key observation is that the instruction miss se-
quence in event-driven applications exhibits strong recurring
patterns, primarily because inter-event execution has signifi-
cant code similarities. For instance, as Fig. 19 shows, different
events heavily share code from the V8 JavaScript engine.

To quantify the recurring patterns in Node.js applications,
we perform oracle analysis to determine the number of repeti-
tive patterns in the instruction cache miss sequence. We use
the SEQUITUR [50] tool, which is widely used to detect pat-
terns in a given stream, to analyze the miss instruction stream
of an LIP cache. We classify instruction cache misses into
three categories as originally defined in [51]. Non-repetitive
misses do not belong to any recurring pattern. New misses
are those instructions misses that appear in a pattern when it
first occurs. The subsequent misses in an recurring pattern are
classified as Opportunity misses.

The oracle repetitive pattern analysis results are shown
in Fig. 20. For all the Node.js applications, over 50% of the
cache misses are opportunity misses. This means up to 50%
of the instruction misses can be eliminated if the prefetcher
can capture all the recurring patterns and accurately match
instruction misses to their corresponding patterns.

We propose to use the Temporal Instruction Fetch Streaming
(TIFS) prefetcher [51] to prefetch recurring missing instruc-
tions. TIFS predicts and prefetches future instruction misses
through recording and replaying the recurring instruction miss
pattern. Specifically, it records all the missing instructions
into an instruction missing log (IML). Upon an instruction
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Figure 20: Repetition study. Figure 21: MPKI Results.
miss, TIFS finds the location in IML where the miss address
was most recently seen and begins prefetching subsequent
instructions from the addresses in the IML.

5.3. Evaluations

We evaluate our proposal using an in-house instruction cache
Pin tool. The reason we choose to only simulate the instruction
cache is that it isolates other microarchitecture effects and
provides crisp insights into the I-cache issue.

We implemented LIP as it was described by Qureshi et
al. [49]. We do not find noticeable differences between LIP
and the bimodal insertion policy (BIP) as observed for the
LLC in [49]. Because of the additional hardware cost, we
choose LIP instead of BIP. TIFS is implemented as described
by Ferdman ef al. [51]. We find that it is sufficient for the IML
to keep track of 8 K instruction misses. More IML entries only
lead to marginal improvements. The total storage overhead of
TIFS is about 100 KB per core.

The baseline we compare against is the standard LRU cache
with a 32 KB I-cache, 64-byte line size, and 8-way set asso-
ciativity. We compare it with the following schemes. First,
we compare it against an instruction cache with LIP insertion
policy to understand the effectiveness of retaining the hot frac-
tion of the event working set. Second, we compare it against a
LIP-enabled cache with a next-line prefetcher to understand
the effectiveness the common prefetching scheme. Third, we
compare it against a LIP-enabled instruction cache enhanced
with the TIFS prefetcher to understand the benefits of prefetch-
ing recurring instruction misses. Finally, we compare against
a LIP instruction cache of 128 KB size without TIFS to under-
stand whether the storage overhead introduced by TIFS can
be simply used to increase the cache size.

The I-cache MPKI comparison results are shown in Fig. 21.
We also overlay the average MPKI of SPEC CPU 2006 ap-
plications at 32 KB. We see that LIP drastically improves
the MPKI by at least 45% and 70% on average compared to
the LRU-only cache policy. This suggests that without any
prefetching scheme, simple changes to the cache insertion
policy can already reduce the I-cache MPKI for Node.js ap-
plication significantly. In two applications, Word Finder and
Etherpad, LIP is able to eliminate almost all of the cache
misses. For other applications, however, their MPKIs are still
higher than the SPEC applications’ average.

The TIFS-based instruction prefetcher reduces the MPKI by



another 60% on top of the cache improvements. As a compar-
ison, using a next-line prefetcher only reduces the MPKI by
33.6%. With TIFS, all applications’ MPKI fall below SPEC
CPU 2006’s average. This shows the necessity of capturing
the instruction misses’ recurring pattern for prefetching. Com-
bining the LIP cache with TIFS prefetching effectively reduces
the I-cache MPKI by 88%, which would otherwise be impossi-
ble to achieve without event-specific optimization. LIP+TIFS
is almost as effective as an extremely large L1 I-cache. In all
but one applications (Mud), LIP+TIFS achieves an equivalent
or better MPKI than a 128 KB I-cache.

Cost Analysis The cost of LIP is negligible. TIFS opera-
tions (e.g., logging miss sequences in IML, updating the Index
Table) are off the critical path, following the general design
principle of prefetching structures [52,53]. Hence, TIFS is
not likely to affect the cycle time. We also estimate that the
additional power consumption of TIFS-related structures is
only about 92 mW based on CACTI v5.3 [54].

6. Related Work

Characterization of Emerging Paradigms At the time mul-
ticore was starting to become ubiquitous on commodity hard-
ware, Bienia et al. developed the PARSEC multicore bench-
mark suite [55]. Similarly, Ranger er al. characterized the
implications of MapReduce applications when MapReduce
was becoming prevalent in developing large-scale data-center
applications. More recently, numerous research efforts have
been devoted to characterizing warehouse-scale and big data
workloads [32,34,35,56-58].

We address a new and emerging computing paradigm, i.e.,
event-driven programming, as others have done in other do-
mains at the time those domains were becoming important. Al-
though event-driven programming has existed for many years
for highly concurrent server architecture [9,59,60], large-scale
simulations [61, 62], and interactive graphical user interface
(GUI) application design [63], server-side event-driven appli-
cations that are tightly coupled with scripting languages have
only recently become important. In this context, our work is
the first to present a comprehensive analysis of the microarchi-
tectural bottlenecks of scripting-language-based server-side
event-driven applications.

Asynchronous/Event Execution Analysis Prior work on
event-driven applications primarily focus on client-side ap-
plications [12, 13] whereas we study server-side applications.
While prior art also attributes front-end bottlenecks to little
intra-event code reuse and proposes instruction prefetching
and pre-execution techniques, we take the event-level analysis
a step further to demonstrate heavy inter-event code reuse.
As a result, we show that simple changes to the instruction
cache insertion policy can drastically improve the front-end
efficiency, even without the prefetching. Hempstead et al. [64]
designed a specialized event-driven architecture for embedded
wireless sensor network applications. Our work focuses on
server-side event-driven programming and studies its implica-

tions on the general purpose processor. EBS [65] improves the
energy-efficiency of client-side event-driven Web applications
and is orthogonal to the performance study of our paper.
Scripting Languages Richards et al. explore language-
level characteristics of client-side JavaScript programs [66].
Our work studies server-side JavaScript and focuses on the na-
ture of events and their microarchitectural implications. Prior
work on improving the performance of JavaScript, especially
its dynamic typing system [3,67], complements our event-level
optimizations. Ogasawara conducted source code analysis of
server-side JavaScript applications, also using Node.js, and
found that little time is spent on dynamically compiled code,
leading to limited optimization opportunity [68]. We take an
event perspective and demonstrate significant optimization
opportunities by exploiting event-specific characteristics. In
addition, the prior work does not focus on or investigate the
microarchitectural implications of event-driven execution.

7. Concluding Remarks

As computer architects, it is important to understand how to
optimize (micro)architecture in light of emerging application
paradigms. This paper systematically studies microarchitec-
tural implications of Node.js applications, which represent the
unique intersection between two trends in emerging server
applications: managed language systems and event-driven
programming. We show that Node.js applications are bot-
tlenecked by front-end inefficiencies. By leveraging heavy
inter-event code reuse inherent to event-driven programming,
we drastically improve the front-end efficiency by orchestrat-
ing the instruction cache insertion policy with an instruction
prefetcher. Our results are readily useful for building an op-
timized server architecture for event-driven workloads and
provide a baseline, which further research can build upon.
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