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Abstract
In this paper, we propose Database Processing Units, or
DPUs, a class of domain-specific database processors that
can efficiently handle database applications. As a proof of
concept, we present the instruction set architecture, microar-
chitecture, and hardware implementation of one DPU, called
Q100. The Q100 has a collection of heterogeneous ASIC
tiles that process relational tables and columns quickly and
energy-efficiently. The architecture uses coarse grained in-
structions that manipulate streams of data, thereby maxi-
mizing pipeline and data parallelism, and minimizing the
need to time multiplex the accelerator tiles and spill inter-
mediate results to memory. This work explores a Q100 de-
sign space of 150 configurations, selecting three for further
analysis: a small, power-conscious implementation, a high-
performance implementation, and a balanced design that
maximizes performance per Watt. We then demonstrate that
the power-conscious Q100 handles the TPC-H queries with
three orders of magnitude less energy than a state of the art
software DBMS, while the performance-oriented design out-
performs the same DBMS by 70X.

Categories and Subject Descriptors C.3 [Special-purpose
and application-based systems]: Microprocessor/microcomputer
applications

Keywords Accelerator; Specialized functional unit; Stream-
ing data; Microarchitecture; Database; DPU

1. Introduction
Harvard Business Review recently published an article on
Big Data that leads with a piece of artwork by Tamar Co-
hen titled “You can’t manage what you don’t measure” [28].
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It goes on to describe big data analytics as not just impor-
tant for business, but essential. The article emphasized that
analyses must process large volumes of a wide variety, and
at real-time or nearly real-time velocity. With the big data
technology and services market forecast to grow from $3.2B
in 2010 to $16.9B in 2015 [23], and 2.6 exabytes of data
created each day [28], it is imperative for the research com-
munity to develop machines that can keep up with this data
deluge.

For its part, the Database Management System (DBMS)
software community has been exploring optimizations such
as using column stores [1–3, 24, 27, 34], pipelining opera-
tions [4, 6], and vectorizing operations [40], to take advan-
tage of commodity server hardware.

This work applies those same techniques, but in hard-
ware, to construct a domain-specific processor for databases.
Just as conventional DBMSs operate on data in logical enti-
ties of tables and columns, our processor manipulates these
same data primitives. Like DBMSs use software pipelin-
ing between relational operators to reduce intermediate re-
sults, we too can exploit pipelining between relational oper-
ators implemented in hardware to increase throughput and
reduce query completion time. In light of the SIMD instruc-
tion set advances in general purpose CPUs in the last decade,
DBMSs also vectorize their implementations of many oper-
ators to exploit data parallelism. Our hardware does not use
vectorized instructions, but exploits data parallelism by pro-
cessing multiple streams of data, corresponding to tables and
columns, at once.

Streams of data. Pipelines. Parallel functional units. All
of these techniques have long been known to be excellent
fits for hardware, creating what we believe to be an op-
portunity to address some very practical, real-world con-
cerns regarding big data. Our vision is of a class of domain-
specific processors called DPUs, that is analogous to GPUs.
Whereas GPUs target graphics applications, DPUs target an-
alytic database workloads. As GPUs operate on vertices,
DPUs operate on tables and columns.

We design and evaluate a first DPU, called Q100. The
Q100 is a performance and energy efficient data analy-
sis accelerator. It contains a heterogeneous collection of



fixed-function ASIC tiles, each of which implements a well-
known relational operator, such as a join or sort. The Q100
tiles operate on streams of data corresponding to tables and
columns, over which the microarchitecture aggressively ex-
ploits pipeline and data parallelism.

This paper makes the following contributions:

• An energy-efficient instruction set architecture for pro-
cessing data-analytic workloads, with instructions that
both closely match standard relational primitives and are
good fits for hardware acceleration.

• A high-performance, energy-efficient DPU, called Q100.
Using custom processing tiles, all physically designed in
32nm standard cells, this chip provides orders of magni-
tude improvements in both TPC-H performance and en-
ergy consumption over state-of-the-art DBMS software.

• An in-depth tour of the Q100 design process, revealing
the many opportunities, pitfalls, tradeoffs, and overheads
one can expect to encounter when designing small accel-
erators to process big data.

In the following section, we present the design and spec-
ification of the Q100 ISA, the first DPU ISA. Then, in Sec-
tion 3, we detail the step-by-step design process of the Q100,
starting from physical design of the tiles and working up
towards an exploration of resource scheduling algorithms.
The results of this process are three Q100 designs, each op-
timized for a particular objective (e.g., low power, high per-
formance, etc.). In Section 4 we compare the performance
and energy consumption of TPC-H queries running on these
Q100 designs to a state of the art, column store DBMS run-
ning on a Sandybridge server. Before concluding, we close
with a survey of related work in Section 5.

2. Q100 Instruction Set Architecture
Q100 instructions implement standard relational operators
that manipulate database primitives such as columns, tables,
and constants. The producer and consumer relationship be-
tween operators are captured with dependencies specified by
the instruction set architecture. Queries are represented as
graphs of these instructions with the edges representing data
dependencies between instructions. For execution, a query
is mapped to a spatial array of specialized processing tiles,
each of which carries out one of the primitive functions.
When producer-consumer node pairs are mapped to the same
temporal stage of the query, they operate as a pipeline with
data streaming direction from producer to consumer.

The basic instruction is called a spatial instruction or
sinst. These instructions implement standard SQL-esque op-
erators, namely select, join, aggregate, boolgen, colfilter,
partition, and sort. Figure 1 shows a simple query written
in SQL to produce a summary sales quantity report per sea-
son for all items shipped as of a given date. Figure 1 bottom
shows the query transformed into Q100 spatial instructions,
retaining data dependencies. Together, boolgen and colfil-

B Sample query written in SQL
SELECT S SEASON ,

SUM(S QUANTITY ) as SUM QTY
FROM SALES
WHERE S SHIPDATE <= ’1998-12-01’ - INTERVAL ’90’ DAY
GROUP BY S SEASON
ORDER BY S SEASON

B Sample query plan converted to proposed DPU spatial instructions
Col1 ← ColSelect(S SEASON from SALES);
Col2 ← ColSelect(S QUANTITY from SALES);
Col3 ← ColSelect(S SHIPDATE from SALES);
Bool1 ← BoolGen(Col3, ’1998-09-02’, LTE);
Col4 ← ColFilter(Col1 using Bool1);
Col5 ← ColFilter(Col2 using Bool1);
Table1 ← Stitch(Col4, Col5);
Table2..Table5← Partition(Table1 using key column Col4);
Col6..7 ← ColSelect(Col4..5 from Table2);
Col8..9 ← ColSelect(Col4..5 from Table3);
Col10..11 ← ColSelect(Col4..5 from Table4);
Col12..13 ← ColSelect(Col4..5 from Table5);
Table6← Append(Aggregate(SUM Col7 from Table2 group by Col6),

Aggregate(SUM Col9 from Table3 group by Col8));
Table7← Append(Aggregate(SUM Col11 from Table4 group by Col10),

Aggregate(SUM Col13 from Table5 group by Col12));
FinalAns← Append(Table6, Table7);

Figure 1. An example query (top) is transformed into a
spatial instruction plan (bottom) that map onto an array of
heterogeneous specialized tiles for efficient execution.

(a) Unrestricted Graph of Spatial Instructions

(b) Resource Profile

(c) Resource-Aware Temporal Instructions
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Figure 2. The example query from Figure 1 is mapped onto
a directed graph with nodes as relational operators and edges
as data dependencies. Given a set of Q100 resources, the
graph is broken into three temporal instructions that are
executed in sequence, one after another.



Area Power Critical Path Design Width (bits)
Tile mm2 % Xeon a mW % Xeon ns Record Column Comparator Other Constraint

Functional

Aggregator 0.029 0.07% 7.1 0.14% 1.95 256 256
ALU 0.091 0.21% 12.0 0.24% 0.29 64 64
BoolGen 0.003 0.01% 0.2 <0.01% 0.41 256 256
ColFilter 0.001 <0.01% 0.1 <0.01% 0.23 256
Joiner 0.016 0.04% 2.6 0.05% 0.51 1024 256 64
Partitioner 0.942 2.20% 28.8 0.58% ***3.17 1024 256 64
Sorter 0.188 0.44% 39.4 0.79% 2.48 1024 256 64 1024 entries at a time

Auxiliary

Append 0.011 0.03% 5.4 0.11% 0.37 1024 256
ColSelect 0.049 0.11% 8.0 0.16% 0.35 1024 256
Concat 0.003 0.01% 1.2 0.02% 0.28 256
Stitch 0.011 0.03% 5.4 0.11% 0.37 256

a Intel E5620 Xeon server with 2 chips. Each chip contains 4 cores 8 threads running at 2.4 GHz with 12 MB LLC, 3 channels of DDR3, providing 24 GB
RAM. Comparisons are done using estimated single core area and power consumption derived from published specification.

Table 1. The physical design characteristics of Q100 tiles post place and route, and compared to a Xeon core. ***The slowest
tile, the partitioner, determines the frequency of Q100 at 315 MHz.

ter for example, support the WHERE clauses, while partition
and sort are to support the ORDER BY clauses found in many
query languages. Generating a column of booleans using a
condition specified via a WHERE clause then filtering the pro-
jected columns is not a new concept, and is implemented by
Vectorwise [40], a commercial DBMS, and other database
software vendors that use column-stores.

Other helper spatial instructions perform a variety of aux-
iliary functions such as (1) tuple reconstruction (i.e. stitch in-
dividual columns of a row back into a row, or append smaller
tables with the same attributes into bigger tables) to trans-
form columns into intermediate or final table outputs, and
(2) GROUP BY and ORDER BY clauses to perform aggrega-
tions and sorts (i.e. concatenate entries in a pair of columns
to create one column in order to reduce the number of sorts
performed when there are multiple ORDER BY columns).

In situations where a query does not fit on the array of
available Q100 of tiles, it must be split into multiple tempo-
ral stages. These temporal stages are called temporal instruc-
tions, or tinsts, and are executed in order. Each tinst contains
a set of spatial instructions, pulling input data from the mem-
ory subsystem and pushing completed partial query results
back to the memory subsystem. Figure 2 walks through how
a graph representation of spatial instructions, implementing
the example query from Figure 1, is mapped onto available
specialized processing tiles. Figure 2 (a) shows the entire
query as one graph with each shape representing a differ-
ent primitive and edges representing producer-consumer re-
lationships (i.e., data dependencies). Figure 2 (b) shows an
example array of specialized hardware tiles, or a resource
profile, for a particular Q100 configuration. Figure 2 (c) de-
picts how the query must to be broken into three temporal in-
structions, because the resource profile does not have enough
column selectors, column filters, aggregators, or appenders
at each stage.

This instruction set architecture is energy efficient be-
cause it closely matches building blocks of our target do-
main, while simultaneously encapsulating operations that
can be implemented very efficiently in hardware. Spatial
instructions are executed in a dataflow-esque style seen in
dataflow machines in the 80’s [12, 17], in the 90’s [19], and
more recently [13, 31, 35], eliminating complex issue and
control logic, exposing parallelism, and passing data depen-
dencies directly from producer to consumer. All of these fea-
tures provide performance benefit and energy savings.

3. Q100 Microarchitecture
In this section we walk through the Q100 design process.
We start with descriptions of the hardware tiles that imple-
ment the Q100 ISA including their size and delays when im-
plemented in 32nm physical design (Section 3.1). Then, us-
ing 19 TPC-H queries as benchmarks we perform a detailed
Q100 design space exploration with which we explore the
tradeoffs and select three interesting Q100 designs: minimal
power, peak performance, and a balanced design that offers
maximal performance per Watt (Section 3.2). We then ex-
plore the impact of communication – both intra tile and with
memory – on these three designs (Section 3.3) as well as the
instruction scheduling algorithm (Section 3.4).

3.1 Q100 Tile Implementation and Characterization
The Q100 contains eleven types of hardware tile correspond-
ing to the eleven operators in the ISA. As in the ISA, we
break the discussion into core functional tiles and auxiliary
helper tiles. The facts and figures of this section are sum-
marized in Table 1, while the text that follows focuses on the
design choices and tradeoffs. The slowest tile determines the
clock cycle of the Q100. As Table 1 indicates, the partitioner
limits the Q100 frequency to 315 MHz.



Methodology. Each tile has been implemented in Verilog
and synthesized, placed, and routed using Synopsys 32nm
Generic Libraries1 with the Synopsys [36] Design and IC
Compilers to produce timing, area, and power numbers. We
report the post-place-and-route critical path of each design
as logic delay plus clock network delay, adhering to the
industry standard of reporting critical paths with a margin.

Q100 functional tiles. The sorter sorts its input table using
a designated key column and a bitonic sort [26]. In general,
hardware sorters operate in batches, and require all items in
the batch to be buffered at the ready prior to the start of the
sort. As buffers and sorting networks are costly, this limits
the number of items that can be sorted at once. For the Q100
tile, this is 1024 records, so to sort larger tables, they must
first be partitioned with the partitioner.

The partitioner splits a large table into multiple smaller
tables called partitions. Each row in the input table is as-
signed to exactly one partition based on the value of the key
field. The Q100 implements range partitioner, which splits
the space of keys into contiguous ranges. We chose this be-
cause it is tolerant of irregular data distributions [39] and
produces ordered partitions, making it a suitable precursor
to the sorter.

The joiner performs an inner-equijoin of two tables, one
with a primary key and the other with a foreign key. To keep
the design simple, the Q100 currently supports only inner-
equijoins. It is by far the most common type of join, though
extending the joiner to support other types (e.g., outer-joins)
would not increase its area or power substantially.

The ALU tile performs arithmetic and logical operations
on two input columns, producing one output column. It sup-
ports all arithmetic and logical operations found in SQL (i.e.,
ADD, SUB, MUL, DIV, AND, OR, and NOT) as well as
constant multiplication and division. We use these latter op-
erations to work around the current lack of a floating point
unit in the Q100. In its place, we multiply any SQL deci-
mal data type by a large constant, apply the integer arith-
metic, finally divide the result by the original scaling fac-
tor, effectively using fixed point to support single precision
floating point arithmetic, as most domain-specific accelera-
tors have done. SQL does not specify precision requirements
for floating point calculations and most commercial DBMS
supports either single-precision floating point and/or double-
precision floating point calculations.

The boolean generator compares an input column with
either a constant or a second input column, producing a col-
umn of boolean values. Using just two hardware compara-
tors, the tile provides all six comparisons used in SQL (i.e.
EQ, NEQ, LTE, LT, GT, GTE). While this tile could have
been combined with the ALU, offering two tiles à la carte
leaves more flexibility when allocating tile resources. The

1 Normal operating conditions (1.25V supply voltage at 25◦C) with high
threshold voltage to minimize leakage.

boolean generator is often paired with the column filter (de-
scribed next) with no need for an ALU. It is also often used
in a chain or tree to form complex predicates, again not al-
ways in 1-to-1 correspondence with ALUs.

The column filter takes in a column of booleans (from a
boolean generator) and a second data column. It outputs the
same data column but dropping all rows where the corre-
sponding bool is false.

Finally the aggregator takes in the column to be aggre-
gated and a “group by” column whose values determine
which entries in the first column to aggregate. For example,
if the query sums purchases by zipcode, the data column are
the purchase totals while the group-by is the zipcode. The
tile requires that both input columns arrive sorted on the
group-by column so that the tile can simply compare con-
secutive group-by values to determine where to close each
aggregation. This decision has tradeoffs. A hash-based im-
plementation might not require pre-sorting, but it would re-
quire a buffer of unknown size to maintain the partial aggre-
gation results for each group. The Q100 aggregator supports
all aggregation operations in the SQL spec, namely MAX,
MIN, COUNT, SUM, and AVG.

Q100 auxiliary tiles. The column selector extracts a col-
umn from a table, and the column stitcher does the inverse,
taking multiple input columns (up to a maximum total width)
and producing a table. This operation often precedes parti-
tions and sorts where queries frequently require column A
sorted according to the values in column B. The column
concatenator concatenates corresponding entries in two in-
put columns to produce one output column. This can cut
down on sorts and partitions when a query requires sorting
or grouping on more than one attribute (i.e., column). Fi-
nally, the table appender appends two tables with the same
schema. This is often used to combine the results of per-
partition computations.

Modifications to TPC-H due to tile limitations. The de-
sign parameters such as record, column, key, and compara-
tor widths are generally sized conservatively. However, we
encountered a small number of situations where we had to
modify the layout of an underlying table or adjust the oper-
ation, though never the semantics, of a query. When a col-
umn width exceeds the 32 byte maximum column width the
Q100 can support, we divide the wide column vertically into
smaller ones of no more than 32 bytes and process them
in parallel. Out of 8 tables and 61 columns in TPC-H, just
10 were split in this fashion. Similarly, because the Q100
does not currently support regular expression matching, as
with the SQL LIKE keyword, the query is converted to use
as many WHERE EQ clauses as required. These are all minor
side effects of the current Q100 design and may not be re-
quired in future implementations.
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Figure 3. Aggregator sensitivity study
shows that Q1 is the only query that is
sensitive to number of aggregators, and its
performance plateaus beyond 8 tiles.
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Figure 4. ALU tiles are more power hun-
gry than aggregators, but adding more
ALUs helps most query’s performance.
This tradeoff necessitates an exploration
of the design space varying number of
ALUs.
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Figure 5. Sorter tiles are the most power
hungry, dissipating almost 40 mW per
tile. Q17 exhibits a corner case where
the scheduler makes bad decisions caus-
ing performance to degrade as number of
sorters increase.

3.2 Q100 Tile Mix Design Space Exploration
To understand the relative utility of each type of tile, and
the tradeoffs amongst them, we explore a wide design space
of different sets of Q100 tiles. We start with a sensitivity
analysis of TPC-H performance, evaluating each type of tile
in isolation to bound the maximum number of useful tiles
of each type. We then carry out a complete design space
exploration considering multiple tiles at once, from which
we understand the power performance shape of the Q100
space and select three configurations (i.e., tile mixtures) for
further analysis.Methodology. We have developed a func-

tional and timing Q100 simulator in C++. The function and
throughput of each tile have been validated against simula-
tions of the corresponding Verilog. As we do not yet have a
compiler for the Q100, we have manually implemented each
TPC-H query in the Q100 ISA. Using the simulator, we have
confirmed that the Q100 query implementations produce the
same results as the SQL versions running on MonetDB [8].
Given a query and a Q100 configuration, a scheduling al-
gorithm described and evaluated later in Section 3.4 sched-
ules each query into a sequence of temporal instructions. The
simulator produces cycle counts, which we convert to wall
clock time using a Q100 frequency of 315 MHz.

Tile count sensitivity. To understand how sensitive Q100 is
to the number of each type of tile, say aggregators, we sim-
ulate a range of Q100 configurations, sweeping the number
aggregators, while holding all other types of tiles at suffi-
ciently high counts so as not to limit performance. Figure 3
shows how the runtime of each TPC-H varies with the num-
ber of aggregators in the design. Having run this experiment
for each of the eleven types of tile, we highlight three sets of
results here and in Figures 3-5. Just one query, Q1, is sensi-
tive to the number of aggregators, while the performance of

Maximum “Tiny” Tile Counts
Tile Useful Count Tile Explored

Aggregator 4 X 4
ALU 5 1 ... 5
BoolGen 6 X 6
ColFilter 6 X 6
Joiner 4 X 4
Partitioner 5 1 ... 5
Sorter 6 1 ... 6

Append 8 X 8
ColSelect 7 X 7
Concat 2 X 2
Stitch 3 X 3

Table 2. “Tiny” tiles are the ones that dissipate <10 mW
per tile as seen in Table 1. We eliminate configurations that
will result in similar power or performance characteristics
before running the design space exploration to cut down on
the number of Q100 configurations under consideration.

the others is not affected. On the other hand, many queries
benefit from more ALUs, with improvements flattening be-
yond 5 ALUs. Note that the aggregator and the ALU exper-
iments are plotted with the same X-axis, while the sorter, at
39.4 mW per tile, covers a much larger power range. Across
the board, these sensitivity experiments reveal that for all
queries and all tiles, performance plateaus by or before ten
tiles of each type.

Design space parameters. A complete design space ex-
ploration, with 1 to 10 instances of each of 11 types of tile,
would result in an overwhelmingly large design space. Using
the tile sizes and the results of the sensitivity study above,
we are able to prune the space substantially. First, we elimi-
nate all of the “negligible” tiles from the design space. There
are the tiles that are so tiny that the difference between one
or two or ten will have a negligible impact on the results
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Figure 6. Out of 150 configurations, we selected three
designs for further evaluation: LowPower for an energy-
conscious configuration, HighPerf for a performance-
conscious configuration, and Pareto for a design that max-
imizes performance per Watt.

of the exploration. For these tiny tiles, defined to be those
eight tiles that consume less than 10 mW , we use the per-
tile sensitivity analysis to identify the maximum number of
useful tiles, and always allocate this many instances. For
the remaining three non-tiny tiles (the ALU, partitioner, and
sorter), we explore the design space only up to that count.
Table 2 summarizes how the tile size and sensitivity reduce
the design space from millions to 150 configurations.

Power-performance design space. Figure 6 plots the
power-performance tradeoffs for 150 Q100 designs. Amongst
these configurations we select the three designs indicated in
the plot for further evaluation:

1. An energy-conscious design point (LowPower) that has
just 1 partitioner, 1 sorter, and 1 ALU, and consumes the
lowest power amongst all the configurations.

2. A balanced design on the Pareto-optimal frontier (Pareto),
that, with 2 partitioners, 1 sorter, and 4 ALUs, provides
the most performance per Watt amongst the designs.

3. A performance-optimized design (HighPerf), with 3 par-
titioners, 6 sorters, and 5 ALUs, that maximizes perfor-
mance at the cost of a relatively higher power consump-
tion.

3.3 Q100 Communication Needs
Having explored the Q100’s computational needs, we now
turn to its communication needs, both on-chip intra-tile com-
munication and off-chip with memory. Because the target
workload is large scale data, each of these channels will need
to support substantial throughput.

Communication topology. In the experiments and simula-
tions thus far, we have assumed all-to-all communication for
all of the Q100 tiles and memory. However, analytic queries
are not random, and we expect them to have certain tenden-

cies. For example, one would expect that boolgen outputs
are often fed into column selects. To test this hypothesis, we
count the number of connections between each combination
of tiles. For this analysis, we include memory as a “tile” as it
is one of the communicating blocks in the system. Figures 7-
9 indicate how many times a particular source (y-axis) feeds
into a particular destination (x-axis) across all of TPC-H.
Looking at this data we observe first that most tiles commu-
nicate to and from memory so often, that it will be important
to properly understand and provision for the Q100 to/from
memory bandwidth. Second, tiles do tend to communicate
with a subset of each other, validating our hypothesis that the
communication was not truly all-to-all. Thirdly, we note that
these communication patterns do not vary across the three
Q100 designs.

On-chip bandwidth constraints. We envision a NoC like
the one implemented on Intel’s TeraFlops chip [38]. It is
a 2D mesh and can support 80 execution nodes2. While
specific NoC design is outside the scope of this paper, we
want to understand whether such a design can provide the
bandwidth required by these queries. To make a conservative
estimate, we scaled down TeraFlop’s node-to-node 80 GB/s
at 4 GHz to the frequency of the Q100, resulting in a
conservative Q100 NoC bandwidth of 6.3 GB/s.

Figures 10-12 plot the peak bandwidth for each connec-
tion in the same fashion as the earlier connection counts. The
cells marked with X are those for which the peak bandwidth
at some point, during one or more of the TPC-H query ex-
ecutions, exceed our estimated limit of 6.3 GB/s. In those
cases the NoC will slow down the overall query execution.
We also note the following. First, that common connections
(per Figures 7-9) do not require high bandwidth except for
the Appender to Appender connection, which manipulates
large volumes of data in a short amount of time. Second,
there are a handful of very common, high-bandwidth con-
nections that, if need be, can be fixed with point to point
connections at some cost to instruction mapping flexibility,
but at some potential energy and throughput savings.

To understand and quantify the performance impact of
the Q100 NoC bandwidth, we perform a sensitivity study,
sweeping the bandwidth from 5 GB/s to 20 GB/s as shown
in Figure 13. The runtime of all queries in all three config-
urations are normalized to that of the HighPerf design with
unlimited NoC bandwidth (IDEAL). We observe that only
a handful of queries are sensitive to an imposed NoC band-
width limit, however, the slowdown for those queries can be
as much as 50X, making interconnect throughput a perfor-
mance bottleneck when limited to 6.3 GB/s.

Off-chip bandwidth constraints. Memory, we have also
seen, is a very frequent communicator, acting as a source or

2 Though the more recent version of the Intel SCC [21] provides higher
bandwidth and lower power, we chose TeraFlops because it connects exe-
cution units rather than CPU cores, and therefore better resembles the Q100.



Figure 7. A heat map of tile-to-tile con-
nection counts for the LowPower design
shows that most intra-tile connections ex-
ist mostly when communicating to and
from memory.

Figure 8. Our Pareto design uses
slightly more connections than Low-
Power design when running the TPC-H
suite, but memory is still the busiest com-
munication tile.

Figure 9. HighPerf design intra-tile heat
map exhibits almost identical behavior as
Pareto design.

Figure 10. Even with a LowPower de-
sign, the communication bandwidth for
most connections exceed the provisioned
6.3 GB/s NoC bandwidth, marked as X’s
in the figures.

Figure 11. Similar to connection count
heat map, Pareto design maximum intra-
connection bandwidth exhibit almost
identical behavior as HighPerf design.

Figure 12. Heat map of HighPerf design
max bandwidth per connection.

destination for all types of Q100 tiles. Half of those connec-
tions also require high throughput connections. In Figure 14
and Figure 15, we examine the high, low, and average read
and write memory bandwidth for each query, sorted by av-
erage bandwidth. We first notice that queries vary substan-
tially in their memory read bandwidths but relatively little in
their write bandwidths. This is largely due to their being an-
alytic queries, taking in large volumes of data and producing
comparatively small results, matching the volcano style [16]
of software relational database pipelined execution. Second,
queries generally consume more bandwidth as the design be-
comes higher performance (i.e., going from LowPower to
HighPerf), as the faster designs tend to process more data
in a smaller period of time. Finally, in the same fashion that

we expect the NoC will limit performance, realistic available
bandwidth to and from memory is also likely to slow query
processing.

Multiple instances of a streaming framework, such as the
one described in recent work [39], could feed the Q100 as-
suming 5 GB/s per stream. At that rate, the Q100 would
require 4-6 inbound stream buffers depending on the con-
figuration and 2 outbound stream buffers, reflecting the
read/write imbalance noted earlier. The provided bandwidths
from these stream buffers are shown in shaded rectangles in
the figure.

To quantify the performance impact of memory band-
width, we perform a sweep of memory read bandwidth from
10 GB/s to 40 GB/s and memory write bandwidth from 5
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Figure 13. Most TPC-H queries are not sensitive to the Q100 intra-connection throughput, except for Q10, Q16, and Q11.
These queries process large volumes of records throughout the query with little local selection conditions to “funnel” down the
intermediate results. When NoC bandwidth is constrained, these queries could execute fifty times slower.
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Figure 14. A plot of all TPC-H query read memory bandwidth demands (hi, lo, and avg) sorted by average. Read bandwidth
varies quite a bit from query to query, having Q10 and Q11 being the most bandwidth starved. For Q100, LowPower design is
provisioned with 4 stream buffers, and Pareto and HighPerf designs are provisioned with 6 stream buffers as shown in shaded
gradations.
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Figure 15. Write bandwidth demands are quite a bit lower than read bandwidth demands for most queries. We sized all three
designs with 2 stream buffers, providing 10 GB/s write bandwidth to memory.

GB/s to 20 GB/s as shown in Figure 16 and Figure 17. As
with the NoC study, only 2 or 3 queries are sensitive to mem-
ory read and write bandwidth limits, but with much more
modest slowdowns.

Performance impact of communication resources. Ap-
plying the NoC and memory bandwidth limits discussed
above, we simulate a NoC bandwidth cap of 6.3 GB/s,
memory read limit of 20 GB/s for LowPower and 30 GB/s
for Pareto and HighPerf, and memory write limit of 10
GB/s. Figure 18 shows the impact as each of these limits

is applied to an unlimited-bandwidth simulation. On account
of on-chip communication, queries slow down 33-61%, with
only a slight additional loss on account of memory to 34-
62% slowdown overall. These effects are largely due to Q10
and Q11, the two most memory hungry queries, which suffer
1.4X-1.5X slowdown and 6X to 11X slowdown respectively
compared to software.

Our simulator models a uniform memory access latency
of 160ns, based on a 300 cycle memory access time from a
2 GHz CPU. When the imposed interconnect and memory
throughput slow the execution of a spatial and a temporal
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Figure 16. Similar to NoC bandwidth, most queries are not sensitive to memory read bandwidth. Q16 is particularly affected
for the LowPower and Pareto designs suffering up to 12X slowdown. However, in the HighPerf design, more resources allow
for a more efficient scheduling of temporal instructions, reducing high-volume communications to and from memory.
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Figure 17. With 10 GB/s of memory write bandwidth, only one (LowPower and Pareto) or two (HighPerf) queries are
performance- limited by memory write bandwidth.

Area Power
Tiles NoC SBs Total Total Tiles NoC SBs Total Total
mm2 mm2 mm2 mm2 % Xeon W W W W % Xeon

LowPower 1.890 0.567 0.520 2.978 7.0% 0.238 0.071 0.400 0.710 14.2%
Pareto 3.107 0.932 0.780 4.819 11.3% 0.303 0.091 0.600 0.994 19.9%
HighPerf 5.080 1.524 0.780 7.384 17.3% 0.541 0.162 0.600 1.303 26.1%

Table 3. Area and power of the three Q100 configura-
tions, broken down by tile, on chip interconnect, and stream
buffers.

instruction respectively, the simulator reflects that, although
we found that throughput was primarily interconnect-limited
and thus the visible slowdown beyond that due to memory
was negligible. The Q100 reduces total memory accesses
relative to software implementations by eliminating many
reads and writes of intermediate results. For the remaining
memory accesses, the Q100 is able to mask most stalls
thanks to heavily parallelized computation that exploits both
data and pipeline parallelism.

Area and power impact of communication resources.
Starting with the area and power for the tiles in each Q100
design (based on Table 1), we add the additional area and
power due to the NoC and stream buffers. Table 3 lists the
area of the three design points broken down by tile, NoC, and
stream buffers. We add an extra 30% area and power to the
Q100 designs for the NoC, based on the characteristics of the
TeraFlops implementation [38]. For the stream buffers, we
add 0.13 mm2 and 0.1 Watts for each stream buffer [39].
In sum, the Q100 remains quite small, with the large, High-
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Figure 18. From the bandwidth heat maps plotted earlier,
we see that Q100 was demanding a lot more NoC bandwidth
than provisioned. Here, we plotted runtime with respect to
no bandwidth limit penalties, and see a large slowdown
at 30-60%, a caution for future implementations to design
sufficient bandwidth for intra-tile connections.

Perf configuration including NoC and stream buffers taking
17.3% area and 26.1% power of a single Xeon core.

3.4 Query Scheduling Algorithms
The final component of the Q100 design to explore is the
scheduling algorithm, by which instructions are mapped to
processing tiles.

Problem formulation and experimental algorithms. In
the general case, the Q100 has fewer tiles than there are
instructions in a query, so the algorithm must schedule them
into multiple temporal instructions, subject to the following
constraints. An instruction can be scheduled only (1) on a
tile that performs its operation, and (2) if and only if all of
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Figure 19. Completion time normalized to naive.
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Figure 20. Average completion time
normalized to completion time of
naive.
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Figure 21. Data transfer size normalized to the volume of input and output
data of the query.
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Figure 22. Average data transfer size
normalized to size of naive.

its inputs producers have been scheduled in the same or in
preceding temporal instructions.

We implemented and evaluated three scheduling algo-
rithms:

• Naive greedily packs instructions into the Q100, subject
to the constraints listed above, advancing to the next
temporal instructions when no more instructions can fit,
and stopping when all instructions have been scheduled.
In doing this it presumes no knowledge of the volume
of data flowing between instructions and therefore makes
no effort to minimize data transfer between temporal
instructions.

• In contrast, data-aware considers the volume of data
passed between instructions, not as unrealistic as it may
seem, as DBMSs estimate sample or otherwise estimate
the rough size of various queries. The information we
assume in this study is routinely available at query parse
and planning time. It proceeds from largest to smallest
data value, greedily attempting to pack all producers and
consumers into the same temporal instruction to reduce
spills to memory.

• Finally, because both naive and data-aware are greedy
and subject to local minima, semi-exhaustive searches
all legal schedules.3 Because truly exhaustive search is
infeasible – the longer runs are probably still going! –
we use a heuristic to prune the search space, making it

3 Because the space of legal Q100 schedules is such a small portion of
all Q100 schedules, algorithms that consider non-legal schedules, such as
genetic algorithms, are not likely to be efficient for this use.

terminate, but only semi-exhaustive. While not feasible
in practice, this algorithm gives us an approximate upper
bound for schedule quality.

Analysis of results. We start our analysis on the LowPower
Q100 configuration as it has the fewest tiles and is thus most
likely to be sensitive to scheduling. We can see in Figures 19
and 21 that, relative to naive, data-aware usually succeeds in
reducing the size of memory spills, and that this correlates
with a decrease in the completion time.

We also see that, for most queries, semi-exhaustive suc-
ceeds in finding schedules with the smallest amount of
data transferred amongst these algorithms. The exceptions
are Q1, Q17, and Q19, which are so large that the semi-
exhaustive approach can only cover a small portion of the
search space. Most interestingly, we observe the following
pattern. For queries that must spill large volumes of data
during execution, the strategy of minimizing data spills is a
good one. However, for queries with negligible spills in the
first place, attempting to minimize these negligible transfers
will cause the scheduler to sub-optimally allocate spatial in-
structions to temporal instructions. The specific problem we
see in Q15, for instance, is the scheduler spreading multiple
slow operations across several steps (in an attempt to mini-
mize spills) which ends up increasing the overall completion
time of the query. While the data-aware scheduler is suffi-
cient for our current analyses, this indicates a multi-objective
heuristic may produce higher quality schedules.
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Figure 23. TPC-H query runtime normalized to MonetDB single-thread SW shows a 37X–70X performance improvement on
average across all queries.
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Figure 24. TPC-H query energy consumption normalized to MonetDB single-thread running on cores consuming non-idle
power shows 691X–983X energy efficiency on average across all queries.

System Configuration

Chip 2X Intel E5-2430
6C/12T, 2.2 GHz, 15 MB LLC

Memory 32 GB per chip, 3 Channels, DDR3
Max Memory BW 32 GB/sec per chip
Max TDP 95 Watts per chip
Lithography 32 nm

Table 4. Hardware platform used in software measurements
(Section 4. Source: Intel [25].)

4. Q100 Evaluation
Taking what we have learned about the Q100 system, its
ISA, its implementation, and its communication both in-
ternal and external, we now compare our three configura-
tions, LowPower, Pareto, and HighPerf, with a conventional
software DBMS. This evaluation takes on three parts: ini-
tial power and performance benchmarking for the TPC-H
queries as executed on a conventional DBMS+CPU system,
comparison of Q100’s execution of TPC-H to that system’s,
and finally an evaluation of how a Q100 designed for one
scale of database handles the same queries over a database
100 times larger.

Methodology. We measure the performance and energy
consumption of MonetDB 11.11.5 running on the Xeon
server described in Table 4 and executing the set of TPC-
H queries. Each reported result is the average of five runs

during which we measured the elapsed time and the energy
consumption. For the latter we used Intel’s Running Average
Power Limit (RAPL) energy meters [10, 20] which exposes
energy usage estimates to software via model-specific regis-
ters. We sample the core energy counters at 10 ms intervals
throughout the execution of each TPC-H query. We further
deduct any idle “background” power as measured by the
same methods on a completely idle machine. The MonetDB
energy measurements we report here include only the addi-
tional energy consumption above idle.

Although MonetDB supports multiple threads, our mea-
surements of power and speedups indicate that individ-
ual TPC-H queries do not parallelize well, even for large
databases (i.e., 40 GB). Here we will compare the Q100’s
performance and energy to the measured single threaded
values, as well as to an optimistic estimate of a 24-way par-
allelized software query, one that runs 24 times faster than
the single threaded at the same average power as a single
software thread. In the upcoming comparisons, we will pro-
vide both the MonetDB single-thread SW and MonetDB
24-thread SW (Idealized) as reference points.

For the Q100, we use the full timing and power model,
that incorporates the runtime, area, and energy of the on-
chip NoC and off-chip memory communication as described
in Section 3.3.
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Figure 25. With a dataset that is 100X the size of our previ-
ous input tables, TPC-H still shows a 10X performance im-
provement relative to software on average.
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Figure 26. With a 100X larger dataset, the Q100 still con-
sumes 1/100th of the energy that software consumes.

Q100 performance comparison. Figure 23 plots the query
execution time on the Q100 designs relative to the execu-
tion time on single threaded MonetDB. We see that Q100
performance exceeds a single software thread by 37X–70X,
and exceeds a perfectly-scaled 24-thread software by 1.5X–
2.9X. This is primarily due to Q100’s reduced instruction
control costs which are a byproduct of the large instruction
granularity, where each Q100 instruction does the work of
billions (or more, depending on the data size) software in-
structions. In addition, the Q100 processes many instruc-
tions at once, in pipelines and in parallel, generating further
speedups. Finally the Q100, having brought some data onto
the chip, exploits on-chip communication tile parallelism to
perform multiple operations on the data before returning the
results to memory, thereby maximizing the work per mem-
ory access and hiding the memory latency with computation.

Q100 energy comparison. Fixed function ASICs, which
comprise the Q100, are inherently more energy efficient than
general purpose processors. Both industry and academia, for
example, state that GPUs are 10X-1000X more efficient than
multi-core CPUs for well-suited graphics kernels; Similarly,
the Q100 is 1400X-2300X more energy efficient than Mon-
etDB when executing the analytic queries for which it was
designed. We note that the energy efficiency of our Pareto
design is 1.1X better than our LowPower design and 1.6X
better than our HighPerf design.

Scaling up data. Finally, as big data continues to grow, we
wish to evaluate how the Q100 handles databases that are
orders of magnitude larger than the ones for which it was
initially developed, we performed the same Q100-MonetDB
comparison using 100X larger data. Figure 25 and Figure 26
show the results. With the input data having grown by 100X,
Q100 speedup over software drops from 100X to 10X. The
total energy remains 100X lower regardless of data size.

5. Related Work

Hardware acceleration of databases. Database machines
were developed by the database community in the early
1980s as specialized hardware for database workloads.
These efforts largely failed, primarily because commodity
CPUs were improving so rapidly at the time, and hardware
design was slow and expensive [7]. The architectures pro-
posed at that time targeted a different set of challenges than
those we face today, namely dark silicon, the utilization wall,
the power wall, etc.

Much more recently, a flurry of projects accelerates
queries by compiling them down to FPGAs, such as LIN-
Qits [9], Teradata [11], and [29]. Industry appliances us-
ing Xeon servers combined with FPGAs such as the IBM
Netezza [22] also show promising performance and energy
efficiency. Whereas we have designed a domain specific cir-
cuit, these projects produce query-specific circuits, a differ-
ent point in the specialization space. Other have investigated
using existing accelerators, such as network processors [14]
or GPUs [15] to speed relational operators. Our work is
similar in that we too accelerate database queries and rela-
tional operators, but differs in the overall strategy and spe-
cific hardware platform.

Streaming computation. StreamIt [37] is a programming
language and a compilation infrastructure supporting paral-
lel execution of stream-based applications. It relates to our
work in as much as Q100 processes database queries in
streams of data, forming direct communication between pro-
ducing and consuming kernels. However, whereas we tar-
get database-specific, hardware kernels, StreamIt supports
user-defined software kernels, from other domains including
digital signal processing, multimedia, and cellular commu-
nications. It is worth noting that the Q100 does not process
streams in the most general sense of the term. Our ISA and
implementation operate on relational streams (i.e., where



multiple streams have corresponding elements) which is a
specific type of stream.

Domain-specific accelerators. The Q100 is a domain spe-
cific processor, of which there are many others targeting
different domains. GPUs are perhaps the most visible and
among the most successful such processors targeting graph-
ics applications [5, 30]. There is a large body of research
around other domain-specific acceleration: Convolution En-
gine [32] targets image processing kernels and stencil com-
putations, [33] uses specialization to speed up regular ex-
pression matching in queries, and [18] accelerates H.264
video encoders. In spirit these projects share similarities with
the Q100, but in their design and target particulars they are
quite different.

6. Conclusion
As data quantities continue to explode, technology must
keep pace. To mitigate commensurate increases in time
and energy required to process this data with conventional
DBMSs running on general purpose CPUs, this paper has
presented the Q100, a DPU for analytic query workloads.

With the Q100, we have presented an instruction set ar-
chitecture which closely resembles common SQL operators,
together with a set of specialized hardware modules im-
plementing these operators. The Q100 demonstrates a sig-
nificant performance gain over optimistically scaled multi-
threaded software, and an order of magnitude gain over sin-
gle threaded software, for less than 15% the area and power
of a Xeon core at the evaluated configurations. Importantly,
as inputs scale by 100X, the Q100 sees only a single or-
der of magnitude drop in performance and negligible de-
crease in energy efficiency. Given the current gap between
the Q100 and standard software query processing, as well
as the growth rate in data volumes, it is clear that special-
ized hardware like the Q100 is the only way systems will be
able to keep pace with increases in data without sacrificing
energy efficiency.
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