
High-Level Design Tools for Floating Point FPGAs
Deshanand P. Singh

Altera Corporation
150 Bloor Street West, Suite 400

Toronto, Ontario, Canada
dsingh@altera.com

Bogdan Pasca
Altera Corporation

Westwood, High Wycombe,
Buckinghamshire HP12 4PU,

United Kingdom
bpasca@altera.com

Tomasz S. Czajkowski
Altera Corporation

150 Bloor Street West, Suite 400
Toronto, Ontario, Canada
tczajkow@altera.com

ABSTRACT
This tutorial describes tools for efficiently implementing floating
point applications on FPGAs. We present both the SDK for
OpenCL and DSP Builder Advanced Blockset and show that they
can be effectively used to implement many floating point
applications. The methods for optimizing application performance
are also described.

In this tutorial we focus on a few applications, including Fast
Fourier transform, matrix multiplication, finite impulse response
filter and a Cholesky decomposition. In all cases we show what
the tools are capable of achieving, and more importantly how a
user can take advantage of the various floating-point centric
features that are made available. We also discuss how these tools
can automatically use FPGA architectural features such as
hardened floating-point DSP available on Altera Arria 10 family.

Categories and Subject Descriptors
C.1.3 [Computer System Organization]: Other Architecture
Styles, Data-flow architectures.

General Terms
Design

Keywords
Floating Point; Optimization; FPGAs

1. INTRODUCTION
Many applications in a variety of different domains are first
simulated or modeled using floating-point data processing. This is
done using either programming languages such as C/C++ or tools
such as Matlab. The final implementation on platforms such as
FPGAs has usually been performed using fixed-point arithmetic
because of area considerations. To do this successfully, the
algorithms are carefully mapped into a limited dynamic range,
and scaled through each function in the datapath.

Over the last 10 years FPGAs have grown sufficiently large to
facilitate native floating point based applications. However, there
has been a lack of support for floating point functions, which
meant that designers were left on their own to ensure that the

floating point implementation of a given function satisfies their
application’s criteria. This meant most designers chose not to use
floating point operations simply because there was no convenient
way to do so.

To truly enable floating point application development, it is
imperative to provide both FPGAs and tools to program them. To
that end, in this tutorial we introduce two tools that can enable
users to take advantage of floating point capabilities on FPGA
devices. These tools are: SDK for OpenCL and DSP Builder
Advanced Blockset. We will also discuss how these tools can take
advantage of architectural features of modern FPGAs, and
specifically focus on Arria 10 device family as an example of how
hardened FP DSP blocks can benefit designs in many application
domains.

SDK for OpenCL [1] enables users to describe an application
using a C-like description, as described by the OpenCL Standard
[4]. One of the key advantages this standard brings to FPGAs is a
front-end support for floating-point operations, enabling end users
to seamlessly use floating point data types that they are used to
when programing a wide variety of applications, while not having
to worry too much about the low-level implementation details of
floating point functions. DSP Builder Advanced Blockset [2] is a
tool that uses Matlab’s Simulink as a front end to describe an
application, both fixed and floating point, to enable the user to
abstract away low-level details of hardware implementation. In
this tutorial, we will demonstrate how these two tools can be used
to implement efficient floating-point benchmarks.

The remainder of this paper is organized as follows: Section 2
discusses the floating point formats and the key challenges
floating point application designers face. In Sections 3 and 4, we
discuss how many of the challenges of such design are alleviated
by tools such as Altera’s SDK for OpenCL [1] and DSP Builder
Advanced Blockset [2]. We discuss these tools using a case study
of several applications to illustrate the novelty and productivity
the tools bring to end users. Finally, we summarize the paper in
section 5 with concluding remarks and future work.

2. BACKGROUND
Traditionally FPGAs have been used for non-floating-point
applications due to the fact that floating point operations can take
considerable area when implemented using Lookup Tables
(LUTs). The reason for this is the representation of floating point
numbers as specified in IEEE754 standard [3]. Each floating point
number consists of a single bit sign, an exponent and a mantissa.
The exponent specifies the order of magnitude for a given
number, whereas the mantissa specifies the value with more
precision. Table 1 shows a variety of mantissa and exponent sizes
commonly used by many applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FPGA’14, February 22–24, 2015, Monterey, California, USA.
Copyright © 2015 ACM 978-1-4503-3315-3/15/02…$15.00.
http://dx.doi.org/10.1145/2684746.2689079

9

Table 1. Commonly used floating point formats

Precision Exponent Bits Mantissa Bits

Half 5 10

Single 8 23

Double 11 52

In addition to supporting computation in normal range, thre are
two special values: infinity and not-a-number (NaN). Infinity is
used by floating point operations to signify that the result of an
operation is outside of the range representable by a given floating
point format. A NaN on the other hand signifies an operation that
does not provide a valid result. For example, adding +Infinity to –
Infinity does not produce a valid result.

One of the many opportunities afforded by using FPGAs is the
optimization of floating point operations for a given application.
Both Altera SDK for OpenCL [1] and Altera DSP Builder
Advanced Blockset [2] enable users to take advantage of floating-
point compiler mode [7]. The floating point compiler mode
enables the user to reduce the area of floating point operations by
removing support for infinity and NaN special values if the user
can guarantee that their application will never make use of them.

In the following sections we will discuss various methods that can
be used by FPGA system designers to take advantage of the
floating point support offered by Altera OpenCL SDK and Altera
DSP Builder Advanced Blockset flows as well as device families
they can target.

3. SDK for OpenCL
Altera OpenCL SDK is a complete suite to facilitate the use of
OpenCL Standard [4] for designing applications on FPGAs. An
OpenCL application comprises a kernel and a host program. In
SDK for OpenCL, the kernel is implemented using an
automatically generated datapath on an FPGA, while the host
program is executed on a processor that communicates with the
kernel on an FPGA board via mechanisms such as PCIe. We
demonstrate the utility of this tool for the implementation of an
FFT and a general matrix-matrix multiplication.

3.1 FFT
The Fast Fourier transform is a classic application used in digital
signal processing applications. Its regular structure yields itself
nicely to an efficient hardware implementation. While many FFT
architectures have been described in literature, as an example we
implemented a particular one described in [5] for 4K-point FFT
on an Altera Stratix V FPGA.

Floating point optimizations are especially important for
algorithms such as FFT, where floating point operations comprise
almost all of the required resources. Aside from minimal control
and data movement logic, the complete data pipeline is effectively
a sequence of floating point operators comprising addition,
subtraction and multiplication.

The optimizations stem partly from proprietary optimizations
known as the Floating Point Compiler (FPC) [7]. The FFT data
path benefits from three such optimizations: removal of NaN and
Inf support, changing rounding mode to round-to-zero, and fusing
addition and subtraction into a single operation.

In algorithms such as FFT, support for non-finite results is
typically superfluous when the input data ranges are known and
bounded. The area required for adders and multipliers can
therefore be reduced by not supporting these exceptions. Round-
to-zero operations are simply truncations; consequently they
require no hardware resources to implement. Further optimization
is possible by fusing addition and subtraction operators when both
inputs are the same (a+b, a-b). It is a well-known technique [6]
that does not require reordering of operations and is thus safe to
perform at any time. This transform is beneficial because most of
the logic in a single adder module can be reused within the
subtractor, avoiding logic duplication.

Figure 1. Imaginary part of complex FP multiplication
implemented using FP DSP Blocks.

The implementation of an FFT becomes even more optimized on
an Arria 10 device, where hardened floating point DSP blocks are
available [8]. In particular, for FFT applications we can take
advantage of the DSP blocks to perform complex multiplication
compactly, as shown in Figure 1. In the figure, we show an
abstract representation of two adjacent DSP blocks configured in
a floating-point mode. Each DSP block comprises two operations,
addition (or subtraction) and multiplication. The operators are
connected by programmable paths that may take advantage of
pipelining registers to connect to one another or to an adjacent
DSP block. In this case we show the computation of the
imaginary part of complex multiplication. To do this we use two
DSP blocks, taking advantage of two multipliers and an adder,
while one adder is left unused. If it is the case that complex
multiplication is followed by complex addition the unused adder
may be selected to perform the addition of the imaginary parts of
the complex multiplication result and another complex number. A
similar implementation is used for the real part of the
computation. Table 2 summarizes the area for each optimization.

Table 2. FFT Optimization Results

Optimization ALMs DSPs

IEEE754 Conformant 62126 60

FPC 39662 60

FPC+Fused add/sub 34102 60

Arria 10 (Hardened FP) 6208 98

3.2 Matrix-Matrix Multiplication
In the matrix-matrix multiplication algorithm, shown in Figure 2,
the multiplication is performed using blocks of data, where on

*

+

*

+

yi

ar

bi

ai

br

10

each iteration of a loop a block of size BLOCKxBLOCK of each
of the input matrices is read in, a dot product is computed and
added to the sum until the entire column is processed for each
element. To speed up the computation, an attribute
num_simd_work_items is used to vectorize the application, thus
increasing the throughput by a factor of V.

The key to an efficient design from a floating-point perspective is
in how lines 19-20 are implemented in hardware. Due to the
#pragma statement, the loop of multiplication and addition is
unrolled into a chain of multiply and add operations. Usually, a
balanced tree of adders works better than a chain as it reduces the
area of the circuit. In SDK for OpenCL the users are not required
to rewrite the application to do this; it is sufficient to supply a flag
--fp-relaxed to the compiler. This flag signifies that the user is
aware that reordering floating point operations may change the
output, but it is acceptable for this application. The compiler will
then examine the sequence of floating point operations and
rearrange them to produce a more efficient implementation.

Figure 2. Matrix-Matrix Multiplication pseudo code.

Similarly to the example of the FFT, we can take advantage of the
FPC flow using the --fpc flag as an argument to the compiler. In
this case, the compiler will optimize the tree of adders to
minimize their area. Doing this allows us to more than double the
throughput of the application.

Finally, we can take this design to the next level by implementing
it on an Altera Arria 10 device and take advantage of hardened
floating point adder and multiplier blocks to reduce the area of the
design. This particular optimization occurs automatically, when a
user choses to target an Arria 10 device.

The results of synthesizing, placing and routing this design are
shown in Table 3. This shows the use of hardened FP (HFP) on
Arria 10 to achieve extreme area savings.

Table 3. Matrix-Matrix multiplication area results

Configuration ALMs DSPs

BLOCK=128, V=8, FPC 315061 1034

BLOCK=128, V=8, HFP 61293 1034

4. DSP Builder Advanced Blockset
The DSP Builder Advanced Blockset (DSPBA) is a high-level
design tool with a model-based design entry which integrates with
Matlab’s Simulink Frontend. With DSPBA, users functionally
verify and debug their designs at the Simulink level using scopes
and variables. This allows for considerably faster algorithm
iterations as opposed to traditional FPGA development using RTL
languages and simulators. Once the desired functionality is
achieved, DSPBA efficiently maps the implementation to a user-
defined FPGA target and automatically pipelines the design to
achieve a target clock frequency.

DSPBA offers users full flexibility when implementing datapaths
allowing for a mixture of fixed or floating-point types. Moreover,
both fixed and floating-point types are parametrizable: total
width, fraction width and sign are used for fixed-point types and
exponent and fraction width are used for floating-point types. For
floating-point datapaths users may choose from implementing
parts using the floating-point compiler technology [7] or IEEE-
754 conformant implementation to trade-off resources for
numerical conformance. The provided floating-point library of
components uses state-of-the-art techniques [9] to efficiently map
to modern DSP-enabled FPGAs.

In the following we exemplify the use case for DSPBA on two
designs: a floating-point FIR filter and linear system solver based
on the Cholesky decomposition.

4.1 FIR Filter
The Finite Impulse Response (FIR) filter is expressed using the
following equation for a filter of order N:

 



N

i
i inxcny

0

][][

DSPBA provides users a full library of efficient FIR filter
implementations including decimating, interpolating, single-rate
and fractional-rate. However, if users desire to manually create a
simple FIR example they may do so using the scalar product
block which receives on one input the twiddle coefficients and on
the second input the input x and its delayed versions using the z-1
block. Figure 2 shows how such a filter would be used for N=4.

Figure 2. FIR Filter Design in DSPBA

One must note that DSPBA provides specialized blocks for the
tapped delay line, which allow for a more compact description of
the delay line. The scalar product block receives the two vectors
of 4 elements and outputs the filter result to the channel out. The

__attribute((reqd_work_group_size(BLOCK,BLOCK,1)))
__attribute((num_simd_work_items(V)))
__kernel void matmult(global float *A,
 global float *B, global float *C) {
 int w = get_global_size(0);
 int x = get_local_id(0); int y = get_local_id(1);
 int bx = get_group_id(0); int by = get_group_id(1);
 local float lA[BLOCK*BLOCK], lb[BLOCK*BLOCK];
 float sum = 0.0f;
 for(int i=0; i< w; i+=BLOCK) {
 lA[x+BLOCK*y] = A[i+x+(y+by)*w];
 lB[x+BLOCK*y] = B[bx+x+(i+y)*w];
 barrier();
 #pragma unroll
 for(int k=0; k < BLOCK; k++)
 sum += lA[k+y*BLOCK]*lB[k*BLOCK+x];
 barrier();
 }
 C[get_global_id(0)+get_global_id(1)*w] = sum;
}

11

data types used for this example is floating-point single precision.
This can be easily updated to other floating or fixed-point data
types by updating the type of the input and allowing the default
data type propagation. Table 4 shows the implementation results
for this benchmark on Stratix V using soft logic and Arria 10
using FP DSP Blocks.

Table 4. FIR Filter area results

Configuration ALMs DSPs

Stratix V, 128-tap 60881 128

Arria 10, 128-tap, HFP 1676 131

4.2 Cholesky Decomposition
DSPBA allows users to generate larger circuits which perform
more complex tasks, such as solving linear systems of equations,
Ax=b, using the Cholesky decomposition. The Cholesky
decomposition relies on decomposing the matrix A into a lower
triangular matrix L such that A = L L* where L* is the transpose
conjugate (if A is a complex matrix). The system Ax=b now
becomes L(L* x) = b and using the variable change L* x=y we
obtain L y = b. Solving this system for y can be achieved using
forward substitution. Having obtained y the next system L*x=y
can be solved for x using backward substitution. Hence, solving
the linear system is composed of 3 steps: decomposition, forward
substitution followed by backward substitution.

There are multiple possible DSPBA implementations for this
problem each trading latency and throughput for area. One
possible implementation performs the decomposition and forward
substitution in one module and the backward substitution in
another. To maximize performance it is desirable to balance the
latency of the two modules. Therefore, the first module would use
extended vector-products whereas the second module would use
fewer resources and perform the process iteratively. The two
modules are depicted in Figure 3.

Figure 3. Cholesky Decomposition in DSPBA

The main computing kernel in the decomposition and forward
substitution is the scalar-product. It is used in both stages using
configurable multiplexers to feed the desired input data. The
forward substitution stage overlaps with the decomposition stage.

Table 5 shows the implementation results for this benchmark on
Stratix V using mostly soft logic and Arria 10 using hardened FP
DSP Blocks.

Table 5. Cholesky Filter area results

Configuration ALMs DSPs

Stratix V 109914 260

Arria 10, HFP 12716 270

5. CONCLUSION
In this paper we have briefly presented a two high-level design
tools and described how they can be used to optimize floating
point benchmarks. The key advantage for the end user is the
ability to quickly create a fully functioning circuit that can be
programmed onto an FPGA. The tools themselves contain many
floating-point specific optimizations that significantly reduce the
amount of time the user is required to consider low-level
implementation details.

Finally, we showed the impact of FPGA architectural features
such as HFP to enable extreme area reductions. Both presented
tools take advantage of HFP seamlessly, enabling the
implementation of ever more advanced applications on FPGAs.

6. ACKNOWLEDGMENTS
The authors would like to thank Simon Finn, Michael Kinsner,
Martin Langhammer in providing benchmarking data and advice
throughout this work.

7. REFERENCES
[1] Altera Corporation, Altera SDK for OpenCL,

http://www.altera.com/products/software/opencl

[2] Altera Corporation, Altera DSP Builder Advanced Blockset,
http://www.altera.com/technology/dsp/advanced-blockset

[3] IEEE standard for binary floating-point arithmetic.
ANSI/IEEE Std. 754-1985, pages 1-58, 2008.

[4] Khronos OpenCL Working Group. The OpenCL
Specification, version 1.1.48, June 2009.

[5] M. Garrido, J. Grajal, M. Sanchez, and O. Gustafsson.
“Pipelined radix-2k feedforward FFT architectures”, Very
Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 21(1):23-32, 2013.

[6] E. Swartzlander and H. Saleh, “ FFT implementation with
fused floating-point operations”, IEEE Transactions on
Computers, 61(2):284-288, 2012.

[7] M. Langhammer, “Floating Point Datapath Synthesis for
FPGAs”, International Conference on Field Programmable
Logic and Applications, pp. 355-360, 2008.

[8] B. Pasca, and M. Langhammer, “Floating Point DSP Block
Architecture for FPGAs”, ACM/SIGDA International
Symposium on FPGAs, Monterey California, Feb, 2015.

[9] de Dinechin, F.; Joldes, M.; Pasca, B., "Automatic
generation of polynomial-based hardware architectures for
function evaluation," Application-specific Systems
Architectures and Processors (ASAP), 21st IEEE
International Conference on , pp.216-222, 7-9 July 2010

12

