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ABSTRACT 
This tutorial describes tools for efficiently implementing floating 
point applications on FPGAs. We present both the SDK for 
OpenCL and DSP Builder Advanced Blockset and show that they 
can be effectively used to implement many floating point 
applications. The methods for optimizing application performance 
are also described. 

In this tutorial we focus on a few applications, including Fast 
Fourier transform, matrix multiplication, finite impulse response 
filter and a Cholesky decomposition. In all cases we show what 
the tools are capable of achieving, and more importantly how a 
user can take advantage of the various floating-point centric 
features that are made available. We also discuss how these tools 
can automatically use FPGA architectural features such as 
hardened floating-point DSP available on Altera Arria 10 family.   

Categories and Subject Descriptors 
C.1.3 [Computer System Organization]: Other Architecture 
Styles, Data-flow architectures. 

General Terms 
Design 

Keywords 
Floating Point; Optimization; FPGAs 

1. INTRODUCTION 
Many applications in a variety of different domains are first 
simulated or modeled using floating-point data processing. This is 
done using either programming languages such as C/C++ or tools 
such as Matlab. The final implementation on platforms such as 
FPGAs has usually been performed using fixed-point arithmetic 
because of area considerations. To do this successfully, the 
algorithms are carefully mapped into a limited dynamic range, 
and scaled through each function in the datapath.  

Over the last 10 years FPGAs have grown sufficiently large to 
facilitate native floating point based applications. However, there 
has been a lack of support for floating point functions, which 
meant that designers were left on their own to ensure that the 

floating point implementation of a given function satisfies their 
application’s criteria. This meant most designers chose not to use 
floating point operations simply because there was no convenient 
way to do so. 

To truly enable floating point application development, it is 
imperative to provide both FPGAs and tools to program them. To 
that end, in this tutorial we introduce two tools that can enable 
users to take advantage of floating point capabilities on FPGA 
devices. These tools are: SDK for OpenCL and DSP Builder 
Advanced Blockset. We will also discuss how these tools can take 
advantage of architectural features of modern FPGAs, and 
specifically focus on Arria 10 device family as an example of how 
hardened FP DSP blocks can benefit designs in many application 
domains. 

SDK for OpenCL [1] enables users to describe an application 
using a C-like description, as described by the OpenCL Standard 
[4]. One of the key advantages this standard brings to FPGAs is a 
front-end support for floating-point operations, enabling end users 
to seamlessly use floating point data types that they are used to 
when programing a wide variety of applications, while not having 
to worry too much about the low-level implementation details of 
floating point functions. DSP Builder Advanced Blockset [2] is a 
tool that uses Matlab’s Simulink as a front end to describe an 
application, both fixed and floating point, to enable the user to 
abstract away low-level details of hardware implementation. In 
this tutorial, we will demonstrate how these two tools can be used 
to implement efficient floating-point benchmarks. 

The remainder of this paper is organized as follows: Section 2 
discusses the floating point formats and the key challenges 
floating point application designers face. In Sections 3 and 4, we 
discuss how many of the challenges of such design are alleviated 
by tools such as Altera’s SDK for OpenCL [1] and DSP Builder 
Advanced Blockset [2]. We discuss these tools using a case study 
of several applications to illustrate the novelty and productivity 
the tools bring to end users. Finally, we summarize the paper in 
section 5 with concluding remarks and future work. 

2. BACKGROUND 
Traditionally FPGAs have been used for non-floating-point 
applications due to the fact that floating point operations can take 
considerable area when implemented using Lookup Tables 
(LUTs). The reason for this is the representation of floating point 
numbers as specified in IEEE754 standard [3]. Each floating point 
number consists of a single bit sign, an exponent and a mantissa. 
The exponent specifies the order of magnitude for a given 
number, whereas the mantissa specifies the value with more 
precision. Table 1 shows a variety of mantissa and exponent sizes 
commonly used by many applications. 
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Table 1. Commonly used floating point formats 

Precision Exponent Bits Mantissa Bits 

Half 5 10 

Single 8 23 

Double 11 52 

In addition to supporting computation in normal range, thre are 
two special values: infinity and not-a-number (NaN). Infinity is 
used by floating point operations to signify that the result of an 
operation is outside of the range representable by a given floating 
point format. A NaN on the other hand signifies an operation that 
does not provide a valid result. For example, adding +Infinity to –
Infinity does not produce a valid result.  

One of the many opportunities afforded by using FPGAs is the 
optimization of floating point operations for a given application. 
Both Altera SDK for OpenCL [1] and Altera DSP Builder 
Advanced Blockset [2] enable users to take advantage of floating-
point compiler mode [7]. The floating point compiler mode 
enables the user to reduce the area of floating point operations by 
removing support for infinity and NaN special values if the user 
can guarantee that their application will never make use of them. 

In the following sections we will discuss various methods that can 
be used by FPGA system designers to take advantage of the 
floating point support offered by Altera OpenCL SDK and Altera 
DSP Builder Advanced Blockset flows as well as device families 
they can target. 

3. SDK for OpenCL 
Altera OpenCL SDK is a complete suite to facilitate the use of 
OpenCL Standard [4] for designing applications on FPGAs. An 
OpenCL application comprises a kernel and a host program. In 
SDK for OpenCL, the kernel is implemented using an 
automatically generated datapath on an FPGA, while the host 
program is executed on a processor that communicates with the 
kernel on an FPGA board via mechanisms such as PCIe. We 
demonstrate the utility of this tool for the implementation of an 
FFT and a general matrix-matrix multiplication. 

3.1 FFT 
The Fast Fourier transform is a classic application used in digital 
signal processing applications. Its regular structure yields itself 
nicely to an efficient hardware implementation. While many FFT 
architectures have been described in literature, as an example we 
implemented a particular one described in [5] for 4K-point FFT 
on an Altera Stratix V FPGA. 

Floating point optimizations are especially important for 
algorithms such as FFT, where floating point operations comprise 
almost all of the required resources. Aside from minimal control 
and data movement logic, the complete data pipeline is effectively 
a sequence of floating point operators comprising addition, 
subtraction and multiplication. 

The optimizations stem partly from proprietary optimizations 
known as the Floating Point Compiler (FPC) [7]. The FFT data 
path benefits from three such optimizations: removal of NaN and 
Inf support, changing rounding mode to round-to-zero, and fusing 
addition and subtraction into a single operation. 

In algorithms such as FFT, support for non-finite results is 
typically superfluous when the input data ranges are known and 
bounded. The area required for adders and multipliers can 
therefore be reduced by not supporting these exceptions. Round-
to-zero operations are simply truncations; consequently they 
require no hardware resources to implement. Further optimization 
is possible by fusing addition and subtraction operators when both 
inputs are the same (a+b, a-b). It is a well-known technique [6] 
that does not require reordering of operations and is thus safe to 
perform at any time. This transform is beneficial because most of 
the logic in a single adder module can be reused within the 
subtractor, avoiding logic duplication. 

  

Figure 1. Imaginary part of complex FP multiplication 
implemented using FP DSP Blocks. 

The implementation of an FFT becomes even more optimized on 
an Arria 10 device, where hardened floating point DSP blocks are 
available [8]. In particular, for FFT applications we can take 
advantage of the DSP blocks to perform complex multiplication 
compactly, as shown in Figure 1. In the figure, we show an 
abstract representation of two adjacent DSP blocks configured in 
a floating-point mode. Each DSP block comprises two operations, 
addition (or subtraction) and multiplication. The operators are 
connected by programmable paths that may take advantage of 
pipelining registers to connect to one another or to an adjacent 
DSP block. In this case we show the computation of the 
imaginary part of complex multiplication. To do this we use two 
DSP blocks, taking advantage of two multipliers and an adder, 
while one adder is left unused. If it is the case that complex 
multiplication is followed by complex addition the unused adder 
may be selected to perform the addition of the imaginary parts of 
the complex multiplication result and another complex number. A 
similar implementation is used for the real part of the 
computation. Table 2 summarizes the area for each optimization. 

Table 2. FFT Optimization Results 

Optimization ALMs DSPs 

IEEE754 Conformant 62126 60 

FPC 39662 60 

FPC+Fused add/sub 34102 60 

Arria 10 (Hardened FP) 6208 98 

3.2 Matrix-Matrix Multiplication 
In the matrix-matrix multiplication algorithm, shown in Figure 2, 
the multiplication is performed using blocks of data, where on 
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each iteration of a loop a block of size BLOCKxBLOCK of each 
of the input matrices is read in, a dot product is computed and 
added to the sum until the entire column is processed for each 
element. To speed up the computation, an attribute 
num_simd_work_items is used to vectorize the application, thus 
increasing the throughput by a factor of V.  

The key to an efficient design from a floating-point perspective is 
in how lines 19-20 are implemented in hardware. Due to the 
#pragma statement, the loop of multiplication and addition is 
unrolled into a chain of multiply and add operations. Usually, a 
balanced tree of adders works better than a chain as it reduces the 
area of the circuit. In SDK for OpenCL the users are not required 
to rewrite the application to do this; it is sufficient to supply a flag 
--fp-relaxed to the compiler. This flag signifies that the user is 
aware that reordering floating point operations may change the 
output, but it is acceptable for this application. The compiler will 
then examine the sequence of floating point operations and 
rearrange them to produce a more efficient implementation.  

 

Figure 2. Matrix-Matrix Multiplication pseudo code. 

Similarly to the example of the FFT, we can take advantage of the 
FPC flow using the --fpc flag as an argument to the compiler. In 
this case, the compiler will optimize the tree of adders to 
minimize their area. Doing this allows us to more than double the 
throughput of the application. 

Finally, we can take this design to the next level by implementing 
it on an Altera Arria 10 device and take advantage of hardened 
floating point adder and multiplier blocks to reduce the area of the 
design. This particular optimization occurs automatically, when a 
user choses to target an Arria 10 device.  

The results of synthesizing, placing and routing this design are 
shown in Table 3. This shows the use of hardened FP (HFP) on 
Arria 10 to achieve extreme area savings. 

Table 3. Matrix-Matrix multiplication area results 

Configuration ALMs DSPs 

BLOCK=128, V=8, FPC 315061 1034 

BLOCK=128, V=8, HFP 61293 1034 

4. DSP Builder Advanced Blockset 
The DSP Builder Advanced Blockset (DSPBA) is a high-level 
design tool with a model-based design entry which integrates with 
Matlab’s Simulink Frontend. With DSPBA, users functionally 
verify and debug their designs at the Simulink level using scopes 
and variables. This allows for considerably faster algorithm 
iterations as opposed to traditional FPGA development using RTL 
languages and simulators. Once the desired functionality is 
achieved, DSPBA efficiently maps the implementation to a user-
defined FPGA target and automatically pipelines the design to 
achieve a target clock frequency.  

DSPBA offers users full flexibility when implementing datapaths 
allowing for a mixture of fixed or floating-point types. Moreover, 
both fixed and floating-point types are parametrizable: total 
width, fraction width and sign are used for fixed-point types and 
exponent and fraction width are used for floating-point types.  For 
floating-point datapaths users may choose from implementing 
parts using the floating-point compiler technology [7] or IEEE-
754 conformant implementation to trade-off resources for 
numerical conformance. The provided floating-point library of 
components uses state-of-the-art techniques [9] to efficiently map 
to modern DSP-enabled FPGAs. 

In the following we exemplify the use case for DSPBA on two 
designs: a floating-point FIR filter and linear system solver based 
on the Cholesky decomposition.  

4.1 FIR Filter 
The Finite Impulse Response (FIR) filter is expressed using the 
following equation for a filter of order N: 

                                 



N

i
i inxcny

0

][][  

DSPBA provides users a full library of efficient FIR filter 
implementations including decimating, interpolating, single-rate 
and fractional-rate. However, if users desire to manually create a 
simple FIR example they may do so using the scalar product 
block which receives on one input the twiddle coefficients and on 
the second input the input x and its delayed versions using the z-1 
block.  Figure 2 shows how such a filter would be used for N=4. 

 

Figure 2. FIR Filter Design in DSPBA 

One must note that DSPBA provides specialized blocks for the 
tapped delay line, which allow for a more compact description of 
the delay line. The scalar product block receives the two vectors 
of 4 elements and outputs the filter result to the channel out. The 

__attribute((reqd_work_group_size(BLOCK,BLOCK,1))) 
__attribute((num_simd_work_items(V))) 
__kernel void matmult(global float *A,  
             global float *B, global float *C) { 
  int w = get_global_size(0); 
  int x = get_local_id(0); int y = get_local_id(1); 
  int bx = get_group_id(0); int by = get_group_id(1); 
  local float lA[BLOCK*BLOCK], lb[BLOCK*BLOCK]; 
  float sum = 0.0f; 
  for(int i=0; i< w; i+=BLOCK) { 
    lA[x+BLOCK*y] = A[i+x+(y+by)*w]; 
    lB[x+BLOCK*y] = B[bx+x+(i+y)*w]; 
    barrier(); 
    #pragma unroll 
    for(int k=0; k < BLOCK; k++) 
      sum += lA[k+y*BLOCK]*lB[k*BLOCK+x]; 
    barrier(); 
  } 
  C[get_global_id(0)+get_global_id(1)*w] =  sum; 
} 
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data types used for this example is floating-point single precision. 
This can be easily updated to other floating or fixed-point data 
types by updating the type of the input and allowing the default 
data type propagation. Table 4 shows the implementation results 
for this benchmark on Stratix V using soft logic and Arria 10 
using FP DSP Blocks. 

Table 4. FIR Filter area results 

Configuration ALMs DSPs 

Stratix V, 128-tap 60881 128 

Arria 10, 128-tap, HFP 1676 131 

4.2 Cholesky Decomposition 
DSPBA allows users to generate larger circuits which perform 
more complex tasks, such as solving linear systems of equations, 
Ax=b, using the Cholesky decomposition. The Cholesky 
decomposition relies on decomposing the matrix A into a lower 
triangular matrix L such that A = L L* where L* is the transpose 
conjugate (if A is a complex matrix). The system Ax=b now 
becomes L(L*  x) = b and using the variable change L* x=y we 
obtain L y = b. Solving this system for y can be achieved using 
forward substitution. Having obtained y the next system L*x=y 
can be solved for x using backward substitution. Hence, solving 
the linear system is composed of 3 steps: decomposition, forward 
substitution followed by backward substitution. 

There are multiple possible DSPBA implementations for this 
problem each trading latency and throughput for area. One 
possible implementation performs the decomposition and forward 
substitution in one module and the backward substitution in 
another. To maximize performance it is desirable to balance the 
latency of the two modules. Therefore, the first module would use 
extended vector-products whereas the second module would use 
fewer resources and perform the process iteratively. The two 
modules are depicted in Figure 3. 

 

Figure 3. Cholesky Decomposition in DSPBA 

The main computing kernel in the decomposition and forward 
substitution is the scalar-product. It is used in both stages using 
configurable multiplexers to feed the desired input data. The 
forward substitution stage overlaps with the decomposition stage.  

Table 5 shows the implementation results for this benchmark on 
Stratix V using mostly soft logic and Arria 10 using hardened FP 
DSP Blocks. 

Table 5. Cholesky Filter area results 

Configuration ALMs DSPs 

Stratix V 109914 260 

Arria 10, HFP 12716 270 

5. CONCLUSION 
In this paper we have briefly presented a two high-level design 
tools and described how they can be used to optimize floating 
point benchmarks. The key advantage for the end user is the 
ability to quickly create a fully functioning circuit that can be 
programmed onto an FPGA. The tools themselves contain many 
floating-point specific optimizations that significantly reduce the 
amount of time the user is required to consider low-level 
implementation details.  

Finally, we showed the impact of FPGA architectural features 
such as HFP to enable extreme area reductions. Both presented 
tools take advantage of HFP seamlessly, enabling the 
implementation of ever more advanced applications on FPGAs. 
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