
A Hierarchical Context Model for Event Recognition in Surveillance Video

Xiaoyang Wang and Qiang Ji
Dept. of ECSE, Rensselaer Polytechnic Institute, USA

{wangx16,jiq}@rpi.edu

Abstract

Due to great challenges such as tremendous intra-class
variations and low image resolution, context information
has been playing a more and more important role for ac-
curate and robust event recognition in surveillance videos.
The context information can generally be divided into the
feature level context, the semantic level context, and the
prior level context. These three levels of context provide
crucial bottom-up, middle level, and top down informa-
tion that can benefit the recognition task itself. Unlike
existing researches that generally integrate the context in-
formation at one of the three levels, we propose a hier-
archical context model that simultaneously exploits con-
texts at all three levels and systematically incorporate them
into event recognition. To tackle the learning and infer-
ence challenges brought in by the model hierarchy, we de-
velop complete learning and inference algorithms for the
proposed hierarchical context model based on variational
Bayes method. Experiments on VIRAT 1.0 and 2.0 Ground
Datasets demonstrate the effectiveness of the proposed hier-
archical context model for improving the event recognition
performance even under great challenges like large intra-
class variations and low image resolution.

1. Introduction
Visual event recognition is attracting growing interest

from both academia and industry [24]. Visual event recog-
nition is defined as the recognition of spatio-temporal vi-
sual patterns from videos. Much existing related work [22,
34, 39] has been focusing on recognition of basic human
action/activities (like “walking”, “turning around” etc.) in
clean backgrounds using datasets such as KTH [28], Weiz-
mann [9], and HOHA [19]. By contrast, in this research, we
focus on recognition of real world surveillance video events
that involve interactions between humans and objects with
complex backgrounds. Various algorithms have been devel-
oped for event recognition. These methods can be divided
into feature (descriptor) based approach and model based
approach. Feature-based approach includes methods that
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Figure 1. Examples of event “loading” with intra-class variation.

employ various image features and treat event recognition
as a classification problem. The most widely used features
include the HOG feature [5] and the spatio-temporal fea-
tures such as the spatio-temporal interest point (STIP) fea-
tures [18] and optical flow based features [4]. These fea-
tures capture local appearance or motion patterns near the
interest points or optical flows. Although having been suc-
cessfully applied to many applications, these features gen-
erally focus more on local patterns.

Model-based methods for event and activity recogni-
tion include probabilistic graphical models such as Hidden
Markov Models [21], Dynamic Bayesian Networks [36],
Conditional Random Fields [33], and their variants. They
use model to encode sematic and temporal relationships and
combine it with image features. While capable of simul-
taneously capturing both spatial and temporal interactions,
they can only capture the local spatial and temporal interac-
tions due to the underlying Markov assumption.

Despite these efforts, surveillance video event recogni-
tion still faces difficulties even with the well-constructed
descriptors or models for describing the events. The first
difficulty arises from the tremendous intra-class variations
in events. The same category of events can have huge vari-
ations in their observations due to target motion variation,
viewpoint change, illumination change, and occlusion. Fig-
ure1 gives examples of event “loading” with large appear-
ance variations. Second, the poor target tracking results and
the often low video resolution further aggravate the prob-
lem. These challenges force us to rethink the existing data-
driven and target-centered event recognition approach and
to look for extra information to help mitigate the challenges.
The contextual information serves this purpose well.

Contextual information refers to additional information
about the target objects and its context. While not directly

1



describing an event, it provides information on the circum-
stance and environment within which the event occurs and
can therefore support event recognition. Recently, context
has also been increasingly used in solving computer vision
problems. Contexts in general can be grouped into fea-
ture level context [2, 37], semantic relationship level con-
text [10, 20, 38], and prior/priming information level con-
text [32, 7]. These three levels of contexts have also been
investigated for event recognition. For example, at feature
level, Wang et al. [34] present a multi-scale spatio-temporal
context feature that captures the spatio-temporal interest
points in event neighborhoods. At semantic relationship
level, Yao et al. [38] propose a context model to make hu-
man pose estimation and activity recognition as mutual con-
text to help each other. At prior/priming information level,
the scene priming information [32] has been proved to be
effective for event recognition in [25, 35].

Existing work on contexts generally incorporates one
type of context or context features at one level. There is
not much work that simultaneously exploits different types
of contexts at different levels. Since context exists at dif-
ferent levels and comes in different types, we believe event
recognition can benefit greatly if we can simultaneously ex-
ploit contexts at different levels and systematically incor-
porate them into event recognition. To this goal, we intro-
duce an unified hierarchical model that allows systemati-
cally capturing contexts at different levels and principally
integrates the captured contexts with the image measure-
ments for robust event recognition from surveillance videos.
Specifically, based on a dynamic graphical model, the pro-
posed model can capture contexts at feature level, seman-
tic relationship level, and prior/priming information level.
Through this unified model, context in the bottom (feature)
level would provide diagnostic support for the event, while
context on top (prior) level provides predictive knowledge
on the event. The top-down and bottom-up context meet
at the middle (semantic relationship) level, where the three
levels of contexts are systematically integrated to yield a
comprehensive characterization of events and their context.

In summary, in this paper, we introduce a hierarchical
context model that allows systematically integrating con-
texts from different levels for accurate and robust event
recognition from surveillance videos. Compared to the ex-
isting context models for event recognition, the proposed
model is comprehensive, systematic, and can better handle
the challenges associated with real world videos.

2. Related Work
Incorporating context into visual recognition is an active

area of research in computer vision. Given the ill-posed na-
ture with many computer vision tasks and the poor image
quality, context is being increasingly employed in various
computer vision tasks. A comprehensive review on con-

text based object recognition is given in [8]. Also, the em-
pirical study in [6] catalogues 10 possible sources of con-
texts that could be beneficial. Recently, there are also in-
creasing efforts in applying context to event recognition. In
general, contextual information can exist at different lev-
els including feature level [2, 37, 15, 34], semantic rela-
tionship level [10, 38, 17], and prior/priming information
level [32, 30, 7, 29]. Below we briefly summarize work in
each category as well as the latest efforts in integrating con-
texts from different levels.

At feature level, the context provides information about
the event and its surroundings at pixel level. Many con-
text features have been introduced for activity/event recog-
nition. Yao et al. [37] propose the “grouplet” which is a de-
scriptor that captures the structured information of an image
by encoding a number of discriminative visual features and
their spatial configurations. Kovashka et al. [15] propose
to learn the shapes of space-time feature neighborhoods
that are most discriminative for a given category. Wang et
al. [34] present a representation that captures the contex-
tual interactions between interest points in both local and
neighborhood spatio-temporal domains. At semantic rela-
tionship level, context captures relationships among basic
elements of events such as the co-occurrence semantic rela-
tionships between actions, objects, scene and poses. More
specifically, Gupta et al. [10] present a Bayesian approach
for combining action understanding with object perception;
Yao et al. [38] propose a Markov random field model to
encode the mutual context of objects and humans poses in
human-object interaction activities. At prior/priming infor-
mation level, the context captures the global spatial or tem-
poral environment, within which events may happen. The
scene priming used by Torralba et al. [32] and Sudderth et
al. [30] demonstrate that scene provides a good prior in-
formation for object recognition and object detection. The
scene priming information [32] has also been proved to be
effective for event recognition in [25, 35].

There are several approaches that also utilize hierarchical
modeling to integrate contexts. Sudderth et al. [30] propose
to model the priming hierarchy between scene, objects and
parts with a Bayesian topic model. He et al. and Kumar
et al. [11, 16] utilize contexts in multi-scale image level
hierarchy for image labeling tasks. Li et al. [20] try to
capture the semantic co-occurrence relationships between
event, scene and objects also with a Bayesian topic model.
Sun et al. [31] propose to combine the point-level context
feature, the intra-trajectory context feature and the inter-
trajectory context feature through a multiple kernel learning
model. Choi et al. [3] use tree hierarchy based graphical
model to capture the object co-occurrence and spatial rela-
tionships. Recently, Jiang et al. [13, 12] utilize Dirichlet
process mixture model to capture semantic co-occurrence
relationships between human poses and objects. The latest



approach by Zhu et al. [40] also exploit contexts for event
recognition. While similar to our approach in spirit, our ap-
proach differs from [40] in the following aspects: 1) we pro-
pose a probabilistic hierarchical model to model and cap-
ture contexts. By contrast, their model is a structural linear
model. 2) We integrate contexts from all three levels, while
their model only integrates contexts at feature and semantic
relationship level.

In addition, approaches like [26, 23] also utilize hierar-
chical probabilistic models for event and action recognition.
However, these two approaches focus on capturing the hi-
erarchy on feature, body parts and human actions, without
incorporating context information beyond the target.

In summary, the existing work in context-aided event
recognition focuses mostly on context at an individual level.
The existing work in integration of contexts at different lev-
els is limited to two levels. By contrast, we propose a uni-
fied model that allows integrating contexts from all three
levels simultaneously. Experiments demonstrate significant
performance improvement over the existing models on chal-
lenging real world benchmark surveillance videos.

3. Hierarchical Context Model Formulation
We introduce an unified hierarchical model that allows

systematically capturing contexts at different levels, and
principally integrate the captured contexts with the video
measurements for robust event recognition from surveil-
lance videos. Figure 2 illustrates the overall idea of our
approach. We propose to model three levels of contexts:
feature context, semantic context, and priming context. The
feature context in the bottom level provides diagnostic sup-
port information for the event, while the priming context
at the top level supplies top-down predictive knowledge on
the event. The top-down and bottom-up contexts meet at
the middle level (semantic relationship context), where the
three levels of contexts are systematically integrated to have
a comprehensive characterization of the events and their
overall contexts.
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Figure 2. An example of incorporating contexts at different levels.

3.1. The Hierarchical Context Model

Specifically, we incorporate the three levels of contexts
shown in Figure 2 systematically through a probabilistic hi-
erarchical context model as shown in Figure 3. The top
portion captures the prior/priming context, the middle part
captures the semantic context, and the bottom part captures
the feature level context. Each part consists of nodes rep-
resenting respectively events, the related contexts, and their
image measurements. Below we will elaborate the context
modeling at each level.
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Figure 3. The hierarchical context model, where the shaded nodes
represent the image measurements, the white nodes represent the
latent variables, and the stripped nodes represent events to infer.

3.1.1 Semantic Context Modeling in the Middle Level

Since the middle level semantic context modeling connects
the top level prior modeling with the bottom-level feature
context modeling, we describe the semantic context model-
ing first, and will discuss the feature and prior context next.

The semantic context captures components of an event
and their interactions. For this research, we are interested
in events that involve interactions between humans and ob-
jects (e.g. vehicles), the semantic context modeling should
therefore capture human, object, and their interactions. As
shown in Figure 3, we denote an event by a discrete node
Et, and its components by discrete nodes H and O to rep-
resent human and object respectively. An event Et can be
characterized by the state of the human H , the state of the
objectO, and by their interactions. For example, event “per-
son getting into vehicle” is highly correlated with human
state “facing towards vehicle” and object state “door open”;
also, event “person opening a trunk” has strong relations
with human state “at tail of vehicle” and object state “trunk
open”. The interactions between H and O are captured by



the link between them, which specifies the probabilistic de-
pendencies among their states. Furthermore, to capture the
semantic contexts for different events, we connect node Et
to H and O respectively, with Et as their joint parent node.
This allows conditioning H and O on Et such that their se-
mantic context may vary, depending on the specific event
type. Finally, as we normally do not know the exact human
and object states that can best characterize different events,
we treat both H and O as latent variables such that their
optimal states can be learned automatically during training.

3.1.2 Feature Context Modeling at Bottom Level

Feature context modeling in the bottom part of Figure 3
consists of image features that describe the event and
its context. First, to directly measure event, we use
the raw event feature (i.e. spatio-temporal interest point
(STIP) [18]) that provides direct observation of target event.
In addition, we introduce image features to directly measure
human and objects as denoted by the nodes MH and MO
respectively. To measure the event context at the feature
level, we utilize several types of context features. The first
type of context feature is the multi-scale spatio-temporal
context (MSTC) [34] that captures the spatio-temporal in-
terest points in event neighborhoods. The second type of
context feature is the inter-event and intra-event context
features [40], which capture the inter-event spatio-temporal
relations and intra-event human and object interactions re-
spectively.

We combine the STIP feature, the MSTC context feature,
and the inter-event context feature into the event measure-
ment and denote it by the node ME. The intra-event con-
text feature is denoted by the node Intra. It provides nec-
essary bottom-up support for nodes H and V . The link be-
tween nodes Et and MEt models the distribution of MEt
given certain Et states. Similarly, the links between H ,
O, and their measurements MH , MO, and Intra capture
dependencies of these measurements on the states of H and
O. Through this captured distribution, the information from
image and context features in the bottom level propagate up
to provide a diagnostic support for the inference of the cur-
rent event state Et.

3.1.3 Priming Context Modeling on Top Level

The final part of the hierarchical model is the prior context
at the top. It captures the related high level context that de-
termines the likelihood of the occurrence of certain events.
For this research, we utilize two types of contextual prim-
ing [32] information: the scene context and the dynamic
context, though the model is generic enough to apply to
other high level priming contexts.

The scene context provides an environmental context
within which events occur. The scene context can dictate

the likelihood for certain events to occur as well as event
happening location (e.g. parking lot, shop entrance) and
time (e.g. noon, dark). Scene context can therefore serve as
event prior. In the model, scene is captured by a discrete
scene node S, which represents different possible scene
states. The link from S to Et captures the cause and ef-
fect relation between S and Et. To capture the prior prob-
ability of the scene node, we introduce the parameters πS ,
which specify the prior probability distribution of S. To
accommodate the variability with the prior probability dis-
tribution of S, i.e., the variability of πS , we treat πS as a
random variable and introduce the hyper-parameters α to
characterize its distribution. Specifically, we assume node
S follows multinomial distribution with parameter πS , and
πS follows Dirichlet distribution with the hyper-parameter
α. To be able to generalize to different scenes, we assume
S is a latent variable, and we will learn its hyper-parameters
α during training.

The second contextual priming is the dynamic context.
It provides temporal support as to what event will likely
to happen given the events that have happened up to now.
Event at current time is influenced by events in previous
times. For example, event “loading/unloading a vehicle”
typically precedes event “closing a trunk”. The information
on the previous events provides a good cue on the current
event. Dynamic context can therefore serve as a temporal
prior on current event. Dynamic context is captured by the
Et−1 node. The link between Et−1 and Et captures the
temporal causal relation between Et and Et−1.

Both the nodes S and Et−1 provide top-down priming
information for the inference of the current event.

3.2. Model Learning
Using the directed graphical model shown in Figure 3,

we factorize the joint probability distribution of all nodes
for each sample as the product of local conditional proba-
bilities, i.e.,

P (Et, Et−1, H,O, S, πS ,MH,MO,MS,MEt, Intra,

MEt−1|α) = P (πS |α)P (S|πS)P (Et−1)P (Et|S,Et−1)·
P (H|Et)P (O|Et, H)P (MS|S)P (MEt|Et)P (MEt−1|Et−1)·
P (MH|H)P (MO|O)P (Intra|H,O) (1)

where each factor is a local conditional probability for
each node. Specifically, the term P (πS |α) follows Dirich-
let distribution, P (S|πS) follows multi-nominal distribu-
tion. P (Et−1), P (Et|S,Et−1), P (H|Et), P (O|Et, H),
and P (MS|S) can be characterized by conditional prob-
ability tables (CPTs). P (MEt|Et), P (MEt−1|Et−1),
P (MH|H), P (MO|O), and P (Intra|H,O) follow Gaus-
sian distributions. We propose to learn the parameters of
these local distributions as follows.

We use α to denote the hyper-parameter of Dirich-
let distribution πS , use the parameters ε, δ, η to denote



the CPTs of P (Et|S,Et−1), P (MS|S) and P (Et−1) re-
spectively. The remaining model parameters for CPTs of
P (H|Et) and P (O|Et, H), as well as for the Gaussian dis-
tributions of P (MEt|Et), P (MEt−1|Et−1), P (MH|H),
P (MO|O), and P (Intra|H,O) are denoted altogether
by θ, since these parameters can be learned alto-
gether using standard EM method in Eqn. 3. Learn-
ing of the distributions in our proposed model amounts
to the estimation of the parameters α, ε, δ, η and
θ. Given M training sequences with measurements
{MHm,MOm,MSm,MEmt , Intra

m,MEmt−1}Mm=1 and
event labels {Emt , Emt−1}Mm=1, we maximize the joint log-
likelihood as

max
α,ε,δ,η,θ

M∑
m=1

logP (Emt , E
m
t−1,MHm,MOm,MSm,

MEmt , Intra
m,MEmt−1|α, ε, δ, η, θ)

= max
α,ε,δ,η

M∑
m=1

logP (Emt , E
m
t−1,MSm|α, ε, δ, η) (2)

+max
θ

M∑
m=1

logP (MHm,MOm,MEmt , Intra
m,

MEmt−1|Emt , Emt−1; θ) (3)

The objective in Eqn. 3 involves marginalization of two
discrete latent nodes H and V . Its optimization can be
solved using standard EM algorithm. The objective in
Eqn. 2 involves marginalization of two coupled latent nodes
S and πS where S is discrete and πS is continuous. The op-
timization of Eqn. 2 requires the variational Bayes based
EM technique due to the complexity brought in by the con-
tinuous latent node πS . In the following, we provide more
details regarding the optimization of objective in Eqn. 2.

For training sample m, we can obtain the variational
lower bound of logP (Emt , E

m
t−1,MSm|α, ε, δ, η) through

Jensen’s inequality as

logP (Emt , E
m
t−1,MSm|α, ε, δ, η) ≥∫ ∑

S

q(πmS , S
m) log

P (πmS , S
m, Emt , E

m
t−1,MSm)

q(πmS , S
m)

dπmS =

Eq [logP (πmS , S
m, Emt , E

m
t−1,MSm)]− Eq [log q(πmS , Sm)]

, L(γm, φm;πmS , S
m) (4)

where q(πmS , S
m) is the variational distribution that can be

factorized as q(πmS , S
m|γm, φm) = q(πmS |γm)q(Sm|φm),

with γm and φm as the variational parameters both
in dimension K. The maximization of the varia-
tional lower bound L(γm, φm;πmS , S

m) with respect to
γm and φm is equivalent to the minimization of the
Kullback-Leibler divergence between q(πmS , S

m|γm, φm)
and P (πmS , S

m|Emt , Emt−1,MSm;α, ε, δ, η). Hence, by
maximizing this lower bound, we can get optimized approx-
imation of logP (Emt , E

m
t−1,MSm|α, ε, δ, η).

Our variational Bayes based learning algorithm would
then follow the variational EM method:

E-Step: Maximize lower bound L(γm, φm;πmS , S
m)

with respect to variation parameters γm and φm for each
sample m = 1, ...,M as

max
γm,φm

L(γm, φm;πmS , S
m)

This maximization can by solved by iteratively updating
the variation parameters φm and γm through

φmi ∝ εiuδivηw exp

{
ψ(γmi )− ψ(

K∑
j=1

γmj )

}
(5)

γmi = αi + φmi (6)

where i ∈ {1, ...,K}. εiu, δiv and ηw reflect the probabil-
ities P (Et|S,Et−1), P (MS|S) and P (Et−1) with S = i
and nodes Et, MS and Et−1 in states u, v and w. Also,
ψ(·) is the digamma function.

M-Step: Maximize the joint lower bound of all samples
with respect to parameters α, ε, δ, η as

max
α,ε,δ,η

M∑
m=1

L(γm, φm;πmS , S
m)

which can be solved through a gradient descent method.

3.3. Model Inference
Given an unknown event sequence Et with observed

measurements (i.e. MH , MO, MS, MEt, Intra, and
MEt−1), we recognize its event category e∗ by maximiz-
ing its posterior probability given all measurements as

e∗ = argmax
Et

P (Et|MH,MO,MS,MEt, Intra,MEt−1;α)

This posterior probability is proportional to the joint prob-
ability P (Et,MH,MO,MS,MEt, Intra,MEt−1|α),
which can be further decomposed as

P (Et,MH,MO,MS,MEt, Intra,MEt−1|α) = P (MEt|

Et)
∑
H,O

P (H,O|Et)P (Intra|H,O)P (MH|H)P (MO|O)·

∑
Et−1

P (MEt−1|Et−1)

∫ ∑
S

P (πS , S, Et, Et−1,MS|α)dπS

The calculation of most terms above are straightforward.
However, the integration term involves the marginalization
of two coupled latent nodes πS and S to obtain probabil-
ity P (Et, Et−1,MS|α). Its exact calculation is intractable.
On the other hand, we have defined the variational lower
bound of logP (Et, Et−1,MS|α) as in Eqn 4. By resorting
to the variational inference through maximizing the lower
bound, we can get the approximate estimation of proba-
bility P (Et, Et−1,MS|α). For each testing sample, the
maximization of the lower bound still follows the iterative
method given in Eqn. 5 and Eqn. 6.



4. Experiments

We demonstrate the effectiveness of our hierarchical
context model with two surveillance datasets: the VIRAT
1.0 Ground Dataset and VIRAT 2.0 Ground Dataset [24].
Both datasets focus on real world surveillance video events
that involve interactions between humans and objects with
complex backgrounds.

The VIRAT 1.0 Ground Dataset contains approximately
3 hours of surveillance videos from realistic scenes of dif-
ferent school parking lots. There are in total six types
of events: Loading a Vehicle (LAV), Unloading a Vehicle
(UAV), Opening a Trunk (OAT), Closing a Trunk (CAT),
Getting into a Vehicle (GIV), and Getting out of a Vehicle
(GOV). All these six types of events are person-vehicle in-
teraction events.

The VIRAT 2.0 Ground Dataset extends the VIRAT 1.0
Ground Dataset to over 8 hours of videos containing real-
istic surveillance scenes of school parking lots, as well as
shop entrance, outdoor dining area and construction sites.
Besides the six types of person-vehicle interaction events
defined in VIRAT 1.0 Ground Dataset, the VIRAT 2.0
Ground Dataset also includes five more events as: Gestur-
ing (GST), Carrying a Object (CAO), Running (RUN), En-
tering a Facility (EAF), and Exiting a Facility (XAF).

For both datasets, we use half of the data for training,
and the rest for testing.

4.1. Baselines

To assess the effectiveness of the proposed model for
incorporating contexts, we use the STIP based BOW fea-
ture on target with SVM classifier as our first baseline
STIP+SVM. This baseline uses only the information from
the recognition target without incorporating any contexts.
Besides the STIP+SVM baseline, we compare with another
baseline called Context+SVM that concatenate STIP based
BOW feature on target with all the context features includ-
ing MSTC, intra-event and inter-event context features. The
Context+SVM baseline would then provide an evaluation
on how incorporating context information as feature would
perform for event recognition.

To further compare our model performance with state of
the art performances, we list the performances of several
most related approaches: the feature based approach pro-
posed by Reddy et al. [27] that utilizes histogram of spa-
tiotemporal gradients feature extracted from event bounding
boxes for event recognition, the approach combining BOW
feature with SVM classifier [14] which is very popular for
action and activity recognition, the sum-product network
approach by Amer et al. [1] utilizing space-time arrange-
ments of primitive actions, and the structural model pro-
posed by Zhu et al. [40] that integrates different contexts as
input of the structural model.

4.2. Performance on VIRAT 1.0 Ground Dataset

We first present the model performance on VIRAT
1.0 Ground Dataset. Figure 4 shows the per-event
recognition accuracy, and the average recognition accu-
racy over all events for the two baselines (STIP+SVM
and Context+SVM) and our proposed hierarchical context
model. The Context+SVM baseline performs better than
the STIP+SVM baseline in terms of average recognition
accuracy over six events. This result indicates the con-
text information is beneficial for event recognition. More
importantly, our proposed hierarchical context model per-
forms better than the two baselines for five of the six
events, and improves the average recognition accuracy
from 39.91% (STIP+SVM) and 52.96% (Context+SVM)
to 65.78%, which is a 25% absolute improvement over
the STIP+SVM baseline, and a 12% absolute improvement
over the Context+SVM baseline. This comparison demon-
strates that our hierarchical context model is very effective
on simultaneously incorporating the feature level, the se-
mantic level and the prior level contexts. Utilizing all these
levels of context information through our model can signif-
icantly improve the event recognition performance.
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Figure 4. Recognition accuracy comparison on VIRAT 1.0 Ground
Dataset. For all six events, the average recognition accuracy is
39.91% for STIP+SVM, 52.96% for Context+SVM, and 65.78%
for the proposed hierarchical context model.

In Table 1, we compare with related approaches for the
recognition of six events on VIRAT 1.0 Ground Dataset.
For each approach, the recognition accuracy for each event
and the average recognition accuracy of all six events are
listed. From this comparison, we can see that the context
based approaches including [40] and our approach generally
outperform the approaches in [27] and [14] that do not use
context information. Also, our proposed model outperforms
[40] on the average recognition accuracy of six events on
VIRAT 1.0 Ground Dataset.

4.3. Performance on VIRAT 2.0 Ground Dataset

The VIRAT 2.0 Ground Dataset contains 11 types of
events, among which 6 events (LAV, UAV, OAT, CAT, GIV,
GOV) involve the interactions between person and vehicle.
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Figure 5. Confusion matrices for the recognition of six person-vehicle interaction events on VIRAT 2.0 Ground Dataset with the
STIP+SVM, Context+SVM and our proposed hierarchical context model.

Table 1. Comparison with state of the art approaches for event
recognition on VIRAT 1.0 Ground Dataset. In this comparison,
our proposed model performs the best in terms of average recog-
nition accuracy over all six events.

Accuracy Reddy BOW+ Zhu Our
% et al. [27]∗ SVM [14] et al. [40] Model

LAV 10.0 42.8 52.1 100
UAV 16.3 57.2 57.5 71.4
OAT 20.0 39.3 69.1 50.0
CAT 34.4 33.4 72.8 54.5
GIV 38.1 48.2 61.3 45.2
GOV 61.3 53.8 64.6 73.5

Average 35.6 45.8 62.9 65.8

*: This accuracy is read out from the bar graph in [27] with the method
providing best average accuracy.

We first test our approach on recognizing these 6 events in
Section 4.3.1. In Section 4.3.2, we test on recognizing 11
events, and compare the performance with state of the art.

4.3.1 Six Events Involving Person-Vehicle Interaction

Figure 6 compares the performances of STIP+SVM, Con-
text+SVM and our proposed model on the per-event recog-
nition accuracy and the average recognition accuracy for the
recognition of six events involving person-vehicle interac-
tion. For this comparison, our proposed hierarchical context
model can consistently outperform or compete with the two
baseline approaches for each event.

To evaluate the effectiveness of contexts at each level,
we experiment with an additional Bottom+Middle model
which is the hierarchical context model without top level.
Our evaluation shows that by adding the feature-level con-
text, the performance improves by 8% (from 41.74% by
STIP+SVM to 49.70% by Context+SVM as in Figure 6)
over using only target features. By adding the semantic
level to the feature level, the Bottom+Middle model fur-

ther improves the result by about 5% to 54.24%. Finally, by
adding the top level, the performance improves by another
4% to a final accuracy of 58.70%. These results show the
importance of contexts in each level. And, joint modeling
contexts at all three levels reaches the best performance.
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Figure 6. Recognition accuracy comparison for six events involv-
ing person vehicle interaction on VIRAT 2.0 Ground Dataset. For
these six events, the average recognition accuracy is 41.74% for
STIP+SVM, 49.70% for Context+SVM, and 58.70% for the pro-
posed hierarchical context model.

For this experiment, the confusion matrices for the
STIP+SVM, Context+SVM and our proposed hierarchical
context model are further provided in Figure 5. In Fig-
ure 5(a), we can see the STIP+SVM approach still faces dif-
ficulties on distinguishing pairs of event that are similar in
appearance. For example, in Figure 5(a), some mismatches
occur between the two events “getting into a vehicle” (GIV)
and “getting out of a vehicle” (GOV), or between the two
events “loading a vehicle” (LAV) and “unloading a vehicle”
(UAV). Comparatively, the Context+SVM approach allevi-
ate such mismatch between similar events due to the usage
of contextual features such as the intra-event and inter-event
context feature that can provide additional clues besides
the event appearance. Moreover, our proposed hierarchical
context model can obviously reduce the mismatch between
similar pairs of events with the incorporation of prior level,
semantic level and feature level contexts simultaneously.



4.3.2 Performance with All Events

We further experiment on VIRAT 2.0 Ground Dataset with
all 11 events, and compare with the performances of the
state of the art approaches by Amer et al. [1] and Zhu et
al. [40] respectively. The overall performance comparison
is given in Table 2, where the recall and precision are used to
evaluate the recognition performance. We can see our pro-
posed model can outperform both approaches on the recog-
nition of 11 events on VIRAT 2.0 Ground Dataset.

Table 2. Comparisons with state of the art methods for recognition
of all 11 events on VIRAT 2.0 Ground Dataset.

Amer et al. [1] Zhu et al. [40] Our Model
Precision 72% 71.8% 74.73%

Recall 70% 73.5% 77.42%

5. Conclusion
In this paper, we propose a hierarchical context model

to systematically integrate feature level context, semantic
level context, and prior level context for accurate and ro-
bust event recognition in surveillance videos. Compared
to existing approaches that generally incorporate contexts
from one level, one major contribution of this work is to
build up a comprehensive model that can integrate contexts
from all three levels simultaneously. We develop complete
model learning and inference algorithms to tackle the chal-
lenges brought in by the model hierarchy. In experiments,
we evaluate our model performance on both VIRAT 1.0 and
2.0 Ground Datasets for recognizing the real world surveil-
lance video events that involve interaction between humans
and objects with complex backgrounds. The results with
the proposed hierarchical context model show significant
improvements over the baseline approaches that also uti-
lize context. Comparisons with state of the art methods also
demonstrate the superior performance of our model.
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