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Abstract—Over the past decades, video games have become
increasingly popular and complex. Virtual worlds have gone
a long way since the first arcades and so have the artificial
intelligence (AI) techniques used to control agents in these
growing environments. Tasks such as world exploration, con-
strained pathfinding or team tactics and coordination just to
name a few are now default requirements for contemporary
video games. However, despite its recent advances, video game
AI still lacks the ability to learn. In this paper, we attempt to
break the barrier between video game AI and machine learning
and propose a generic method allowing real-time strategy (RTS)
agents to learn production strategies from a set of recorded
games using supervised learning. We test this imitative learning
approach on the popular RTS title StarCraft II R© and successfully
teach a Terran agent facing a Protoss opponent new production
strategies.

I. INTRODUCTION

Video games started emerging roughly 40 years ago. Their
purpose is to bring entertainment to the people by immersing
them in virtual worlds. The rules governing a virtual world
and dictating how players can interact with objects or with
one another are referred to as game mechanics. The first
video games were very simple: small 2-dimensional discrete
space, less than a dozen mechanics and one or two players
at most. Today, video games feature large 3-dimensional
spaces, hundreds of mechanics and allow numerous players
and agents to play together. Among the wide variety of genres,
real-time strategy (RTS), portrayed by games like Dune II
(Westwood Studies, 1992), Warcraft (Blizzard Entertainment,
1994), Command & Conquer (Westwood Studios, 1995) or
StarCraft (Blizzard Entertainment, 1998), provides one of
the most complex environments overall. The multitude of
tasks and objects involved as well as the highly dynamic
environment result in extremely large and diverging state and
action spaces. This renders the design of autonomous agents
difficult. Currently, most approaches largely rely on generic
triggers. Generic triggers aim at catching general situations
such as being under attack with no consideration to the details
of the attack (i.e., location, number of enemies, ...). These
methods are easy to implement and allow agents to adopt a
robust albeit non-optimal behavior in the sense that agents will
not fall into a state for which no trigger is activated, or in other
words a state where no action is taken. Unfortunately, this type
of agent will often discard crucial context elements and fail
to display the natural and intuitive behavior we may expect.
Additionally, while players get more familiar with the game
mechanics and improve their skills and devise new strategies,
agents do not change and eventually become obsolete. This
evolutionary requirement is critical for performance in RTS

games where the pool of possible strategies is so large that
it is impossible to estimate optimal behavior at the time of
development. Although it is common to increase difficulty
by granting agents an unfair advantage, this approach seldom
results in entertainment and either fails to deliver the sought-
after challenge or ultimately leads to player frustration.

Because the various facets of the RTS genre constitute
very distinct problems, several learning technologies would
be required to grant agents the ability to learn on all aspects
of the game. In this work, we focus on the production
problem. Namely, we deal with how an agent takes production-
related decisions such as building a structure or researching a
technology. We propose a generic method to teach an agent
production strategies from a set of recorded games using
supervised learning. We chose StarCraft II as our testing
environment. Today, StarCraft II, Blizzard Entertainment’s
successor to genre patriarch StarCraft, is one of the top selling
RTS games. Featuring a full-fledged game editor, it is the
ideal platform to assess this new breed of learning agents.
Our approach is validated on the particular scenario of a one-
on-one, Terran versus Protoss matchup type. The created agent
architecture comprises both a dynamically learned production
model based on multiple neural networks as well as a simple
scripted combat handler.

The paper is structured as follows. Section 2 briefly covers
some related work. Section 3 details the core mechanics char-
acterizing the RTS genre. Section 4 and 5 present the learning
problem and the proposed solution, respectively. Section 6
discusses experimental results and, finally, Section 7 concludes
and highlights future lines of work.

II. RELATED WORK

Lately, video games have attracted substantial research
work, be it for the purpose of developing new technologies
to boost entertainment and replay value or simply because
modern video games have become an alternate, low-cost yet
rich environment for assessing machine learning algorithms.

Roughly, we could distinguish 2 goals in video game AI
research. Some work aims at creating agents with properties
that make them more fun to play with such as human-like
behavior [1, 2]. Competitions like BotPrize or the Turing test
track of the Mario AI Championship focus on this goal. It
is usually attempted on games for which agents capable of
challenging skilled human players already exist and is neces-
sary because, often, agents manage to rival human players due
to unfair advantages: instant reaction time, perfect aim, etc.
These features increase performance at the cost of frustrating
human opponents. For more complicated games, agents stand
no chance against skilled human players and improving their
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performance takes priority. Hence, performance similar to
what humans can achieve can be seen as a prerequisite to
entertainment. Indeed, we believe that facing a too weak or
too strong opponent is not usually entertaining. This concept
is illustrated in Figure 1. In either case, video game AI
research advances towards the ultimate goal of mimicking
human intelligence. It was in fact suggested that human-level
AI can be pursued directly in these new virtual environments
[3].

Fig. 1. Agent set structure for a video game

The problem of human-like agent behavior has been tackled
in first-person shooter (FPS) games, most notably the pop-
ular and now open-source game Quake II, using imitative
learning. Using clustering by vector quantization to organize
recorded game data and several neural networks, more natural
movement behavior as well as switching between movement
and aim was achieved in Quake II [4]. Human-like behavior
was also approached using dedicated neural networks for
handling weapon switching, aiming and firing [5]. Further
work discussed the possibility of learning from humans at all
levels of the game, including strategy, tactics and reactions
[6].

While human-like agent behavior was being pursued, others
were more concerned with performance issues in genres like
real-time strategy (RTS) where the action space is too large
to be thoroughly exploited by generic triggers. Classifiers
based on neural networks, Bayesian networks and action trees
assisted by quality threshold clustering were successfully used
to predict enemy strategies in StarCraft [7]. Case-based rea-
soning has also been employed to identify strategic situations
in Wargus, an open-source Warcraft II clone [8, 9, 10]. Other
works resorted to data mining and evolutionary methods for
strategy planning and generation [11, 12]. Non-learning agents
were also proposed [13]. By clearly identifying and organizing
tasks, architectures allowing incremental learning integration
at different levels were developed [14].

Although several different learning algorithms were applied
in RTS environments, few were actually used to dictate agent

behavior directly. In this paper, we use imitative learning to
teach a StarCraft II agent to autonomously pass production
orders. The created agent building, unit and technology pro-
duction is entirely governed by the learning algorithm and does
not involve any scripting.

III. REAL-TIME STRATEGY

In a typical RTS game, players confront each other on a
specific map. The map is essentially defined by a combination
of terrain configuration and resource fields. Once the game
starts, players must simultaneously and continuously acquire
resources and build units in order to destroy their opponents.
Depending on the technologies they choose to develop, players
gain access to different unit types each with specific attributes
and abilities. Because units can be very effective against others
based on their type, players have to constantly monitor their
opponents and determine the combination of units which can
best counter the enemy’s composition. This reconnaissance
task is referred to as scouting and is necessary because of
the “fog of war”, which denies visibility to players over areas
where they have no units deployed.

Often, several races are available for the players to choose
from. Each race possesses its own units and technologies and
is characterized by a unique play style. This further adds to
the richness of the environment and multiplies mechanics.
For example, in StarCraft II players can choose between
the Terrans, masters of survivability, the Zerg, an alien race
with massive swarms, or the Protoss, a psychically advanced
humanoid species.

Clearly, players are constantly faced with a multitude of
decisions to make. They must manage economy, production,
reconnaissance and combat all at the same time. They must
decide whether the current income is sufficient or new re-
source fields should be claimed, they must continuously gather
information on the enemy and produce units and develop
technologies that best match their strategies. Additionally, they
must swiftly and efficiently handle units in combat.

When more than two players are involved, new diplomacy
mechanics are introduced. Players may form and break al-
liances as they see fit. Allies have the ability to share resources
and even control over units, bringing additional management
elements to the game.

Finally, modern RTS games take the complexity a step
further by mixing in role-playing game (RPG) mechan-
ics. Warcraft III, a RTS title also developed by Blizzard
EntertainmentTM, implements this concept. Besides regular
unit types, heroes can be produced. Heroes are similar to RPG
characters in that they can gain experience points by killing
critters or enemy units to level up. Leveling up improves their
base attributes and grants them skill points which can be used
to upgrade their special abilities.

With hundreds of units to control and dozens of different
unit types and special abilities, it becomes clear that the RTS
genre features one of the most complex environments overall.
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IV. PROBLEM STATEMENT

The problem of learning production strategies in a RTS
game can be formalized as follows.

Consider a fixed player u. A world vector w ∈ W is a
vector describing the entire world at a particular time in the
game. An observation vector o ∈ O is the projection of w
over an observation space O describing the part of the world
perceivable by player u. We define a state vector s ∈ S as the
projection of o over a space S by selecting variables deemed
relevant to the task of learning production strategies. Let n ∈ N
be the number of variables chosen to describe the state. We
have:

s = (s1, s2, ..., sn),∀i ∈ {1, ..., n} : si ∈ R

Several components of s are variables that can be directly
influenced by production orders. Those are the variables that
describe the number of buildings of each type available or
planned, the cumulative number of units of each type pro-
duced or planned and whether each technology is researched
or planned. If a technology is researched or planned, the
corresponding variable is equal to 1, otherwise, it is equal to
0. Let m be the number of these variables and let sp1 , sp2 , ...,
spm be the components of s that correspond to these variables.

When in state s, a player u can select an action vector
a ∈ A of size m that gathers the “production orders”. The
jth component of this vector corresponds to the production
variable spj

. When an action a is taken, the production
variables of s are immediately modified according to:

∀j ∈ {1, ...,m} : spj ← spj + aj

We define a production strategy for player u as a mapping
P : S → A which selects an action vector a for any given
state vector s:

a = P (s)

V. LEARNING ARCHITECTURE

We assume that a set of recorded games constituted of state
vectors su ∈ Su of player u is provided. Our objective is
to learn the production strategy Pu used by player u. To
achieve this, we use supervised learning to learn to predict
each production variable spj

based on the remaining state
s−pj

defined below. We then use the predicted spj
values to

deduce a production order a. Since there are m production
variables, we solve m supervised learning problems. Formally,
our approach works as follows.

For any state vector s, we define the remaining state for
each production variable spj

as s−pj
:

∀j ∈ {1, ...,m} : s−pj
= (s1, s2, ..., spj−1, spj+1, ..., sn)

For each production variable, we define a learning set
{(su−pj

, supj
)}su∈Su from which we learn a function P̂u

j which

maps any remaining state s−pj
to a unique P̂u

j (s−pj
). Know-

ing each P̂u
j , we can deduce a mapping P̂u and estimate a

production order a for any given state vector s:

a = P̂u(s) = (P̂u
1 (s−p1

)− sp1
,

P̂u
2 (s−p2

)− sp2
, ..., P̂u

m(s−pm
)− spm

)

Using this approach, we learn the production strategy used
by player u by learning m P̂u

j functions to estimate production
variables given the remaining state variables. Each P̂u

j is
learned separately using supervised learning. In other words,
we learn m models. For each model, the input for the learning
algorithm is the state vector s stripped from the component the
model must predict, which becomes the output. This process
is illustrated in Figure 2.
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Fig. 2. Learning the pj th model

It is worth stressing that the action vector a computed
by the mapping P̂u learned may not correspond to, due to
the constraints imposed by the game, an action that can be
taken. For example, a may send among others an order for a
new type of unit while the technology it requires is not yet
available. In our implementation, every component of a which
is inconsistent with the state of the game is simply set to zero
before the action vector is applied.

VI. EXPERIMENTAL RESULTS

The proposed method was tested in StarCraft II by teaching
a Terran agent facing a Protoss opponent production strategies.

A total of n = 108 variables were selected to describe a
state vector. These state variables are:
• s1 ∈ N is the time elapsed since the beginning of the

game in seconds
• s2 ∈ N is the total number of units owned by the agent
• s3 ∈ N is the number of SCVs (Space Construction

Vehicles)
• s4 ∈ N is the average mineral harvest rate in minerals

per minute
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• s5 ∈ N is the average gas harvest rate in gas per minute
• su ∈ N, u ∈ {6, ..., 17} is the cumulative number of units

produced of each type
• sb ∈ N, b ∈ {18, ..., 36} is the number of buildings of

each type
• st ∈ {0, 1}, t ∈ {37, ..., 63} indicates whether each

technology has been researched
• se ∈ {0, 1}, e ∈ {64, ..., 108} indicates whether an

enemy unit type, building type or technology has been
encountered

Among these, there are m = 58 variables which correspond
to direct production orders: 12 su unit variables, 19 sb building
variables and 27 st technology variables. Therefore, an action
vector is composed of 58 variables. These action variables are:

• au ∈ N, u ∈ {1, ..., 12} corresponds to the number of
additional units of each type the agent should produce

• ab ∈ N, b ∈ {13, ..., 31} corresponds to the number of
additional buildings of each type the agent should build

• at ∈ {0, 1}, t ∈ {32, ..., 58} corresponds to the technolo-
gies the agent should research

The Terran agent learned production strategies from a set
of 372 game logs generated by letting a Very Hard Terran
computer player (u) play against a Hard Protoss computer
player on the Metalopolis map. State vectors were dumped
every 5 seconds in game time. Each P̂u

j was learned using
a feedforward neural network with a 15-neuron hidden layer
and the Levenberg-Marquardt backpropagation algorithm [15]
to update weights. Inputs and outputs were mapped to the
[−1, 1] range. A tan-sigmoid activation function was used for
hidden layers.

Because it is not possible to alter production decisions in the
Very Hard Terran player without giving up the remaining non
production decisions, these 58 neural networks were combined
with a simple scripted combat manager which handles when
the agent must attack or defend. On the other hand, the
low level unit AI is preserved. During a game, the agent
periodically predicts production orders. For any given building
type, unit type or technology, if the predicted target value
P̂u
j (s−pj ) is greater than the current number spj , a production

order aj is passed to reach the target value. This behavior is
illustrated in Figure 3.

The final agent was tested in a total of 50 games using the
same settings used to generate the training set. The results
are summarized in Table 1. With a less sophisticated combat
handler, the imitative learning trained agent (IML agent)
managed to beat the Hard Protoss computer player 9 times
out of 10 on average while the Hard Terran computer player
lost every game. This performance is not far below that of
the Very Hard Terran computer player the agent learned from,
which achieved an average win rate of 96.5%. In addition to
counting victories, we have attempted to verify that the agent
indeed replicates to some extent the same production strategies
as those from the training set. Roughly, two different strategies
were used by the Very Hard Terran computer player. The first
one (A) primarily focuses on infantry while the second one (B)
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Fig. 3. Agent production behavior

aims at faster technological development. Formally, a game is
given the label Strategy A if no factories or starports are built
during the first 5 minutes of the game. Otherwise it is labeled
Strategy B. Figure 4 shows, for the training set, the average
number of barracks, factories and starports built over time for
each strategy. Two corresponding strategies were also observed
for the learning agent over the 50 test games, as shown in
Figure 5. For each strategy, the frequency of appearance is
shown in Figure 6.

TABLE I
TERRAN PERFORMANCE AGAINST HARD PROTOSS

Terran win rate Total games

Very Hard Terran 96.5% 372
Hard Terran 0% 50
IML agent 90% 50

The frequency at which each strategy is used was not
faithfully reproduced on the test set. This can be partly
explained by the more limited combat handler, which may
fail to acquire the same information on the enemy than was
available in the training set. Moreover, Strategy B seems to
be less accurately replicated than Strategy A. This may be
caused by the lower frequency of appearance in the training
set. Nevertheless, the results obtained indicate that the agent
learned both production strategies from the Very Hard Terran
computer player. Subsequently, we may rightly attribute the
agent’s high performance to the fact that it managed to imitate
the efficient production strategies used by the Very Hard Terran
computer player.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a method for integrating
imitative learning in real-time strategy agents. The proposed
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Fig. 4. Training set strategies

solution allowed the creation of an agent for StarCraft II
capable of learning production strategies from recorded game
data and applying them in full one-on-one games. However,
since the training data was artificially generated, the agent
is restricted to a specific matchup type. A larger and more
diverse dataset would be required to significantly impact the
performance of agents against human players. We therefore
plan on extending this work to larger datasets.

In order to efficiently learn from richer sets, potentially
collected from various sources, we suspect clustering will
be required to organize records and maintain manageable
datasets. Furthermore, the manually generated training data
only contained desirable production strategies. When training
data is automatically collected from various sources, selection
techniques will be required to filter out undesirable production
strategies. We believe that with a large enough set, the learned
production strategy models should be robust enough to be used
against human players.

Besides production-related improvements, there are other
areas worth investing in to increase agent performance such
as information management or combat management. Enhanced
information management can allow an agent to better estimate
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the state of its opponents and for example predict the location
of unit groups that could be killed before they can retreat or
be joined by backup forces. As for combat management, it
may lead to much more efficient unit handling in battle and
for example maximize unit life spans.
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