
2610 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 4, OCTOBER 2008

Techniques for Interfacing
Electromagnetic Transient Simulation

Programs With General Mathematical Tools
IEEE Taskforce on Interfacing Techniques for Simulation Tools

S. Filizadeh, Member, IEEE, M. Heidari, Student Member, IEEE, A. Mehrizi-Sani, Student Member, IEEE,
J. Jatskevich, Senior Member, IEEE, and Juan A. Martinez, Member, IEEE

Abstract—This paper describes methods and issues related to in-
terfacing electromagnetic transient simulation programs with gen-
eral mathematical algorithms, which are either custom-developed
by the user or are available through other mathematical analysis
platforms. Various interfacing types and techniques are described
along with potential areas of application. Implementation methods
are detailed for each type of interface as well. This paper presents
several interfacing examples from a wide variety of applications,
including advanced switching schemes for power converters and
controller implementation.

Index Terms—Electromagnetic transient simulation, inter-
facing, mathematical algorithms.

I. INTRODUCTION

I NTERCONNECTED electric power networks are large dy-
namical systems with complex interactions. The analysis

and design of these systems often requires use of an array of
simulation tools that represent the system behavior in a manner
suitable for the intended studies. Simulation tools enable the
user (e.g., system operator or designer) to assess various aspects
of the operation of the network with ease and without recourse
to repetitive prototyping, or costly and potentially harmful tests
on the real system.

The level of detail used in the modeling of individual ele-
ments and the choice of the solution method used in a simula-
tion tool depend on the nature of the phenomena and require-

Manuscript received December 28, 2007. First published May 7, 2008; cur-
rent version published September 24, 2008. Paper no. TPWRD-00811-2007

S. Filizadeh and M. Heidari are with the Department of Electrical and Com-
puter Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
(e-mail: sfilizad@ee.umanitoba.ca; mheidari@ee.umanitoba.ca).

A. Mehrizi-Sani is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail: ali.
mehrizi.sani@utoronto.ca).

J. Jatskevich is with the Department of Electrical and Computer Engineering,
University of British Columbia, Vancouver, BC V6T 1Z4, Canada (e-mail:
juri@ece.ubc.ca).

J. A. Martinez is with the Department d’Enginyeria El̀ctrica of the Universitat
Politècnica de Catalunya, Catalunya 080208, Spain (e-mail: martinez@ee.upc.
edu).

Task Force on Interfacing Techniques for Simulation Tools is with the
Working Group on Modeling and Analysis of System Transients Using Digital
Programs, IEEE Power Engineering Society T&D Committee.

Task Force members: U. Annakkage, V. Dinavahi, S. Filizadeh, A. M. Gole,
R. Iravani, J. Jatskevich, A. J. Keri, P. Lehn, J. A. Martinez, B. A. Mork, A.
Monti, L. Naredo, T. Noda, A. Ramirez, M. Rioual, M. Steurer, K. Strunz.

Digital Object Identifier 10.1109/TPWRD.2008.923533

ments of the studies to be carried out. While simplified models
suffice in studies such as load flow, detailed, frequency-depen-
dent models of individual elements, including nonlinear and
switching components, need to be used when short-term, high-
frequency events are concerned [1].

As the complexity of power systems grows, the need for
more sophisticated simulation tools escalates. Modern sim-
ulation programs have been adapted to this increasing need
by such measures as: 1) incorporation of improved user in-
terfaces [2]; 2) enhanced analysis tools [3]; and 3) pre and
postprocessing mechanisms [4], [5]. There has, however, been
a strong tendency to interface existing simulation tools to obtain
further-enhanced simulation capabilities. This approach can
ideally allow for a synergetic combination of simulation tools.

Interfacing allows the constituent components (i.e., the sim-
ulation tool and the external algorithms/tools) to communicate
in a specified manner in order to carry out the overall simula-
tion cooperatively and efficiently. The level of cooperation be-
tween the interfaced tools can range from mere postprocessing
and visualization of simulation results [4] to relegating an in-
tegral part of the simulation to an external tool where specific
analyses can be done more effectively than in the original sim-
ulation tool [6]–[8].

This paper addresses aspects related to interfacing elec-
tromagnetic transient simulation tools [Electromagnetic
Transients Program (EMTP)-type programs] with other mathe-
matical tools, including both external programs and stand-alone
algorithms. Interfacing EMTP-type tools with external pro-
grams/algorithms extends their applicability in areas where
more streamlined techniques (e.g., for sophisticated control
system design, are available through the external agent). Shorter
development time and increased credibility of results are other
examples of the benefits of interfacing an EMTP-type tool with
a tested and verified external algorithm.

Various kinds of interfaces and methods for their implemen-
tation are presented in the paper. For illustration purposes, the
PSCAD/EMTDC electromagnetic transient simulation program
is used; however, the methods are treated in a generic manner to
ensure they remain applicable to arbitrary EMTP-type tools.

II. ELECTROMAGNETIC TRANSIENT SIMULATION TOOLS

Electromagnetic transient simulation tools are used to study
short-term behavior of complex electrical systems. Due to the

0885-8977/$25.00 © 2008 IEEE

FILIZADEH et al.: TECHNIQUES FOR INTERFACING ELECTROMAGNETIC TRANSIENT SIMULATION PROGRAMS 2611

Fig. 1. Schematic diagram of a generic EMTP-type tool.

high level of detail used in representation of system elements,
computational intensity of these programs (e.g., CPU require-
ments), is typically high and their use is mostly limited to net-
works smaller than what is possible in stability analysis pro-
grams [1], [9].

These tools have been used extensively for the analysis and
design of various elements of modern systems, where transients
(often fast transients) are involved. Typical applications include
design of controllers for power apparatus [10], overvoltage and
insulation coordination [11], [12], protection [13], flexible ac
transmission systems (FACTS) [14], HVDC [15], [16], and
other power-electronic applications [17].

The majority of commercially available EMTP-type pro-
grams use nodal analysis (admittance matrix formulation) and
numerical integration to setup and solve system equations
in a progressive manner and in time domain [18], [19]. This
formulation is based on the pioneering work by H. W. Dommel
in 1969 [1]. Other formulation methods such as state space
method have also been used [20], but their mechanics are not
discussed here.

Fig. 1 shows a schematic diagram of a generic electromag-
netic transient simulation program. Aside from minor modifica-
tions introduced by add-on features such as interpolation [21],
the overall method for solution of system equations is based on
a discretized time axis, where the entire simulation time is
divided into small intervals, each with a constant width of ,
which is referred to as the simulation time step. Use of a fixed
time step allows for simplified modeling and expedites the sim-
ulation by eliminating the need for inverting the network admit-
tance matrix repetitively.

The solver of the system equations in each time step uses
characteristics of the electrical elements and also those of dy-
namical devices, such as machines and controls, to obtain up-
dated node voltages. Solution in each time step in general re-
quires some information from previous time step(s). Such his-
tory terms are encountered both in electrical network elements
(e.g., capacitors and inductors), and in control functions such as
integrators [1], [22], [23].

III. NEED FOR INTERFACING

Commercially available transient simulation tools include a
fairly comprehensive library of components that allow the user
to conveniently assemble a circuit for the purpose of simula-
tion. These so-called library components may represent sources,
electric machines, cables and transmission lines, semiconductor
and power electronic devices, and control and processing func-
tions (e.g., gain blocks, PI controllers, and integrators).

Despite the availability of standard library components, users
often find that components for performing specialized compu-
tations are not readily available. Therefore, there is a need to
extend the capabilities of these programs by incorporating fa-
cilities for performing such computations. In EMTP-type pro-
grams, these facilities are provided through enabling user-de-
fined components and/or interfacing to other simulation soft-
ware or programming languages [19], [24].

Interfacing has been used for simulation of complex pro-
tection systems [25], development of advanced digital control
systems [26], and simulation of power electronic converters
using EMTP-TACS [3]. An interface that uses synchronizing
clocks for connecting a simulation program with a real con-
troller hardware is proposed in [27]. Attempts have also
been made towards development of simulation platforms in
which multiple tools interact. Examples of interfaces between
PSCAD/EMTDC and MATLAB/SIMULINK are presented in
[4], [28], and [29]. A different interfacing method in which
an entire simulation is broken into smaller pieces is reported
in [30] and is demonstrated using the CIGRE HVDC bench-
mark model [31]. In [32], a transient simulator is interfaced
with a nonlinear simplex optimization algorithm written in
FORTRAN to add optimization features to the simulator. A
comprehensive example of interfacing between a transient sim-
ulator and MATLAB/SIMULINK and a comparison between
EMTDC and MATLAB/SIMULINK-PSB is presented in [33],
in which CIGRE HVDC benchmark model [31] is considered
as the base network.

Besides EMTP-type tools, interfacing has also been used for
interconnecting electronic circuit simulators as well. Reference
[34] presents DELIGHT.SPICE, which is an integration of DE-
LIGHT interactive optimization-based CAD system and SPICE
for circuit optimization. Reference [35] interfaces optimization
routines written in MATLAB with SABER circuit simulator.
References [36] and [37] show other examples of interfacing
circuit simulation programs with optimization algorithms.

IV. METHODS FOR INTERFACING

The method used for interfacing EMTP-type tools with other
algorithms and the level of complexity involved in doing so de-
pend on the problem it targets to solve. In the following subsec-
tions, a number of interfacing methods will be addressed.

A. Static Interfacing

Consider for example interfacing a transient simulator with
an external agent in order to plot traces of simulated variables.
Ordinarily, one needs to establish a channel between the simu-
lator and the plotting agent to send (in a unidirectional manner)
data for the intended variables as they are obtained at each time
step. Note that no buffer is necessary to store past values, as data
is sent to the plotting agent as it becomes available. Moreover,

2612 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 4, OCTOBER 2008

Fig. 2. Static interface to an external algorithm.

one may note that plotting every point on the simulated trace
is not necessary and plotting the waveform sampled at regular
intervals (other than every time step) still produces graphs of
acceptable accuracy. Therefore, it is possible to lower the com-
munication burden by calling the plotting algorithm at regular
intervals with a width of samples. The time line shown in
Fig. 2 depicts the procedure graphically for intermittent com-
munication with an external algorithm. Static interfacing may
be used for such purposes as plotting or computation of com-
plex functions.

When the simulation case is assembled, the code sections per-
taining to the components used are gathered along with their
control law. Thus, at every time step, the code for each compo-
nent is run only if its control law so allows.

Static interfaces have been further categorized as online or
offline [4]. In an online interface, the transient simulation tool
communicates with the external algorithm throughout the sim-
ulation (e.g., in the visualization example later in this paper). In
an offline interface, an external tool is called following the com-
pletion of the simulation, which does further processing on the
simulated data.

B. Dynamic Interfacing and Memory Management

Dynamic interfaces are more involved than static ones, as
memory management becomes an integral part of the interface.
Processes that simulate dynamic elements, such as controllers
or filters, fall in this category. Unlike static interfaces, in which
only data from the current time step are communicated between
the transient simulator and the interfaced algorithm, dynamic
interfaces exchange current as well as past data.

As an example of a dynamic interface, consider a peak-de-
tection component. The component is supposed to track a given
signal and find its peak value and update its output when-
ever a higher peak is detected. The peak-detector algorithm will
be shown.

The algorithm uses a storage variable to store
the last peak detected. Although the algorithm is quite simple,
its implementation requires access to memory location(s) that
are kept intact from one time step to the next. These memory
segments are used for storing variables by components that need
such storage, and transient simulation tools often provide access
to this kind of storage.

An important issue when dealing with memory segments is
to note that the pointers to memory locations should be updated
and maintained in a unified manner. Since in each time step,
the simulation executes the code of individual elements in the
order they are placed within the code, it is important to ensure
that the stored variables can be retrieved properly. By properly

incrementing the pointers, it is guaranteed that they always point
to the correct memory locations for all components.

ALGORITHM 1—PEAK DETECTION

1 if current simulation time ��� � �

2 ���	
���� � ���

3 ������ � ���	
����

4 Else

5 if ��� � ���	
����

6 ���	
���� � ���

7 End

8 ������ � ���	
����

9 End

C. Wrapper Interfaces

A wrapper interface is one that does not communicate with
the transient simulator on a regular basis throughout the simula-
tion as static and dynamic interfaces do. Instead, it has limited
communication at specific points in time, normally at the be-
ginning and end of a simulation. This kind of interface is made
when external code controls the simulations in a certain way.
An example of this interface is given in Section VII, where op-
timization and run-control algorithms are discussed.

Note that a wrapper interface is different from an off-line one
in that the wrapper interface is often a supervisory algorithm that
controls the simulation program and normally performs mul-
tiple simulations, whereas an offline interface is usually meant
to perform postprocessing of simulation results.

V. WHERE TO IMPLEMENT: EXTERNAL

VERSUS INTERNAL INTERFACES

Once an algorithm is developed or selected for interfacing
with a simulation tool, one needs to decide where to implement
the algorithm. Options for implementation will be discussed.

A. External Interfaces

For algorithms that are available externally through stand-
alone software, external interfacing is normally the most logical
option. Depending on the input/output configuration of the al-
gorithm, external interfacing can potentially eliminate the need
for rewriting the external code in the indigenous language of
the simulation tool. Physical establishment of the interface re-
quires access to the memory management routines of the tran-
sient simulator. An example of an external interface is inter-
facing an EMTP-type program to MATLAB [24], which al-
lows the user to store required variables in predefined locations,
called MATLAB, to execute a standard or user-developed code,
and retrieve data back to the simulation program for further pro-
cessing. The interface may allow execution of the external al-
gorithm in each time step or intermittently; therefore, both dy-
namic and static interfaces described earlier can be implemented
externally.

An important observation about external interfacing is the
speed implications involved. Transient simulation tools often
use optimized methods for enhancing simulation speed. Ex-
ternal programs, however, are not necessarily designed with

FILIZADEH et al.: TECHNIQUES FOR INTERFACING ELECTROMAGNETIC TRANSIENT SIMULATION PROGRAMS 2613

such provisions. Therefore, a simulation tool that uses an
interface with an external program can be drastically slower
than the same procedure implemented entirely internally in the
EMTP-type tool. Apart from the intrinsic speed differences be-
tween the two agents, the overhead of communication between
the programs can also significantly affect the overall simulation
performance. Unless they are high speed, efficient communi-
cation methods are deployed, exchange of large amounts of
data between the interfaced tools normally results in a marked
reduction in the speed. The problem will be exacerbated if the
interface is used as part of a multirun simulation.

Depending on the facilities present in the externally inter-
faced tool, this type of interfacing can serve as a powerful means
for rapid algorithm development, verification, and debugging. It
is sometimes easier to make changes to an algorithm developed
in a dedicated external agent such as MATLAB than one imple-
mented in the rigidity of an EMTP-type program. Modifications
can be easily done and tested through the combined interface.
If the speed reduction due to external interfacing is severe, one
can consider converting the external interface to an internal one.

Another important aspect of external interfacing is the ability
of interfacing to multiple platforms. For example, when an
EMTP-type tool is interfaced with MATLAB, other simulation
tools (e.g., SIMULINK) or mathematical and programming
tools (e.g., coding in multiple languages) may become available
as well.

B. Internal Interfaces

A method to alleviate drawbacks associated with external
interfaces is to use internal interfacing, where a user-supplied
algorithm (unavailable in the transient simulation tool) is im-
plemented within the transient simulator. Internal interfacing is
possible when the user has access to the code of the algorithm
and is knowledgeable about its inner workings.

Internal interfaces have been used for interfacing nonlinear
optimization algorithms with transient simulators (described
later). Dynamical models of electric vehicles [38], advanced
switching schemes for power converters [39], and specialized
motor drives and mechanical models for vehicular power
systems [38], [40] have also been interfaced using internal
interfacing mechanisms.

Note that internal interfaces are faster than external ones due
to the elimination of the communication overhead. However,
their implementation is normally more involved than external
ones.

VI. MULTIPLE INTERFACING

In addition to the main high-power electric circuitry, modern
power equipment often contains advanced control blocks, dig-
ital processors, nonlinear elements, etc. Proper simulation of
these systems should allow uncompromised analysis, and as
such, it is sometimes necessary to interface more than two sim-
ulation programs, each with special features for detailed mod-
eling of certain aspects of a complex circuit. In this section,
some of the schemes for multiple interfacing of a transient sim-
ulation programs with other simulation programs or mathemat-
ical tools are explained. Variations of these schemes are obvi-
ously possible, but are not discussed here.

Fig. 3. Core-type interfacing.

Fig. 4. Variations of chain-type interfacing. (a) Chain-type interfacing for pre
and postprocessing. (b) Chain-type interfacing for linking noncompatible sim-
ulators.

A. Core-Type Interfacing

In core-type interfacing of simulation programs, one program
serves as the core and all of the other (auxiliary) programs are
connected to the core. Fig. 3 shows a block diagram of such a
structure. The auxiliary programs in this structure can be im-
plemented externally or internally (refer to Section V), and may
manifest static, dynamic, or wrapper properties as discussed ear-
lier.

The core-type interfacing structure usually occurs when a
major portion of the system under study can be modeled in a
single simulation program (the core), and the auxiliary programs
are assigned minor tasks, such as data visualization or other cal-
culations. The firing pulse generation and visualization example
shown later in this paper is a core-type interface, in which gen-
eration of firing pulses and visualization tasks are assigned to
auxiliary algorithms that communicate with the core simulator
in which the main power circuit is simulated.

B. Chain-Type Interfacing

Unlike a core-type interface where the core program is used
as a common node for all other programs, in chain-type inter-
facing, the simulation programs are connected to each other in
a row. There are two common templates for chain-type inter-
facing, as shown in Fig. 4.

In the first scheme [see Fig. 4(a)], chain-type interfacing is
used for preprocessing and postprocessing of the data. As an
example, consider simulation of a network with transmission
lines. Prior to simulating the network, an algorithm is often used
to calculate the line constants to be used in the actual simu-
lator (preprocessing); visualization of the simulated data using
a graphing program constitutes postprocessing and the entire
scheme takes on the form of a chain-type interface.

2614 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 4, OCTOBER 2008

Fig. 5. Loop interfacing scheme.

A second variation of a chain-type interface [see Fig. 4(b)]
may be used when simulation programs cannot be interfaced
directly and readily. An intermediate agent, such as MATLAB,
can be used to bridge the interfacing gap between originally
incompatible simulators.

C. Loop Interfacing

If in a chain of simulation programs or external hardware, the
last program is also connected to the first one, the result will be
a loop interfacing scheme, as shown in Fig. 5. Such combina-
tions occur frequently when real-time simulators are connected
to several interacting external pieces of equipment (e.g., relays,
controllers, amplifiers, and digital signal processors [41]). Since
interfacing of real-time simulators is not the focus of this paper,
loop interfacing is not discussed in any further detail.

VII. EXAMPLES OF INTERFACING

A. Interfacing to MATLAB/SIMULINK

This section explains an interface made between a transient
simulator (PSCAD/EMTDC) and MATLAB/SIMULINK.
Similar interfaces have also been made between EMTP and
MATLAB [24]. These interfaces can be used in a variety of
ways, allowing full exploitation of the computational facilities
in MATLAB and modeling capabilities of SIMULNK.

The interface between the EMTP-type simulation engine and
MATLAB is essentially an external interface. The transient sim-
ulation engine can communicate with MATLAB either in each
time step or intermittently, depending on the nature and require-
ments of the externally sourced task.

To interface with MATLAB, the user needs to perform the
tasks of: 1) declaring memory requirements; 2) storing input
variables to MATLAB (transient simulator outputs); 3) calling
MATLAB; and 4) receiving MATLAB outputs and feeding them
back to the simulator. In EMTDC, the subroutine MLAB_INT,
which is accessible by user-defined components, establishes the
connection between the two agents. The exchange of data be-
tween the simulator and MATLAB is administered through the
use of data storage queues for storing floating-point, integer, and
other data types. Fig. 6 shows a schematic diagram of the se-
quence of events that occur within the EMTDC/MATLAB in-
terface.

As shown, a number of memory storage locations that are
equal to the total number of inputs and outputs communicated
to and from MATLAB is first declared. Inputs to the MATLAB
environment are placed in the respective storage locations and

Fig. 6. Sequence of events in the EMTDC/MATLAB interface.

then the MATLAB interface subroutine is called, which reads
the data from the memory locations and communicates them
with the respective MATLAB function.

Upon completion of the tasks in MATLAB (this can include
some SIMULINK models as well), the MLAB_INT returns the
outputs to the remaining memory locations assigned for output
storage. At this point, the transient simulator is able to access
and read the outputs.

Note that the respective MATLAB function may: 1) contain
user-developed algorithms, 2) call built-in MATLAB functions,
or 3) setup and call SIMULINK. Examples of such possibilities
are presented in Section VIII where some interfacing cases are
discussed.

B. Wrapper Interfacing: Run Controllers and Optimization

Transient simulation tools are sometimes used in studies
where multiple simulations are conducted. A number of pa-
rameters in the simulated network are varied sequentially or
randomly (with a given distribution) and simulations are done
in order to assess the impact of such parameter variations on
the simulation results. Simulation results for a given set of pa-
rameter values are often distilled into a small number of indices
that represent a figure of merit for the parameters used. For
example, severity of a lightning-strike fault as a function of its
location can be examined by conducting multiple simulations in
which the fault location is varied along a given transmission line

FILIZADEH et al.: TECHNIQUES FOR INTERFACING ELECTROMAGNETIC TRANSIENT SIMULATION PROGRAMS 2615

Fig. 7. Optimization interfacing.

and the magnitude of the resulting voltage surge is recorded.
EMTP-type tools often provide built-in engines for conducting
multiple simulations using specified parameter variations [19].

The so-called multiple-run simulation can be described
as in the following algorithm (Algorithm 2). As shown, the
multiple-run algorithm is responsible for: 1) selecting suitable
parameter values according to the specified parameter variation
rule, 2) feeding the simulation with the parameters, and 3)
recording the respective figure of merit for further processing.

ALGORITHM 2—MULTIPLE-RUN SIMULATIONS

1 create a set of parameters Pi (a total of N
points representing parameter combinations)

2 � � �

3 if � �� �

4 run the simulator with parameter set P(i)

5 record the figure-of-merit for P(i)

6 � � � � �

7 End

Note that the preselection of parameter combinations in a se-
quential multiple-run, or random selection with a given distri-
bution resembles a passive approach to the true potential of the
multiple-run algorithm. Through proper interfacing, however,
one can design more advanced run-control algorithms to con-
duct multiple simulations in ways other than the conventional
approach, where it is possible to steer future simulations based
on the outcome of current and past simulations.

1) Interfacing to an Optimization Algorithm: An example
of an enhanced multiple-run algorithm without a predetermined
set of search parameters is the optimization facility in a transient
simulation program. Some EMTP-type programs have incorpo-
rated nonlinear optimization as an integral part of the simulation
suite [19], [42]. Here, a nonlinear optimization algorithm can
be called to replace the conventional multiple-run algorithm to
conduct several simulations, each with a new set of parameters
determined by the optimization algorithm according to the col-
lective history of past simulations [32]. Fig. 7 shows a schematic
diagram of the simulator–optimization interface.

Note that unlike a conventional multiple-run simulation, the
nonlinear optimization algorithm decides, based on the objec-
tive function value it receives from the simulation program and

Fig. 8. Excerpt of a generic optimization algorithm.

the history of past simulations, what parameter values need to
be generated and submitted to the simulation program for the
next simulation.

An optimization engine implemented in ETMDC is inter-
faced internally and is used to link a number of optimization
algorithms to the simulation engine, including nonlinear sim-
plex of Nelder and Mead [43], genetic algorithms, and a number
of gradient-based algorithms [44]. The choice of an internal
interface has been made to remove potential speed reductions
and to expedite the design cycle that normally involves several
simulations. There are, however, advanced optimization algo-
rithms that make use of complex functions that are available in
mathematical software such as MATLAB, and their implemen-
tation is either excessively complicated or not possible due to the
confidentiality of the code. For such cases, external interfacing
between the simulation program and MATLAB has been used
[45]. In this case, the interface resembles a master/slave relation-
ship, where the host of the optimization algorithm (MATLAB)
also serves as the master and calls upon the slave (transient sim-
ulation tool) for objective function evaluation.

Internal interfacing of optimization algorithms, however, em-
beds some challenges that need detailed knowledge of the me-
chanics of the simulation tool. Consider optimization of the
function , whose evaluation is done through simulation
(refer to Fig. 7 for details). A heuristic optimization algorithm
often compares objective function evaluations at a number of
points within the algorithm in order to generate new parameter
values. Therefore, a portion of such an optimization algorithm
may be as shown in Fig. 8.

After initializing two sets of parameter values (and
in line 1), the algorithm needs to compare their corresponding
objective functions (line 2). However, each of the two values

and are obtained by transient simulation of
the network using the simulation tool itself, which requires
two complete simulations. In other words, the optimization,
embedded within and called by the simulation tool, will call
the simulation tool at several locations, thus creating a nested
loop. Appropriate use of flags and control statements ensures
that sequence of the execution of statements in the simulation
program is transferred to the exact location where it was inter-
rupted.

2) Advanced Run Controllers: Aside from optimization,
there are other types of multiple-run controllers that use the
concept of adaptive steering of simulations. An example of
this is reported in [46] where an adaptive, internally interfaced
search algorithm is used for finding the largest value of an
inductor and its critical point-on-wave switching instant that
result in no commutation failure at the terminals of an HVDC
converter.

2616 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 4, OCTOBER 2008

Fig. 9. Network schematic diagram and the STATCOM controls. (a) Schematic
diagram of the network. (b) STATCOM control system.

Similar interfaces have been made for calculation of sensi-
tivity indices of a given performance index [44]. In all cases
indicated before, the choice of internal interfacing has been due
to the simulation time restrictions.

VIII. INTERFACING CASE STUDIES

This section presents examples of interfacing methods dis-
cussed in this paper. An ac system equipped with a static com-
pensator (STATCOM) is selected to serve as the basis for all of
the interfacing instances shown. Several interfacing possibilities
are explored between the transient simulator and other mathe-
matical tools for purposes, such as data visualization and con-
troller implementation. A model of the entire network is devel-
oped in the transient simulation program (EMTDC) and is used
as a reference for validation of the results obtained from other
models made through interfacing EMTDC with other tools/al-
gorithms.

A. Description of the Network and Associated Controls

Fig. 9(a) shows the schematic diagram of the network under
consideration. The STATCOM is connected at the terminals of
the load supplied by the network, and is used for regulating the
load terminal voltage during load variations. The control system
structure for the STATCOM is shown in Fig. 9(b), in which outer
ac voltage and dc capacitor-voltage loops drive inner-
loop, decoupled controllers for the current components (and

) in a synchronously rotating -frame. The resulting voltage
components (and) are then used by a pulse-width modu-
lator (PWM) to synthesize STATCOM terminal voltages [47].

TABLE I
STATCOM AND AC SYSTEM SPECIFICATIONS

Space-vector modulation (SVM) [48] is used for the generation
of the firing pulses given to the STATCOM voltage-source con-
verter (VSC). Other system specifications are given in Table I.

B. Simulation Data Visualization Using MATLAB

Transient simulation tools provide the user with some level
of ability for data visualization (e.g., generation of graphs of the
simulated data). Advanced data visualization, available in math-
ematical tools, such as MATLAB, however, is often far more
diverse and flexible. The generation of 3-D graphs and phasor
diagrams overlaid with other graphical elements are examples of
tasks that can be completed with ease in an advanced graphing
tool.

In the following section, an interface between the transient
simulator and MATLAB is described, which is used for the gen-
eration of dynamically changing phasor representations of the
voltages generated by the STATCOM under space-vector mod-
ulation (SVM) [48].

1) SVM Implementation and Visualization in MATLAB: In a
two-level converter, there are eight converter states (six active
and two that are zero) based on the ON/OFF status of its con-
trolled switches. Space-vector modulation places the converter
in a combination of states so that the synthesized voltage ap-
proximates the desired output voltage waveform. Dynamic vi-
sualization of the SVM is a useful method for inspecting its
inner workings and can also serve as an educational tool. It is
desired that the active space vectors, the current sampled ref-
erence vector, and the two nonzero space vectors used for its
composition be shown on a graph that is updated as the simula-
tion progresses and the reference vector rotates.

Internal interfacing has been used for creation of an
SVM-based firing pulse generator. Subsequently, interfacing
to MATLAB has been used for the purpose of visualization of
the SVM-generated converter states. The information about the
current state of the converter, the sampled reference vector (its
phase and magnitude), and the two nonzero vectors plus the
modulation index and the available dc voltage are passed to
MATLAB. The interfaced MATLAB script draws a hexagon
with six vectors pointing toward its vertices. It also draws the
employed vectors in a distinct color, whose magnitudes are
proportional to their time shares. The actual sampled reference
vector and its locus are also plotted.

Fig. 10 shows two snapshots of a graph generated by
MATLAB using the information provided by the transient

FILIZADEH et al.: TECHNIQUES FOR INTERFACING ELECTROMAGNETIC TRANSIENT SIMULATION PROGRAMS 2617

Fig. 10. Snapshots of the SVM visualization output in MATLAB.

simulator. At the given instants of time, the reference vectors
and their projections onto respective space vectors are shown.

2) Interfacing Aspects: Since this type of interfacing only
transmits data from the main simulator (EMTP-type program) to
the visualization platform (MATLAB) and does not involve any
storage or manipulation of the data, it is categorized as a static,
external, core-type interface. Moreover, the data are transmitted
(intermittently) throughout the simulation, making it an online
interface.

C. Modeling of Control Systems in MATLAB/SIMULINK

In this section, the use of (external) interfacing for modeling
of control systems in MATLAB/SIMULINK is demonstrated.
The intention is to highlight the interfacing aspects and as
such, two simple scenarios are considered for implementation
of the STATCOM control system shown in Fig. 9(b): 1) mod-
eling entirely in MATLAB, and 2) modeling in MATLAB and
SIMULINK. The control system is then interfaced with the
power circuits that are modeled in the main transient simulator.
A separate model developed entirely in the transient simulator
is used as the basis for validation.

1) PI Controller Implementation in MATLAB: Control algo-
rithms can be directly coded in MATLAB and called for gener-
ation of controller output(s). Consider, for example, the imple-
mentation of the ac voltage controller (proportional gain ,
integral time constant) in Fig. 9(b). Its implementation in
MATLAB involves the development of the integrator and pro-
portional actions and imposing the limits (as given in Table I).
Limits similar to those used for the entire PI block are also im-
posed on the integrator. This ensures that the integrator does not
plunge deeply into saturation, and expedites the response time
of the PI controller. The integrator action is implemented using
trapezoidal integration method. A component is developed that
accepts the ac voltage magnitude error (as its input) and commu-
nicates it along with the current simulation time and time step
with a MATLAB function that implements the PI action.

Similar to the procedure outlined in Fig. 6, the interface com-
ponent stores the input variables in the respective queue, called
the MLAB_INT subroutine, which, in turn, runs the MATLAB
function for the PI action, and retrieves the PI controller output
from the respective memory location. Fig. 13 shows traces of
the ac voltage variations when the network is subjected to a load
disconnection at 0.4 s followed by its reconnection at 0.6 s. The
traces are shown for both the standard PI controller block of the
EMTDC as well as the PI controller implemented in MATLAB
and interfaced with the transient simulator. As expected, the
waveforms are identical and overlap.

Fig. 11. Sequence of events in the SIMULINK interface.

Fig. 12. SIMULINK model of the ac voltage PI controller.

2) Control System Implementation in MATLAB/SIMULINK:
As the complexity of systems to be modeled in MATLAB (or
other external agents) increases, it becomes increasingly dif-
ficult to write detailed codes for calculations or controller ac-
tions as was done in the previous example. Use of SIMULINK,
which offers a graphical interface for development of complex
interconnected systems, can highly simplify this task. An im-
plementation of the PI controller in the previous section is thus
undertaken using the SIMULINK.

For this purpose, an interface to MATLAB is developed,
which in turn sets the simulation and workspace parameters
for a SIMULINK model of the PI controller and invokes
SIMULINK for the actual simulation. Communication of the
inputs and outputs to and from MATLAB follows the sequence
depicted in Fig. 6. The sequence of events in the SIMULINK
interface is shown in Fig. 11. Note that the SIMULINK model
is executed only for the interval each time it is
invoked. Fig. 12 shows the developed SIMULINK model of the
ac voltage PI controller.

The latest state of the integrator needs to be saved at the end
of the interval, so that it can be used as the initial
state for the next time step; therefore, an external input is added
to the integrator block (input port 2 in Fig. 12) so that the correct
initial state can be fed into the integrator. Similar to the original
PI controller in EMTDC and the one coded in MATLAB in the
preceding section, identical lower and upper limits (0.45 and
0.45, respectively) are applied to both the integrator and the en-
tire PI block outputs. The SIMULINK model shown in Fig. 12
has been interfaced with the transient simulation model of the
STATCOM system and has been tested for the same set of distur-
bances described in the previous section. Fig. 13 shows the sim-
ulation results obtained, which are identical to the ones depicted
for the original model and the MATLAB-interfaced model (both
models start from zero initial conditions).

3) Computer Time and Interfacing: As indicated earlier, ex-
ternally interfaced tools tend to be slower than their internal

2618 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 4, OCTOBER 2008

Fig. 13. Simulated waveforms for various network modeling approaches. (a)
Capacitor voltage waveform. (b) Load terminal voltage waveform.

TABLE II
COMPARISON OF SIMULATION TIME FOR THE STATCOM CASE

counterparts. An audit of the simulation time often reveals im-
portant information about the intensity of interfacing. Table II
shows computer times used for the simulation of the STATCOM
system in the EMTDC, EMTDC interfaced with MATLAB and
EMTDC interfaced with SIMULINK. The simulation time in-
terval is 0.8 s and is traversed using a 5 s time step and 100

s plot step on a Pentium 4, 3.0 GHz machine with 1.0 GB of
RAM.

The interfaced models in MATLAB and MATLAB/
SIMULINK are slower than the original transient simula-
tion model, as evidenced by their respective computer times
of 1258.3 s and 3531.5 s as opposed to 32.3 s in the EMTDC.
This shows simulation times in excess of 1.5 and 2.0 orders
of magnitude slower than the original model, respectively. It
is therefore advisable that interfacing be used only when such
prolonged simulations times are offset by the benefits of the
tool to which the interface is established.

D. Optimization and Sensitivity Analysis

1) Wrapper Interfacing for Gradient-Based Optimization:
An optimization algorithm adopts an iterative approach to find
the optimum point of a function. By defining a suitable objec-
tive function and use of an optimization algorithm to control the
simulation runs, it is possible to adjust the design parameters of
a circuit so that a given set of design objectives is met as closely
as possible.

Fig. 14. Simulation-based Fletcher–Reeves optimization tool.

This section considers a gradient-based technique known as
the Fletcher–Reeves method [49], and uses it for optimization
of the control system parameters of the STATCOM in Fig. 9(b).

The block diagram shown in Fig. 14 summarizes the
steps involved in the simulation-based optimization using the
Fletcher–Reeves method. As shown, the optimization algorithm
interacts with the simulator in two stages. The first stage is
devoted to the calculation of partial derivatives, during which
incremental changes are made successively to the parameter
values, and the corresponding objective function values are
calculated by running the simulation program. For an -vari-
able optimization problem, this stage requires simulations.
During the second stage, the simulation program is run a few
times until a suitable step length (one which results in a re-
duction in the value of the objective function) is obtained. The
algorithm has been implemented in FORTRAN, and is used
as a wrapper interface (internally developed) to the transient
simulation program.

The optimization tool is used to obtain optimal values for
the parameters of the control system shown in Fig. 9(b). The
goal of the optimization is to obtain smooth transitions in the
network voltage and the dc capacitor voltage when the network
is subjected to a load rejection/reconnection disturbance. The
objective function used is as follows:

(1)

The objective function in (1) approaches zero as the network
voltage and the dc capacitor voltage stay tightly close to their
reference values during transients and in steady state. Fig. 15
shows the variations of the dc-capacitor voltage before and after
optimization. The disturbances applied are a load rejection at 1.0
s followed by its reconnection at 1.5 s. AC voltage variations are
shown in Fig. 16. Both figures show significant improvement in
the performance of the system as a result of optimization.

The aforementioned optimization process takes about 300
simulation runs to converge to an optimum point in about 5 h on

FILIZADEH et al.: TECHNIQUES FOR INTERFACING ELECTROMAGNETIC TRANSIENT SIMULATION PROGRAMS 2619

Fig. 15. DC capacitor voltage. (a) Before and (b) after optimization.

Fig. 16. Network voltage. (a) Before and (b) after optimization.

a 1.7 GHz Intel Celeron processor. Note that the number of sim-
ulation runs required also depends on the optimization starting
point (i.e., depending on how far the actual (local) optimum is
from the starting point), the number of simulations required will
change accordingly.

2) Internal Wrapper Interface for Sensitivity Analysis: Due
to such factors as operating conditions and aging, circuit pa-
rameters may deviate from their original values over time. It
is therefore important to evaluate the performance of a design
when parameter values are subject to variations from their nom-
inal values (i.e., to perform sensitivity analysis).

Interfacing an electromagnetic transient simulator with a
mathematical algorithm for sensitivity analysis can facilitate
the task by allowing (automatic) calculation of the partial
derivatives of the desired performance index with respect
to the design parameters . The partial derivatives can then
be used to estimate the variations in the performance function
as follows:

(2)

Note that the calculation of the derivatives follows the mul-
tiple–simulation approach outlined in Section VII; therefore, a

TABLE III
SENSITIVITY INDICES OF THE NETWORK USING SIMULATION

wrapper interface that feeds the simulator with proper param-
eter values is developed that performs multiple simulations and
calculates the derivatives.

In the following, sensitivity analysis as described before is
used to assess the impact of component aging and load vari-
ations on the performance of the STATCOM control system.
The settling time of the control system, defined as the time
required for reaching and stabilizing in a band within 0.25%
around the final steady-state operating point, is selected as the
performance index. Sensitivity of the settling time to varia-
tions in the ac and dc capacitor sizes (and), STATCOM
transformer (T2) impedance , ac network impedance

, and load impedance is estimated using the de-
veloped wrapper interface.

Since five design parameters are considered, estimation of
partial derivatives using (2) requires ten simulations, each with
a given parameter deviation (positive and negative increments
are considered for calculation of derivatives). Table III shows
the estimated partial derivatives obtained using transient simu-
lation of the network. As suggested by its large partial deriva-
tive, variations in the ac capacitor bank have a significant im-
pact on the settling time of the control system, in contrast to the
lower impact expected from variations in the dc capacitor and
load impedance.

One important study that can be performed using sensitivity
indices is the worst-case scenario (i.e., to determine the largest
possible deviation in the performance index for given tolerances
in the design parameters). The worst-case (longest) settling time
of the STATCOM control system when the five selected system
parameters are allowed to vary within a given range (denoted by

in percent) can be obtained by using (3)

(3)

where is the worst-case settling time and is the orig-
inal settling time for the original parameter settings. The settling
time of the STATCOM control system for the original parame-
ters values given in Table I is equal to 0.125 s, as evidenced
by response of the load ac voltage shown in Fig. 17(a). For a
small tolerance of 2.5% in all five selected design parameters,
the worst-case analysis using (5) with the numerically estimated
partial derivatives in Table III, yields a settling time of 0.262 s.
The actual simulation result obtained for the worst-case com-
bination of the design parameters is shown in Fig. 17(b), and
shows a settling time of 0.263 s, which agrees well with the es-
timated worst-case value.

2620 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 4, OCTOBER 2008

Fig. 17. AC voltage waveform for (a) the original system parameters, and (b)
the worst-case combination of design parameters with 2.5% tolerance.

IX. OTHER INTERFACING OPPORTUNITIES

The majority of interfacing instances most likely fall within
one of the categories described previously in this paper. There
are, however, other instances where interfacing becomes impor-
tant. Two such cases are described below.

A. Interfacing With External Hardware

Transient simulation tools provide valuable information
about short-term dynamics of a power system. For example,
such detailed information becomes particularly useful when
tuning and designing protection systems, which are required to
respond in a timely fashion to faults and other maloperations in
a network.

Although conventional transient simulation tools do not have
synchronized and real-time capabilities (except dedicated real-
time simulators [50], [51]), their simulated waveforms can be
recorded, and then played back in real time into external pro-
tection hardware using amplifiers of appropriate bandwidth, and
voltage and current ratings in order to test the performance of the
protective relaying equipment in response to simulated faults.

Appropriate interfaces exist to enable recording and playing
back of the simulated waveforms. Standard formats (e.g., COM-
TRADE [52]), exist to facilitate communication between the
simulation tool and the external hardware. Note that playing
back the simulated waveforms onto a protective relay can be
used to investigate the behavior of the relay; however, since no
direct connection exists between the relay under test and the
simulator, the scheme does not form a closed-loop simulator in
which simulation continues following the relay operation. Inter-
facing techniques for hardware applications become more rel-
evant with regards to real-time simulators; however, this falls
beyond the scope of this paper.

B. Distributed Simulation and Co-Simulation

Transient simulation of large power networks requires mas-
sive computer facilities. It is therefore beneficial if simulations
could be partitioned or performed on platforms comprising sev-
eral processing units.

To take advantage of the distributed simulation, it is first nec-
essary to partition the original network into two or more subsys-
tems. The partitioning can happen, for example, at convenient
boundaries involving natural delays such as transmission lines;
more complicated systems with electrical networks, power elec-
tronic converters, electrical machines, controllers, mechanical
drive trains, prime movers, etc., may also be partitioned at some
convenient structural (or component-based) boundaries. In each
case, the smaller subsystems will have to interface with each
other and communicate respective coupling variables (uni or
bidirectionally) as necessary.

In general, the subsystems may be tackled using different
EMTP-type programs, which then have to be interfaced with
each other in order to pass the respective coupling variables.
Many simulation programs allow user-defined code (e.g., C
and/or FORTRAN) and permit calling other programs that
execute on the same computer [53], [54].

As the systems to be simulated grow in size, so does the time
required for computing the corresponding time-domain tran-
sient response. Although the speed of modern computers con-
stantly increases, the computing time continues to be a critical
issue in the simulation of many practical systems when only
one computer is utilized. When the number of subsystems in-
creases, it may be further advantageous to execute the respective
simulations on different computers and interface them across
a network (e.g., TCP/IP). The approach of distributed hetero-
geneous simulation (DHS) [55], [56] views the overall system
model as a collection of interconnected subsystems. Each sub-
system may be solved using an independent EMTP-type pro-
gram (nodal analysis- or state variable-based) using its own
time step. The interactions between subsystems are represented
through the exchange of interface variables. This approach has
been used to simulate naval integrated power system [56] and
electrical power system of an aircraft [57].

X. CONCLUSION

This paper described methods for interfacing EMTP-type
programs with general mathematical tools. Static, dynamic,
and wrapper interfaces were introduced as the three significant
categories into which the majority of interfacing instances fall.
External and internal interfacings were introduced as two major
options for the implementation of an interface. It was shown
that internal interfacing provides fast simulation; whereas ex-
ternal interfacing allows for incorporation of a large collection
of pre-made algorithms, albeit at the expense of prolonged
simulation time.

The paper also described two advanced instances of inter-
facing, namely the MATLAB interface and optimization and
run-control interfaces. In both cases details about memory
management, data exchange, and interactions involved were
provided. The examples included in the paper demonstrated
the use of interfacing for a variety of applications. Data vi-
sualization using MATLAB, controller implementation in
MATLAB/SIMULINK, and optimization and sensitivity anal-
ysis were described along with discussion about the interfacing
requirements, simulation time constraints, and potential bene-
fits and drawbacks.

FILIZADEH et al.: TECHNIQUES FOR INTERFACING ELECTROMAGNETIC TRANSIENT SIMULATION PROGRAMS 2621

REFERENCES

[1] H. W. Dommel, “Digital computer solution of electromagnetic tran-
sients in single- and multiphase networks,” IEEE Trans. Power App.
Syst., vol. PAS-88, no. 4, pp. 388–399, Apr. 1969.

[2] O. Nayak, G. Irwin, and A. Neufeld, “GUI enhances electromagnetic
transients simulation tools,” IEEE Trans. Comput. Appl. Power, vol. 8,
no. 1, pp. 17–22, Jan. 1995.

[3] J. Mahseredjian, S. Lefebvre, and D. Mukhedkar, “Power converter
simulation module connected to the EMTP,” IEEE Trans. Power Syst.,
vol. 6, no. 2, pp. 501–510, May 1991.

[4] A. M. Gole, P. Demchenko, D. Kell, and G. D. Irwin, “Integrating elec-
tromagnetic transient simulation with other design tools,” presented at
the Int. Conf. Power System Transients, 1999.

[5] T. Grebe and S. Smith, “Visualize system simulation and measurement
data,” IEEE Comput. Appl. Power, vol. 12, no. 3, pp. 46–51, Jul. 1999.

[6] J. Mahseredjian, “Merging, prototyping and hybrid tools for power
system transient simulation,” in Proc. Power Eng. Soc. Summer
Meeting, Jul. 2000, vol. 2, pp. 768–769.

[7] X. Wang, P. Wilson, and D. Woodford, “Interfacing transient stability
program to EMTDC program,” in Proc. Int. Conf. Power System Tech-
nology, Oct. 2002, vol. 2, pp. 1264–1269.

[8] J. M. Zavahir, J. Arrillaga, and N. R. Watson, “Hybrid electromagnetic
transient simulation with the state variable representation of HVDC
converter plant,” IEEE Trans. Power Del., vol. 8, no. 3, pp. 1591–1598,
Jul. 1993.

[9] D. A. Woodford, A. M. Gole, and R. W. Menzies, “Digital simulation
of dc links and synchronous machines,” IEEE Trans. Power App. Syst.,
vol. PAS-102, no. 6, pp. 1616–1623, Jun. 1983.

[10] D. A. Woodford, “Electromagnetic design considerations for fast acting
controllers,” IEEE Trans. Power Del., vol. 11, no. 3, pp. 1515–1521,
Jul. 1996.

[11] N. Kolcio, J. A. Halladay, G. D. Allen, and E. N. Fromholtz, “Transient
overvoltages and overcurrents on 12.47 kV distribution lines: Com-
puter modeling results,” IEEE Trans. Power Del., vol. 8, no. 1, pp.
359–366, Jan. 1993.

[12] Q. Bui-Van, G. Beaulieu, H. Huynh, and R. Rosenqvist, “Overvoltage
studies for the St. Lawrence River 500-kV DC cable crossing,” IEEE
Trans. Power Del., vol. 6, no. 3, pp. 1205–1215, Jul. 1991.

[13] A. K. S. Chaudhary, K.-S. Tam, and A. G. Phadke, “Protection system
representation in the electromagnetic transients program,” IEEE Trans.
Power Del., vol. 9, no. 2, pp. 700–711, Apr. 1994.

[14] S. Jiang, U. D. Annakkage, and A. M. Gole, “Platform for validation of
FACTS models,” IEEE Trans. Power Del., vol. 21, no. 1, pp. 484–491,
Jan. 2006.

[15] M. Saeedifard, H. Nikkhajoei, and R. Iravani, “A space vector mod-
ulation approach for a multimodule HVDC converter system,” IEEE
Trans. Power Del., vol. 22, no. 3, pp. 1643–1654, Jul. 2007.

[16] A. M. Gole and M. Meisingset, “An AC active filter for use at capacitor
commutated HVDC converters,” IEEE Trans. Power Del., vol. 16, no.
2, pp. 335–341, Apr. 2001.

[17] C. K. Sao, P. W. Lehn, and M. R. Iravani, “A benchmark system
for digital time-domain simulation of a pulse-width-modulated
D-STATCOM,” IEEE Trans. Power Del., vol. 17, no. 4, pp. 1113–1120,
Oct. 2002.

[18] W. Long, D. Cotcher, D. Ruiu, P. Adam, S. Lee, and R. Adapa,
“EMTP—A powerful tool for analyzing power system transients,”
IEEE Trans. Comput. Appl. Power, vol. 3, no. 3, pp. 36–41, Jul. 1990.

[19] “EMTDC Manual,” Manitoba HVDC Research Centre, Apr. 2004.
[20] L. A. Dessaint, K. Al-Haddad, H. Le-Huy, G. Sybille, and P. Brunelle,

“A power system simulation tool based on Simulink,” IEEE Trans. Ind.
Electron., vol. 46, no. 9, pp. 1252–1254, Dec. 1999.

[21] A. M. Gole, I. T. Fernando, G. D. Irwin, and O. B. Nayak, “Modeling of
power electronic apparatus: Additional interpolation issues,” in Proc.
Int. Conf. Power System Transients, Seattle, WA, Jun. 1997, pp. 23–28.

[22] N. Watson and J. Arrillaga, Power Systems Electromagnetic Transients
Simulation, ser. Power Energy. London, U.K.: Inst. Elect. Eng., 2002.

[23] L. Dube and H. W. Dommel, “Simulation of control systems in an
electromagnetic transients program with TACS,” in Proc. IEEE PICA,
1977, pp. 266–271.

[24] J. Mahseredjian, G. Benmouyal, X. Lombard, M. Zouiti, B. Bressac,
and L. Gerin-Lajoie, “A link between EMTP and MATLAB for
user-defined modeling,” IEEE Trans. Power Del., vol. 13, no. 2, pp.
667–674, Apr. 1998.

[25] M. Kezunovic and Q. Chen, “A novel approach for interactive protec-
tion system simulation,” IEEE Trans. Power Del., vol. 12, no. 2, pp.
668–674, Apr. 1997.

[26] L. X. Bui, S. Casoria, G. Moin, and J. Reeve, “EMTP TACS-FOR-
TRAN interface development for digital controls modeling,” IEEE
Trans. Power Syst., vol. 7, no. 1, pp. 314–319, Feb. 1992.

[27] J. Reeve and S. P. Lane-Smith, “Integration of real-time controls and
computer programs for simulation of direct current transmission,”
IEEE Trans. Power Del., vol. 5, no. 4, pp. 2047–2053, Nov. 1990.

[28] G. Wild, H. Messner, A. Moosburger, M. H. Xie, A. M. Gole, and D.
P. Brandt, “An integrated simulation and control implementation envi-
ronment,” presented at the Int. Conf. Power System Transients, Seattle,
WA, Jun. 1997.

[29] A. M. Gole and A. Daneshpooy, “Toward open systems: A PSCAD/
EMTDC to MATLAB interface,” presented at the Int. Conf. Power
System Transients, Seattle, WA, Jun. 1997.

[30] K. Strunz and E. Carlso, “Nested fast and simultaneous solution for
time-domain simulation of integrative power-electric and electronic
systems,” IEEE Trans. Power Del., vol. 22, no. 1, pp. 277–287, Jan.
2007.

[31] M. Sczechtman, T. Wess, and C. V. Thio, “First benchmark model for
HVDC control studies,” Electra, no. 135, pp. 54–73, Apr. 1991.

[32] A. M. Gole, S. Filizadeh, R. W. Menzies, and P. L. Wilson, “Optimiza-
tion-enabled electromagnetic transient simulation,” IEEE Trans. Power
Del., vol. 20, no. 1, pp. 512–518, Jan. 2005.

[33] M. O. Faruque, Y. Zhang, and V. Dinavahi, “Detailed modeling of
CIGRE HVDC benchmark system using PSCAD/EMTDC and PSB/
SIMULINK,” IEEE Trans. Power Del., vol. 21, no. 1, pp. 378–387,
Jan. 2006.

[34] W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli, and A. L. Tits, “DE-
LIGHT.SPICE: An optimization-based system for the design of inte-
grated circuits,” IEEE Trans. Computer-Aided Design Integr. Circuits
Syst., vol. 7, no. 4, pp. 501–519, Apr. 1988.

[35] H. Kragh, F. Blaabjerg, and J. K. Pedersen, “An advanced tool for op-
timized design of power electronic circuits,” in Proc. IEEE Industry
Applications Conf., 1998, pp. 991–998.

[36] K. Rigbers, S. Schroder, T. Durbaum, M. Wendt, and R. W. De Don-
cker, “Integrated method for optimization of power electronic circuits,”
in Proc. 35th Annu. IEEE Power Electronics Specialists Conf., 2004,
pp. 4473–4478.

[37] A. R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill, C.
Visweswariah, and C. W. Wu, “JiffyTune: Circuit optimization using
time-domain sensitivities,” IEEE Trans. Computer-Aided Design
Integr. Circuits Syst., vol. 17, no. 12, pp. 1292–1309, Dec. 1998.

[38] D. R. Northcott and S. Filizadeh, “Electromagnetic transient simulation
of hybrid electric vehicles,” presented at the IEEE Int. Symp. Industrial
Electronics, Vigo, Spain, 2007.

[39] A. Mehrizi-Sani, S. Filizadeh, and P. L. Wilson, “Harmonic and loss
analysis of space-vector modulated converters,” presented at the Int.
Conf. Power Systems Transients , Lyon, France, Jun. 2007.

[40] A. Chevrefils and S. Filizadeh, “Transient simulation of an ac syn-
chronous permanent magnet motor drive for an all-electric all-terrain
vehicle,” presented at the Vehicle Power and Propulsion Conf., Ar-
lington, TX, 2007.

[41] M. Kezunovic, J. Domaszewicz, V. Skendzic, M. Aganagic, J. K.
Bladow, S. M. McKenna, and D. M. Hamai, “Design, implementation
and validation of a real-time digital simulator for protection relay
testing,” IEEE Trans. Power Del., vol. 11, no. 1, pp. 158–164, Jan.
1996.

[42] L. Xianzhang, E. Lerch, D. Povh, and B. Kulicke, “Optimization-a new
tool in a simulation program system,” IEEE Trans. Power Del., vol. 12,
no. 2, pp. 598–604, May 1997.

[43] J. A. Nelder and R. Mead, “A simplex method for function optimiza-
tion,” Comput. J., vol. 7, no. 4, pp. 308–313, 1965.

[44] M. Heidari, S. Filizadeh, and A. M. Gole, “Support tools for simula-
tion-based optimal design of power networks with embedded power
electronics,” IEEE Trans. Power Del., accepted for publication.

[45] K. Kobravi, “Optimization-enabled transient simulation for design of
power circuits with multi modal objective functions,” M.Sc. disser-
tation, Dept. Elect. Comput. Eng., Univ. Manitoba, Winnipeg, MB,
Canada, 2007.

[46] E. Rahimi, S. Filizadeh, and A. M. Gole, “Commutation failure
analysis in HVDC systems using advanced multiple-run methods,”
presented at the Int. Conf. Power System Transients, Montreal, QC,
Canada, 2005.

2622 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 4, OCTOBER 2008

[47] C. Scahuder and H. Mehta, “Vector analysis and control of advanced
static VAR compensators,” Proc. Inst. Elect. Eng., Gen. Transm. Dis-
trib., vol. 140, no. 4, pp. 299–306, Jul. 1993.

[48] H. W. van der Broeck, H. C. Skudelny, and G. V. Stanke, “Analysis and
realization of a pulsewidth modulator based on voltage space vectors,”
IEEE Trans. Ind. Appl., vol. 24, no. 1, pp. 142–150, Jan./Feb. 1988.

[49] G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell, Engineering Opti-
mization, Methods and Applications. New York: Wiley, 1983.

[50] R. Kuffel, J. Giesbrecht, T. Maguire, R. P. Wierckx, and P. McLaren,
“RTDS-a fully digital power system simulator operating in real time,”
in Proc. Int. Conf. Energy Management and Power Delivery, Nov.
1995, vol. 2, pp. 498–503.

[51] C. A. Rabbath, M. Abdoune, and J. Belanger, “Effective real-time sim-
ulations of event-based systems,” in Proc. Winter Simulation Conf.,
Dec. 2000, vol. 1, pp. 232–238.

[52] A. G. Phadke et al., “COMTRADE: A new standard for common
format for transient data exchange,” IEEE Trans. Power Del., vol.
7, no. 4, pp. 1920–1926, Oct. 1992, Working Group H-5 of the
Relaying Channels Subcommittee of the IEEE Power Syst. Relaying
Committee.

[53] R. Dougal, T. Lovett, A. Monti, and E. Santi, “A multilanguage en-
vironment for interactive simulation and development of controls for
power electronics,” in Proc. IEEE Power Eng. Soc. Conf., Vancouver,
BC, Canada, 2001, pp. 1725–1729.

[54] O. Haedrich and U. Knorr, “Electric circuit and control system simula-
tion by linking Simplorer and Matlab/Simulink analysis of interactions
of subsystems of modern electric drives,” in Proc. IEEE Workshop on
Computers in Power Electronics, Jul. 2000, pp. 192–196.

[55] J. Jatskevich, O. Wasynczuk, E. A. Walters, E. C. Lucas, and E. Zivi,
“Real-time distributed simulation of a dc zonal electrical distribution
system,” in Proc. SAE Power Systems Conf., Coral Springs, FL, Oct.
2002, pp. 3–10.

[56] C. E. Lucas, E. A. Walters, and J. Jatskevich, “Distributed heteroge-
neous simulation of naval integrated power system,” presented at the
Amer. Soc. Naval Engineers (ASNE), Electric Machine Technology
Symp., Philadelphia, PA, Jan. 2004.

[57] C. E. Lucas, E. A. Walters, O. Wasynczuk, and P. T. Lamm, “Cross-
platform distributed heterogeneous simulation of a more-electric air-
craft power system,” in Proc. SPIE, 2005, vol. 5805, pp. 328–336.

