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1 Introduction

Dimension reduction (DR) refers to removing data from a given set, in such
a way as to have the possibility of extricating desired intelligent messages em-
bedded in that set, by making an appropriate analysis of the remaining smaller
set. Remote sensing is a means of collecting data about objects without coming
in contact with them. These two ideas have been quantified in many ways;
and they are fundamentally related because, in many applications, data sets
obtained by remote sensing are often too large for effective understanding and
computation without first engaging in dimension reduction. In this regard, ideas
and techniques from modern harmonic analysis have played a critical role in ac-
counting for significant advances in the field. The theme of this chapter is to
exposit the role of modern harmonic analysis in understanding the relationship
between dimension reduction and remote sensing.

Typically, the setting for remote sensing is the earth’s surface and atmo-
sphere, and the concept of remote sensing is associated with garnering infor-
mation dealing with geology, meteorology, oceans and glaciers, natural disas-
ters, climate change, and the classification and detection problems associated
with man-made issues. Remote sensing technology is phenomenally varied. For
example, airborne photography technology, going back to Tournachon’s aerial
photographs in 1858 from a balloon, has given rise to more recent satellite,
RADAR, and LIDAR methodologies to collect data.

However, this technology comes with certain limitations. One of them is the
sheer volume of data that arises in some applications, e.g., in the analysis of
hyperspectral imaging data, and which underscores the need for computationally
efficient and reliable DR methods.

There is a natural evolution of ideas we shall highlight to develop our theme:
linear DR methods (Section 2), non-linear DR methods (Section 3), the theory
of frames (Section 4), compressed sensing and sparse representation (Section
5), and diffusion-based image processing (Section 6). Each of these topics can
be considered in the realm of DR, and each of them is a broad, deep, highly
developed theory. In each section, except Section 2, we shall provide current
applications in remote sensing associated with each of the topics. The material



of Section 2 is certainly important, but, for the purpose of this chapter, it is
really an introduction to the subsequent topics, especially as a comparison to
the power of non-linear DR in Section 3.

We see that the topics of the sections are an evolution in the following way.
There are limitations of useful applicability of linear DR methods(Section 2),
and we shall see in what ways non-linear DR methods (Section 3) can apply
to complicated problems. Some of the most applicable DR methods are kernel
eigenmap methods in which the eigenfunctions are orthogonal and the associated
eigenvalues provide a means of achieving DR. Although this is an extraordinarily
useful technology for many problems, it fails to be genuinely and naturally effec-
tive in a host of classification problems. In fact, different classes that should be
identified are not necessarily orthogonal, and so ambiguity arises in orthogonal
eigenfunction decompositions. This limitation can be resolved by introducing
the theory of frames (Section 4).

Among their inherent properties, frames can be used to give robust signal
decompositions, to ensure numerical stability in such decompositions, and to
provide a means to mitigate noise. By “robust”, we mean that the signal de-
composition can retain its accuracy even when some of the atoms or frame
elements are disabled. Of course, an essential feature of effective DR is to ob-
tain useful signal decompositions in terms of a relatively small set of atoms.
This can be done by a variety of non-linear quantization methods, e.g., X A-
modulation, that can be viewed as non-linear sampling. In recent years, this
type of non-linear sampling has found its most effective identity by interleaving
ideas ranging from pure analysis and probability theory to intricate finite di-
mensional versions of the uncertainty principle. The result is called compressed
sensing and sparse representation (Section 5). Section 6 is not the “next step” in
the evolution so much as a powerful mathematical machine in concert with the
goals of compressed sensing and sparse representation, but with fundamental
applications to image processing.

2 Linear dimension reduction methods

2.1 Principal Component Analysis

Linear dimension reduction methods treat remote sensing data as a collection
of vectors X = {z1,...,2n} C RP in a given D-dimensional space, and their
goal is to find a lower-dimensional subspace of X, that will represent the data
optimally with respect to certain measures such as minimal reconstruction error,
maximal preserved variance, maximal decorellation, or highest sparsity level..

One of the oldest and most popular dimension reduction techniques in re-
mote sensing is Principal Component Analysis (PCA). PCA was introduced by
Pearson [81], and was subsequently developed and generalized by many other
authors, with major contributions coming from Hotelling, Karhunen, and Loeve.
Hence, it is often known under the names of Hotelling transform or Karhunen—
Loeve transform.

The major principle behind PCA is to assume that our observed variables
are a result of an orthogonal transformation of the unknown latent variables



that minimizes the reconstruction error, or, equivalently, that yields maximally
uncorrelated output. Among the most valued aspects of PCA are its simplicity
and adaptability to a broad range of problems. However, PCA also has major
drawbacks. Among them the biggest problem is the assumption of the linearity
of observed data. This problem has been addressed in many recent works, where
it has been proved that remote sensing data cannot be simply described as a
linear subspace and that manifold models are necessary, see, e.g., [2].

2.2 Linear mixing models

A traditional method for dimension reduction in remote sensing data is by means
of endmember extraction algorithms. Endmembers are defined as a collection
of the scene’s constituent spectra. If E = {e; : ¢ = 1,...,s} is the set of
endmembers for the data set X, then the linear mizture model is defined as,

s
€T; = E ai}jej—i—Nmi,
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for all z; € X, where N,, denotes a noise vector associated with z;. The set
{ajj :i=1,...,N,j = 1,...,s} is the set of coefficients, and it is usually
assumed that they satisfy the following two conditions: o;; > 0,7 =1,..., N,
j=1,....;s,and 337 _ e =1,i=1,...,N.

Let oy, = (in, ..., ) and let @ = (@, ..., as). Let |ylla = /e, lyxl?

be the ¢? norm in R”.Two common endmember coefficient sets are given by,
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subject to the above constraints of non-negativity and normalization, and where
7; denotes a positive real number. Most endmember extraction algorithms de-
termine F as a subset of X, i.e., it is assumed that the endmembers lie within
the given data set. There are several endmember extraction algorithms, includ-
ing N-FINDR [90], ORASIS [18] Pixel Purity Index [17], and Support Vector
Data Description (SVDD) [3].

For an overview of these and other related linear techniques in dimension
reduction of remote sensing data we refer to the excellent survey [63].

3 Non-linear dimension reduction methods

3.1 Overview

Sophisticated mathematical tools for the analysis of multispectral data have
been successfully applied in recent years to detect and classify objects in ar-
eas ranging from human pathology to geophysics and satellite imaging. These



analysis techniques often take the form of dimension reduction (DR) or feature
classification algorithms, see, e.g., [2]. Examples of state-of-the-art DR meth-
ods include Locally Linear Embedding (LLE) [82], Hessian LLE (HLLE) [55],
Isomap [87], Laplacian Eigenmaps (LE) [6], Diffusion Maps [41], and Diffusion
Wavelets [42].

Physical or experimental constraints often suggest that the intrinsic dimen-
sion of the multispectral dataset is much smaller than the number of bands
originally used to represent the multispectral data. As such, one often assumes
that the multispectral data points belong to a low-dimensional manifold M.

In this context, we are most interested in an important subclass of the afore-
mentioned DR methods known as kernel eigenmap methods. These include
Kernel PCA [84], LLE [82], HLLE [55], and LE [6], among others [75]. Kernel
eigenmap methods were introduced to address complexities not resolvable by
linear techniques. Such methods recover the above mentioned data manifold
by means of representations in terms of the significant eigenvectors of a data
dependent kernel matrix. Generally speaking, these methods represent high-
dimensional data in the form of a graph, with nodes formed by the data points
treated as vectors, and with edges that represent the distances between pairs of
such vectors. This information is stored in the so-called adjacency matrix, which
is then modified to form the kernel. More specifically, the central idea underly-
ing kernel eigenmap methods is to express correlations or similarities between
vectors in the data space X C R? in terms of kernel functions K : X x X — R?
which are symmetric and positive semi-definite. Once we have such K, we can
construct a Hilbert space K and a mapping ® : X — K such that

K(z,y) =< ®(x), ®(y) >

defines an inner product in K. Classically, one diagonalizes this operator by
the spectral theorem, and then chooses a smaller number of the most significant
eigenvectors in order to achieve dimension reduction. Alternatively, we may
choose the most significant and diverse eigenvectors for classification purposes.

3.2 Laplacian Eigenmaps

Many of the most popular dimension reduction techniques are built upon the
mathematical foundation that is naturally expressed in the language of Lapla-
cian Eigenmaps. These include LLE, HLLE, Diffusion Maps, Diffusion Wavelets,
and Schroedinger Eigenmaps, see, e.g., [65]. Thus, for the sake of completeness,
we start with a brief overview of the LE algorithm.

Let X = {71,...,2x} C RP. We assume that the points of X lie on a
d-dimensional manifold M, d < D, that reflects the local geometry of the data
set X. The goal is to find a mapping

y:RY - R" d<n<D,

that emphasizes the local geometric structure of X. The LE algorithm [6],
pioneered by Belkin and Niyogi, is divided into three steps.



1. Construction of a graph.

Data points z;, 1 = 1,..., N, form the nodes of the graph. An edge is
drawn between x; and z; if x; is among the k nearest neighbors of x;
as measured with respect to the Euclidean metric for some fixed k. This
information is stored in an adjacency matrix G, with the corresponding
entry G;; = 1. For all other pairs of nodes we let G; ; = 0. This defines
the graph, which we denote the same way as its adjacency matrix, viz., G.
We assume that our graph is undirected, which is equivalent to assuming
that G is symmetric .

2. Construction of the graph Laplacian.

The edges of the graph are assigned weights and this information is stored
in the weight matrix, W. A common choice of weights, motivated by the
heat kernel, is the diffusion weight matrix:
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Wij = {e ’ Gy =1 (3.1)

0 otherwise,

where o > 0 denotes a positive constant. We then define the diagonal
matrix D by D; ; = Zj W; ;. Finally the graph Laplacian is given by

L=D-W.

3. Eigendecomposition of the graph Laplacian.

Find the mapping y = {y1,...,yn}’, y; € R", by solving the minimiza-
tion problem,
. 1
argmin zp, ;5 3 i~ w3 [3W (32)
2]

which, in turn, is equivalent to solving the minimization problem,
argmingrp, g trace(y” Ly). (3.3)

Letting z = D'/2y in (3.3), it follows that the solution of the minimization
problem (3.3) is equivalent to finding the first n solutions to the generalized
eigenproblem, Lv = ADwv, sorted in increasing order of .

It is clear that vg = (1,1,...,1) is a solution for A = 0, see, e.g., [39].
If G is a connected graph, this solution is unique for A = 0. Hence, the
problem can be refined further by assuming that vy € ker(y), i.e., we only
look for eigenvectors corresponding to nonzero eigenvalues.

3.3 Schroedinger Eigenmaps

A major feature of Laplacian Eigenmaps and related methods is the preserva-
tion of local spectral distances, while reducing the overall dimension of the data
represented by the aforementioned graph, cf., [39]. However, Laplacian Eigen-
maps and similar DR methods lead to fully automated classification algorithms



which do not easily allow for expert input. To compensate for this deficiency,
we note that the Laplace operator,

AV (),
can be extended to the time-independent Schroedinger operator &,
EV(x) = AV (z) + v(z)¥(z), (3.4)

by adding a potential term v(z).

The potential v in (3.4) is considered as a nonnegative multiplier operator.
The discrete analogue of £ = A + v is the matrix £ = L + V, where V is a
nonnegative diagonal N x N potential matrix. We then replace the traditional
Laplacian optimization problem (3.3) with the minimization problem,

yTnll)iyn:I trace(y ' (L + aV)y), (3.5)

which, in turn, is equivalent to the minimization problem,

Tmm [trace(y " Ly) + trace(y " aVy)]. (3.6)

Dy=I
The parameter a > 0 is added here so that it can be used to emphasize the rel-
ative significance of the potential V' with respect to the graph Laplace operator.
The minimization problem (3.6) is equivalent to the minimization problem,

min 35> Ny =yl Wi +ad VOlyl® (3.7)

y T Dy=I

where V' = diag(V(1),...,V(N)). The first sum in (3.7) incurs a penalty, when
neighboring points x; and x; are mapped into points y; and y;, respectively,
which are far apart. The second sum penalizes those points y;, i = 1,..., N,
which are associated with large values of V(i). For example, if V' took only
two values, 0 and 1, then the minimization (3.7) yields a dimension-reduced
representation y, which forces increased clustering of the representations y; of
points associated with the value V(i) = 1, while attempting to ensure that close
points remain close after the dimension reduction. As such we may utilize the
potential V' to label points which we would like to be identified together after the
dimension reduction. Because of the built-in preservation of topology induced
by the Laplacian, this labeling may be used to segment a particular class of
points.

3.4 Properties

It is known that the rescaled graph Laplacian on G converges to the Laplace-
Beltrami operator on the underlying manifold M, e.g., [7], when we assume
that all data points are connected. The Laplacian map on X C RP is given by

lefc"'

N
(@) =f(x) E e < —g (xj)e I



Replacing the z; by an arbitrary = € R yields

_z—ay _lle—ayl?

G = 1) Y e T Y e

It turns out that there exists a positive constant C' such that for i.i.d. uniformly
1
sampled data points {x1,...,2y} and oy = N~ »¥2Fs where s > 0, and f €
C>° (M), we have the convergence,
_n+2
o z
lim C%

N — o0

LY f () = Amf (), (3.8)

in probability, see [7].

This convergence carries over to the Schroedinger operator as we shall see
next. Let v be a given potential on the manifold M. The associated matrix V'
acting on a discrete m-point set is defined as V' = diag(v(z1),...,v(xn)). Since
the potential does not depend on o, we may replace ; by an arbitrary « € RP
to obtain the map,

Vinf (x) = v(x) f(2).

Clearly this extension coincides with the continuous potential on the manifold.
As such, adding the discrete potential Vi to the discrete Laplacian does not
impede the convergence in (3.8). Consequently, the term

TON"F pox fa) + Vi () (3.9)

N

converges for N — oo to
Amf (@) +v(x) f(x),

in probability, see [44], [68]. We note that (3.9) induces a specific choice of the
parameter «. Indeed, in order to consider E = L + aV, rescaling of LY in
(3.9) implies the need to reversely rescale V. This can be done by means of

multiplication with o = %N (TUN)HTH, which converges to infinity as N — oo.
3.5 Applications to remote sensing

Although a mathematical novelty, kernel eigenmap methods associated with
diffusion-based kernels have been used in various roles in applications to remote
sensing. The non-linear nature of hyperspectral satellite imagery data (HSI), has
been analyzed and verified by Bachmann et al. in [2]. This led to a wide range
of applications of non-linear techniques. LLE has been employed for dimension-
ality reduction and vector segmentation by Mohan et al. in [79]. Castrodad
used iterative schemes to perform semi-supervised multi-class classification and
segmentation on HSI data, see [29]. Kernel fusion based on LE-derived ker-
nels has been exploited for the purpose of spatial-spectral integration in [10],
[68]. Kernel methods in remote sensing have also been combined with other
mathematical techniques, such as Randomized Anisotropic Transforms, [37], or
approximate graph constructions and randomized projections, [68]. For more



in-depth discussion and additional examples of kernel DR methods in remote
sensing we refer to the work of Chui and Wang [38].

The Schroedinger Figenmaps algorithm [43] allows experts, e.g., trained an-
alysts, to introduce their input in the form of additional, labeled information
to improve the detection and classification processes. This labeled information
can take the form of a barrier potential for the associated Schroedinger opera-
tor on a graph. This added potential steers the diffusion process, induced by
the Schroedinger operator on the data-dependent graph, according to both the
dynamics of the labeled data and the geometry of the underlying graph. This is
the major difference from the case of Laplacian Eigenmaps, where the diffusion
process is determined by the geometry of the data alone, cf., [40]. In [9], the
impact of Schroedinger Eigenmaps on classification is analyzed on multispec-
tral and hyperspectral imagery. Efficient methods for building the potentials
are based on expert ground-truth data and on automated clustering techniques,
and it is shown that they lead to significant improvements in class separation
[9], see Figure 1.

x10° LE x10° SE with alpha=100

Figure 1: The effect of using Schroedinger potentials for decorrelating clusters as
compared to traditional Laplacian embedding.

4 The theory of frames

4.1 Overview

Frames were introduced by Duffin and Schaeffer in 1952 [57]. However, their
practical potential was not recognized until the 1990s. We refer the interested
reader to other works for a more in-depth treatment of frames and their con-
structions and applications [14, 8, 27, 35, 71, 72]. Since then, frames were both
generalized and specialized to allow for constructions of appropriately designed
representation systems with varied features adapted to specific applications.
Among the generalizations of frames, many ideas have been proposed in the
recent years, e.g., frames of subspaces [28], pseudo-frames [76], fusion frames,
oblique frames [36], outer frames [1], and multiplicative frames [15]. Finally,
many of these constructions have been unified by an operator-based approach



called g-frames [86].
4.2 Frames

A frame for a Hilbert space H is a collection {z; : i € I} C H of vectors such
that there exist constants 0 < A < B < oo so that, for each y € H,

Ayl < 3 I )l < Byl (4.1)
iel

Constants A and B, which satisfy (4.1), are called frame bounds of {x; : i € I'}.
Optimally chosen values A and B are referred to as the optimal frame bounds of
the frame. When A = B, the frame {z; : i € I'} is referred to as a tight frame.

As an example of a frame one may choose an orthonormal basis - it is in fact
a tight frame with constants A = B = 1. A union of any two orthonormal bases
is a tight frame with constants A = B = 2, etc. A union of an orthonormal basis
with N arbitrary unit norm vectors is a frame with, not necessarily optimal,
bounds A =1 and B = N + 1 and, in general, it is not a tight frame.

Given a frame {z; : i € I'}, a dual frame is a collection {z} : i € I} C H of
vectors such that for all x € ‘H, we have the reconstruction formula,

x = Z(x,xﬁxf
icl
Every frame possesses a dual frame. In order to obtain a dual frame to a given
frame, we shall define the frame operator.

4.3 Frame operator

Let £2(I) denote the space of square summable sequences indexed by I. Given
a frame {x; : i € I}, the analysis operator 6 : H — ¢*(I) is defined as

O(x) = ((x,zi>)iel.

The adjoint of the analysis operator 6* is called the synthesis operator, and
S = 6%0 is the frame operator. The synthesis operator satisfies the equation,

0*(c) = ch-xi,
i€l
where c is any finitely supported sequence in KQ(I ). The following results are
well known, e.g., [35].

Theorem 4.1. Let {z; :i € I} C H be a frame for H. Then the following are
satisfied:

a. 0 is a bounded operator from H into (*(I).

b. 6* extends to a bounded operator from (*(I) into H.

c. 0 and 0* are adjoint operators of each other.

Theorem 4.2. Let {x; : i € I} C H be a frame for H. The frame operator
S = 0%0 maps H onto H and is a positive invertible operator satisfying A-Id <
S<B-Idand B~'-Id < S7' < A=Y.Id. In particular, {x; :i € I} is a tight
frame if and only if S = A - Id.



The sequence {S™1x; : i € I} of vectors in H is called the canonical dual
frame, and it is a dual frame for {z; : i € I}, i.e., we have

x = Z(:c, S™Hay)) s

iel

and
x = Z(x, x) S (x4),
il
where both sums converge unconditionally in H. We note here that dual frames
are not in general unique and this underlies the importance of the canonical dual
frame. On the other hand, there are significant applications of frames where
dual frames other than the canonical dual are critical, [74].

4.4 Parseval frames

For a particular given frame, it may not be easy to apply the procedure in the
preceding paragraph to obtain a dual frame. One special case in which it is easy
is that of Parseval frames. A Parseval frame is a tight frame consisting of unit
norm vectors. For Parseval frames, we have that, for every x € H,

x = Z(x,%}:tl (4.2)

i€l

In particular, Parseval frames are dual frames of themselves. For this reason,
among others, Parseval frames are the best behaved of frames. The following
theorem, which goes back to Naimark, who used different terminology, is the
source of most of the basic, general properties of Parseval frames.

Theorem 4.3. A collection {x; : i € I} C H of vectors in H is a Parseval
frame for H if and only if there exist a Hilbert space K containing H as a closed
subspace and an orthonormal basis {e; : i € I} for K such that, for all i € I,
Pe; = xz;, where P is the orthogonal projection onto H.

In finite dimensional Hilbert vector spaces, the notion of a frame becomes
intuitively simple. Let N > d; {x; : i = 1,..., N} be a frame for F?, where F
denotes the field of real or complex numbers, if and only if it is a spanning system
for F¢. State of the art mathematical algorithms construct frames through
minimization of frame potential energy functions on complex manifolds [13, 85].

4.5 Applications to remote sensing

Frame theoretic techniques are relatively new in remote sensing processing.
However, as typical data collected in remote sensing experiments is far from
being orthogonal, see Figure 2, these techniques find novel applications. In [12],
[69] and [89], kernel eigenmap methods were used to map the high dimensional
space X to a low dimensional feature space Y, and then a frame is constructed
for Y, which plays the same role as endmembers play in linear mixture models.

An original idea for constructing 2D tight frames that provide a new way
to analyze, visualize, and process data at multiple scales and directions was

10



proposed by Bosch et al. in [19]. This is achieved by employing the proper
choice of functional components in directional signal representations to isolate
directional information, while, at the same time, effectively characterizing the
underlying variation. This new family of frames has been shown to be suitable
for a range of geostatistical applications, including super resolution and image
inpainting.

Examples of specifically constructed frames with built-in features have been
utilized in remote sensing data processing, see, e.g., [11], [20], [62]. Olshausen
and his collaborators [34] also used learned dictionaries which are effectively
frames, in their work on improving the performance of supervised classification
algorithms for HSI data.
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Figure 2: Spectral classes in HSI are typically non-orthogonal.

5 Sparse representation and compressed sensing

5.1 Overview

Since the introduction of multi-scale techniques in image analysis, there has been
a strong motivation to provide sparse representations with the ability to detect
edges, in particular, and directional content in general. As wavelets became a
popular method to analyze multidimensional data, they fail to provide optimal
n-term approximation rates for images with C? edges, see [22]. Therefore, a
number of new representations have been introduced in an attempt to solve this
problem. A few examples of these constructions are contourlets [48], curvelets
[22], brushlets [78], wedgelets [53], shearlets [73], and composite wavelets [67].

11



A very different approach to induce sparsity in representation can be achie-
ved by combining compression with sampling. This approach led to the intro-
duction of one of the most fundamental models in data complexity reduction,
that has been the focus of much recent attention - Compressed Sensing (CS).
At its foundation is the concept of sparse signals. Given a basis for the am-
bient (potentially high-dimensional) space R, a signal is called K-sparse if
it can be represented using at most K nonzero coefficients. The theory of CS
[25, 26, 23, 24, 54, 56] exploits this model in order to maintain a low-dimensional
representation of the signal from which a faithful approximation to the original
signal can be recovered efficiently. Dimensionality reduction in CS is linear and
nonadaptive, i.e., the mapping does not depend on the data.

5.2 K-sparse signals

CS theory states that K-sparse signals z € RP can be recovered from n < D
linear measurements y = ®x, where ® represents an n x D measurement matrix.
This can be achieved via the following recovery algorithm,

min ||Z]|; subject to P®(Z) =y, (5.1)
zZeRP

where [[z| = Y27, |,

Naturally, as n < N, this recovery cannot be obtained with just any sensing
matrix ®. Hence, we consider here matrices ® which satisfy the Restricted
Isometry Property (RIP) of order K, that is, matrices for which there exists a
constant 0x € (0, 1), such that

(1= 0x)llzll3 < [@(@)3 < (1 + 653,

for every K-sparse vector z € RP. Under this assumptions, Candes proved the
following theorem in [21].

Theorem 5.1. Let z* be the solution of the minimization problem (5.1). Let x
denote the best K -sparse approzimation to x € RP. Assume that o < V2 —1.
Then, there exists C' > 0 such that,

2" —zfly < Cllz — 2kl

and
o = zlls < CK™V2 ||z — a1

Theorem 5.1 clearly implies that for K-sparse vectors x the recovery in (5.1)
is exact. However, two types of questions now follow. One is how to find matri-
ces ® which satisfy RIP. The other is what is the fewest number of measurements
we can afford to take and still recover the signal. While it is quite difficult to
satisfactorily answer these questions in a deterministic manner, statistical con-
cepts proved to be much easier to deal with. As such, one can assert that,
with high probability, every K-sparse signal 2 € R can be recovered from just
n = O(K log(D/K)) measurements y = ®x, and the measurement matrix ® is

12



an n X D measurement matrix drawn randomly from an acceptable probabilis-
tic distribution. This includes random sampling matrices & which have i.i.d.
Bernoulli, Gaussian, or uniform entries, see Section 5.3. We note that RIP is
just one of several ways to provide such conditions, see [88]. We note that the
number of samples n is linear at the “information level”, i.e., with respect to K,
and is logarithmic in terms of the ambient dimension D. The number of random
samples n is typically taken large enough to ensure that all K-sparse signals re-
main well-separated when embedded in R™. CS theory applies equally well to
signals that are not strictly sparse but compressible, i.e., if the coefficients in the
signal’s representation decay fast enough. Furthermore, near optimal recovery
is guaranteed even in the presence of noise, e.g., [21].

5.3 Random projections

The notion of using a random projection for dimensionality reduction is not new.
In fact, it can be traced back to long before the present wave of interest in CS.
One fundamental result in which this type of dimension reduction manifests
itself is the Johnson-Lindenstrauss Lemma (JL) [70], cf., [46], where one can
use a random projection for a stable embedding of a finite data set, effectively
providing dimension reduction.

Lemma 5.2 (Johnson-Lindenstrauss). Given 0 < e < 1, a set Xof N points in
RP, and a number n > O(In D) /€2, there is a Lipschitz function f : RP — R"
such that, for all u,v € X,

(1= llu —ovff <[[f(w) = F)] < (L +e)fu—vl.

The statement of JL is completely deterministic. Surprisingly, probability
enters in two different but related ways. On the one hand, the technique of
proof of JL depends on concentration of measure inequalities, see [46], [4]. On
the other hand, the result itself is very useful from the perspective of CS. In
[5] a fundamental connection was identified between CS theory and JL, despite
the fact that the former allows for the embedding of an uncountable number of
points. This connection allows us, in particular, to answer the question about
construction of matrices which satisfy RIP due to the following theorem [5].

Theorem 5.3. Let D, n, and § be given. Assume that entries of the matriz ®
are independent realizations of a probability distribution satisfying

Pr([|@(@)lI7y — llzl7p] > ellzllfp) < 2e7"C, e e (0,1).

Then, there exist constants Cp,Co > 0 such that ® satisfies RIP with § and any
K < Cyn/log(D/K) with probability exceeding 1 — 2e~2",

We note that computing random projections is relatively inexpensive: pro-
jecting N points from D to n dimensions costs O(DnN).

Manifold models generalize the notion of sparsity beyond bases. These mod-
els arise whenever a signal in R” is a continuous function of a K-dimensional
parameter. For example, a pure sinusoid is completely determined by its am-
plitude, phase, and frequency. So a class of signals consisting of pure sinusoids
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would form a three-dimensional manifold in R”. The dimension of the man-
ifold under this model is analogous to the sparsity level in the CS model. In
[4] the authors extend CS theory by demonstrating that random linear pro-
jections can be used to map the high-dimensional manifold-modeled data to a
low-dimensional space while, with high probability, approximately preserving
all pairwise distances between the points.

5.4 Applications to remote sensing

CS has many promising applications in signal acquisition, compression, and
medical imaging. Among them, new possibilities arise for using CS in remote
sensing.

Based on CS concepts, Patel et al. introduced a new synthetic aperture
radar (SAR) imaging modality which can provide a high-resolution map of the
spatial distribution of targets and terrain, while using a significantly reduced
number of waveforms [80].

Deloye et al. [47] analyze the coded aperture snapshot spectral imager
(CASSI) system, which is a class of imaging spectrometers that provide im-
plementation of compressive sensing ideas for hyperspectral imaging.

In the context of HSI data, Greer [66] shows that standard theoretical guar-
antees do not apply to the performance of classical CS reconstruction algorithms
such as orthogonal matching pursuit (OMP) and basis pursuit (BP). He in-
troduces a new algorithm, sparse demixing (SD), and proves its optimality in
reconstruction sparsity and accuracy.

6 Diffusion-based image processing
6.1 Overview

Diffusion-based methods have been extensively used in image analysis, both
as self-contained techniques [61], [16], and as tools for approximating the to-
tal variation (TV) functional, see, e.g., [30] and [83]. Further, even earlier,
wavelet-type systems appeared in the context of variational problems, e.g., [33],
[60]. In particular, [33] discusses the TV minimization in the wavelet domain
that successfully reproduces lost coefficients. A related work, [60], describes
an algorithm for filling in holes in overlapping texture and cartoon image lay-
ers by means of a direct extension of the image decomposition method called
Morphological Component Analysis (MCA). The relationship between wavelet-
based image processing algorithms and variational problems is analyzed in [31].
Shearlet-based TV minimization utilized for image denoising is studied in [59].

6.2 Ginzburg-Landau energy
The Ginzburg-Landau (GL) energy functional [64], [32],

/|Vu )|Pdr + — /W (6.1)

W(u) = (u? —1)%,
may be considered as a diffuse interface approximation to the TV functional
J |Vu|dx for the case of binary images. Based on this concept, several efficient
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algorithms for deconvolution, image inpainting, superresolution, and other ap-
plications have been proposed, see, e.g., [51], [49], [52]. The common approach
has been to use modifications of the GL functional as the primary regularizer
for the solution of an ill-posed problem. In those works [ |Vu(z)|*dz has been
replaced with wavelet-based, shearlet-based, and related semi-norms, with the
goal of removing the “fuzzy” diffuse interface features and utilizing advantages
of sparse directional representations. Characterizing signal regularity in terms
of the decay of wavelet coefficients via a Besov semi-norm, cf., [77], allows one to
construct a method with properties similar to PDE-based methods but without
an e-scale blur.

6.3 Composite wavelet Ginzburg-Landau energy

Our goal is to explore the possibilities arising from constructions of frames
with directional content, such as, e.g., curvelets, shearlets, or, more generally,
composite wavelets. For this purpose, let v; = D,-: L, denote the dilation D
and the generalized shift L., associated with a composite wavelet construction,
for parameters ¢ € Z and v € I'. We do not specify the choice of the parameter
set I', as it depends on the choice of the directional multiscale representation,
and we refer the reader to [45] for details. For more information on the structure
of composite wavelets and their theoretical underpinnings we refer to [67]. For
any u € L?([0,1]?) we define the composite wavelet seminorm as

|u|%‘W Z‘deta‘12| 1/117

el
We define the composite wavelet GL energy (CWGL),

1
CWGL(u) = %\u%w + /W(u)da:

Then the “composite wavelet Allen-Cahn equation”, i.e., the gradient descent
minimization equation for CWGL, is

u = eAcwu — 1VV’(u),
€

where

Acwu = — Z|deta| Z Uy Vi ) Wiy
veT
is the “composite wavelet Laplace operator. This means that we are replacing
the regular Laplace operator that appears in the classical Allen-Cahn equation
and that expresses the gradient descent minimization of GL energy.

On the one hand, the minimizers of CWGL energy exhibit properties sim-
ilar to those in the classical diffuse interface model. On the other hand, the
dependence on € is different for CWGL. In fact, ¢ defines the dominant wavelet
scales in the decomposition of the minimizer, see [51]; and, since the wavelet
functions are well-localized, increasing e causes the low phase-transition blur,
which provides advantages in reconnecting edges over large gaps without losing
the image sharpness.
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6.4 Applications to remote sensing

Consider an image f as a function on [0, 1]?, and let  C [0,1]? be the domain
where we assume this image to be known. The goal of image inpainting (data
recovery) is to recover the values f(z) for € QF, the complement of Q. In
this model, the GL-type energy term plays the role of a regularizer, while the
forcing term is expressed as the L? norm between the minimizer u and the known
image f on the known domain. In the following formula we consider composite
wavelet GL energy and seminorm; however, without loss of generality, these can
be replaced with other types of GL energy functionals. Define

o’
E(u) = CWGL(u) + gllu— f|32(0)-

One recovers the complete image as the minimizer of this modified functional
FE. In order to find this minimizer, it is necessary to consider it as a stable state
solution of the respective gradient descent equation,

1
up = eAowu — EW/(U) —ulg(u— f),

where 1g is the characteristic function of the known portion of the domain.

In a series of works [49], [50], [51] Bertozzi and Dobrosotskaya studied
a wavelet analogue of the Ginzburg-Landau energy with an additional edge-
preserving forcing term. Their applications include inpainting, superresolution,
segmentation, denoising, and contour detection, and they have been used for
example in partial road classification and inpainting for satellite imagery.

In [52] this work has been extended to allow for utilizing the directional
content based on shearlet representations.

In [45] the above approach is utilized in an algorithm to recover missing data,
due to sparsity of composite wavelet representations, especially when compared
to inpainting algorithms induced by traditional wavelet representations, cf., Fig-
ure 3.

Figure 3: Data recovery by means of CWGL algorithm with post processing.
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