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1 Introduction

In this paper, we confront the “smooth ambiguity aversion” model of Klibanoff, Marinacci, and

Mukerji (2005, 2009), (henceforth, KMM), in its generalized form advanced by Hayashi and Miao

(2011) and Ju and Miao (2012), with data to close two existing gaps in the literature. First, we

empirically estimate the size of ambiguity aversion implied by financial data for a representative

agent endowed with smooth ambiguity aversion preferences in a consumption-based equilibrium

asset pricing model. Second, we empirically investigate the contribution of smooth ambiguity

aversion in explaining variations in equity premium and consumption growth. Given the rising

popularity of smooth ambiguity preferences in economics and finance, it is important to characterize

this model’s empirical strengths and contributions, as well as its shortcomings. One salient feature

of smooth ambiguity aversion is the separation of ambiguity and ambiguity aversion, where the

former is a characteristic of the representative agent’s subjective beliefs, while the latter derives

from the agent’s tastes. This study provides a fully data-based estimation of this ambiguity aversion

parameter in a dynamic asset pricing model. Our estimated ambiguity aversion parameter is

higher than its calibrated counterparts in existing endowment or production-based asset pricing

studies. Other estimated structural parameters are comparable with estimated values reported in

the literature.

Ambiguity aversion matters. Jeong, Kim, and Park (2014) show that in an equilibrium asset

pricing model where agents are endowed with a different but related class of ambiguity aversion

preferences, ambiguity aversion accounts for 45% of average equity premium. They also find that it

is economically and statistically significant. Our findings confirm theirs, and extend the literature

in new directions. In our benchmark model, ambiguity arises due to a mixture of distributions for

dividend growth. The state determining the distribution of dividend growth is unobservable. The

agent can learn about the hidden state, but this ability does not eliminate the difficulties in forming

forecasts. In turn, these difficulties generate the scope for ambiguity aversion. Ambiguity aversion

gives rise to intertemporal choices that differ dramatically from those made by an ambiguity-neutral

agent.

KMM preferences and “multiple-priors utility” of Chen and Epstein (2002) (henceforth, MPU)

have drawn considerable attention in the literature. In practice, smooth ambiguity aversion of

KMM has two important advantages over MPU. Critically, MPU does not admit a sharp separa-
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tion between ambiguity and ambiguity aversion. In the MPU framework, the set of priors, which

characterizes ambiguity, also determines the degree of ambiguity aversion. Thus, in empirical stud-

ies based on MPU such as Jeong et al. (2014), one only obtains the estimate of the size of ambiguity

instead of the magnitude of ambiguity aversion. In the MPU framework, it is therefore infeasible

to do comparative statics analysis by holding the family of alternative distributions constant while

varying the degree of ambiguity aversion. The most important feature of the generalized recursive

smooth ambiguity preferences is precisely a separation between ambiguity and ambiguity aversion,

and moreover a three-way separation among risk aversion, ambiguity aversion, and the elasticity of

intertemporal substitution. The second advantage of KMM over MPU is tractability. Asset pricing

models with MPU are generally difficult to solve with refined processes of fundamentals because

MPU features kinked preferences.1

KMM preferences are relatively new. Klibanoff et al. (2005, 2009) introduced this class of pref-

erences. Hayashi and Miao (2011) generalized these utility functions, and Hanany and Klibanoff

(2009), Klibanoff, Marinacci, and Mukerji (2011), Cerreia-Vioglio, Ghirardato, Maccheroni, Mari-

nacci, and Siniscalchi (2011) further refined them. This class of preferences is becoming increasingly

popular in finance and macroeconomics. Applications include endowment economy asset pricing (Ju

and Miao (2012), Collard, Mukerji, Sheppard, and Tallon (2012), and Ruffino (2013)), production-

based asset pricing (Jahan-Parvar and Liu (2014) and Backus, Ferriere, and Zin (2014)), and

portfolio choice (Gollier (2011), Maccheroni, Marinacci, and Ruffino (2013), Chen, Ju, and Miao

(2014), and Guidolin and Liu (2014)), among others.

Our estimation of the level of ambiguity aversion facilitates using this class of preferences by

linking it directly to the data. Most of existing applications of smooth ambiguity preferences rely

on the methodology of calibration. The popular methods of calibrating the degree of ambiguity

aversion include the “detection-error probability” method of Anderson, Hansen, and Sargent (2003)

and Hansen (2007) (see Jahan-Parvar and Liu (2014) for an application) and “thought experiments”

similar to Halevy (2007) (see Ju and Miao (2012) and Chen et al. (2014) for applications). Clearly,

the contribution of our study is methodological in that we use both financial and macroeconomic

data to estimate the degree of ambiguity aversion together with other structural parameters in a

dynamic asset pricing model with learning.

Similar to other macro-finance applications, we face sparsity of data. As has become standard

1 Strzalecki (2013) provides a rigorous and comprehensive discussion of ambiguity-based preferences.
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in the macro-finance empirical literature, we use prior information and a Bayesian approach to over-

come data sparsity. Specifically, we use the “General Scientific Models” (henceforth, GSM) Bayesian

estimation methodology developed by Gallant and McCulloch (2009). GSM is the Bayesian coun-

terpart to the classical “indirect inference” and “efficient method of moments” (hereafter, EMM)

methods introduced by Gouriéroux, Monfort, and Renault (1993) and Gallant and Tauchen (1996,

1998, 2010). These are simulation-based inference methods that rely on an auxiliary model for

implementation. GSM follows the logic of the EMM variant of indirect inference and relies on the

theoretical results of Gallant and Long (1997) in its construction of a likelihood. A comparison of

Aldrich and Gallant (2011) with Bansal, Gallant, and Tauchen (2007) displays the advantages of a

Bayesian EMM approach relative to a frequentist EMM approach, particularly for the purpose of

model comparison. An indirect inference approach is an appropriate estimation methodology in the

context of this study since the estimated equilibrium model is highly nonlinear and does not admit

of analytically tractable solutions thereby severely inhibiting accurate, numerical construction of a

likelihood by means other than GSM. GSM uses a sieve (Section 3.3) specially tailored to macro and

finance time series applications as the auxiliary model. When a suitable sieve is used as the aux-

iliary model, as here, the GSM method synthesizes the exact likelihood implied by the model.2 In

this instance, the synthesized likelihood model departs significantly from a normal-errors likelihood,

which suggests that alternative econometric methods based on normal approximations will give bi-

ased results. In particular, in addition to GARCH and leverage effects, the three-dimensional error

distribution implied by the smooth ambiguity aversion model is skewed in all three components

and has fat-tails for consumption growth and stock returns and thin tails for bond returns.

Ahn, Choi, Gale, and Kariv (2014) estimate the level of ambiguity aversion for several static

specifications of ambiguity aversion preferences based on experimental data. Their findings differ

from ours since a) they use a static specification and ignore the intertemporal choice, and b) their

empirical findings imply that ambiguity aversion parameter estimates for the smooth ambiguity

specification are not significantly different from zero.3 In addition, the mapping between their

static estimation results and our dynamic model estimates is not clear. Similar to our findings and

as expected according to the theory, they report the estimates of ambiguity aversion that are larger

2 Gallant and McCulloch (2009) use the terms “scientific model” and “statistical model” instead of the terms “structural
model” and “auxiliary model” used in the econometric indirect inference literature. We will follow the conventions of
the econometric literature. The structural models here are the “smooth ambiguity aversion” model and a restricted
version of that model.

3 They get much tighter estimates and hence statistically significant results for their kinked ambiguity specification.
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than the estimates of risk aversion. However, the magnitudes of their estimates are very different

from ours and those reported in calibration studies. Such discrepancies between market data-based

and experimental estimates are common.

Two recent papers, Jeong, Kim, and Park (2014) and Viale, Garcia-Feijoo, and Giannetti (2014),

provide time series and cross-sectional estimates for the MPU model. As mentioned above, these

studies do not provide a direct measurement of ambiguity aversion because MPU does not admit

a functional separation between ambiguity and ambiguity aversion. In a production based general

equilibrium setting, Ilut and Schneider (2014) assume that ambiguity is an exogenously determined

autoregressive process, while Bianchi, Ilut, and Schneider (2014) define ambiguity as parameter

uncertainty or measurement error in volatility of marginal product of capital and in operating

costs. Anderson, Ghysels, and Juergens (2009) estimate the magnitude of ambiguity aversion using

forecasts of professional forecasters.

In a recent study, Thimme and Völkert (2015) attempt to estimate the ambiguity aversion

parameter in KMM preferences. Their methodology differs from ours along these dimensions:

First, they do not specify how ambiguity arises in their underlying asset pricing model. In our

specification, similar to Ju and Miao (2012) and Jahan-Parvar and Liu (2014), ambiguity arises

due to a mixture of distributions for economic fundamentals. Second, they linearize the stochastic

discount factor in order to simplify the computation of the expectations formed on the state of the

world – the source of ambiguity in KMM preferences. We do not linearize the SDF. In our study,

when needed, we compute the SDF numerically. Third, given the linearized structure of their model,

they use a combination of calibrated intertemporal elasticity of substitution (IES) parameter and

generalized method of moments (GMM) to estimate the remaining preference parameters. Given

the sparsity of the available data, their estimation methodology does not allow for direct model

comparison. We, on the other hand, estimate all structural parameters, including the IES parameter

and parameters pertaining to state variables. In addition, our Bayesian estimation model admits

model comparisons. Given the calibrated IES parameters they use, their study yields several

estimates for ambiguity aversion parameter that are broadly comparable to ours.

The rest of the paper proceeds as follows. Section 2 introduces the data used in our GSM

Bayesian estimation. Section 3 presents the consumption-based asset pricing model with general-

ized recursive smooth ambiguity preferences developed by Ju and Miao (2012), and the numerical

method used to solve the model. Section 4 discusses the estimation methodology and presents
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our empirical findings. Section 5 presents model comparison results, forecasts, and asset pricing

implications. Section 6 concludes.

2 Data

Throughout this paper, lower case denotes the logarithm of an upper case quantity; e.g., ct = ln(Ct),

where Ct is consumption in period t, and dt = ln(Dt), where Dt is dividends paid in period

t. Similarly, we use logarithmic risk-free interest rate (rft ) and aggregate equity market return

inclusive of dividends (ret = ln (P et +Dt) − lnP et−1) in the analysis, where P et is the stock price in

period t.

We use real annual data from 1929 to 2013 and real quarterly data from the second quarter of

1947 to the second quarter of 2014 for the purpose of inference, indexed by 2005 price levels. We use

the data from 1929 to 1949 (1947:Q2 to 1955:Q2) to provide initial lags for the recursive parts of the

model and 1950-2013 (1955:Q3-2014:Q2) data for estimation of parameters and for diagnostics. Our

measure for the risk-free rate is one-year U.S. Treasury Bill rate for annual data and 3-months U.S.

Treasury Bill rate for quarterly data. Our proxy for risky asset returns is the value weighted returns

on CRSP-Compustat stock universe. We use the sum of nondurable and services consumption from

Bureau of Economic Analysis (BEA) and deflated the series using the appropriate price deflator

(also provided by the BEA). We use mid-year population data to obtain per capita consumption

values. As noted in Garner, Janini, Passero, Paszkiewicz, and Vendemia (2006), there are notable

discrepancies between measures of consumption released by different agencies. Thus, throughout

the paper, we assume a 5% measurement error in the level of real per capita consumption.4

Table 1 presents the summary statistics of the data used in this study. Reported mean and

standard deviations of risk-free rates (ret ), aggregate market returns(ret ), excess returns (ret − r
f
t ),

and real, per capita, log consumption growth (∆ct) are in percentages. The reported p-values of

Jarque and Bera (1980) test of normality imply that the assumption of normality is rejected for

risk-free rate and log consumption growth series, but it cannot be rejected for aggregate market

returns and excess returns at annual frequency. The plots of the annual data are shown in Figure

1.

4 We also experimented with 1% and 10% error levels. Empirical results are robust to the level of measurement errors.
Findings based on 1% and 10% measurement error are available upon request. We assume a linear error structure.
That is, C∗t = Ct + ut where C∗t is the observed value, Ct is the true value, and ut is the measurement error term.
We thus assume that ct = ln(C∗t ) yields the consumption growth series.
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3 Model

The intuitive notions behind any consumption-based asset pricing model are that agents receive

income (wage, interest, and dividends) which they use to purchase consumption goods. Agents

reallocate their consumption over time by trading shares of stock that pay random dividends and

bonds that pay interest with certainty. This is done for consumption smoothing over time (for

example, insurance against unemployment, saving for retirement, · · · ). Trading activity enters the

model via the agent’s budget constraint which implies that an agent’s purchase of consumption,

bonds, and stock cannot exceed income (in the form of aggregated wage, interest, and dividends)

in any period. When applied to a national closed economy, consumption and dividends can be

used as the driving processes instead of wages and dividends. Agents are endowed with a utility

function that depends on the entire consumption process. The first order conditions of their utility

maximization problem determine a map from the current state and history of the driving processes

to the current price of a stock and a bond. These models are simulated by first simulating the

driving processes and then evaluating the map that determines stock and bond prices.

3.1 The Benchmark Structural Model

We consider the representative-agent pure exchange economy model of Ju and Miao (2012). Ag-

gregate consumption follows the process

∆ct+1 ≡ ln

(
Ct+1

Ct

)
= κzt+1 + σ∆cεt+1, (1)

where εt is an i.i.d. standard normal random variable, and zt+1 follows a two-state Markov chain

with state 1 being the bad state and state 2 being the good state (κ1 < κ2). The transition matrix

is

P =

 p11 p12

p21 p22

 ,
where pij denotes the probability of switching from state i to state j, and p12 = 1 − p11 and

p21 = 1− p22.

Dividend growth is modeled as containing a component proportional to consumption growth
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and an idiosyncratic component,

∆dt+1 ≡ ln

(
Dt+1

Dt

)
= λ∆ct+1 + gd + σ∆dεd,t+1, (2)

where εd,t+1 is an i.i.d. standard normal random variable and is independent of all other shocks

in the model. The parameter λ can be interpreted as the leverage ratio on expected consumption

growth as in Abel (1999) and Bansal and Yaron (2004). The parameters gd and σd can be pinned

down by calibrating the model to the first and second moments of dividend growth.

Ju and Miao (2012) assume that economic regimes are not observable, but the agent can learn

about the state (zt) through observing the history of consumption and dividends. The agent

also knows the parameters of the model, namely, {κ1, κ2, σ, λ, gd, σd}. The agent updates beliefs

µt = Pr (zt+1|Ωt) according to Bayes’ rule:

µt+1 =
p11f (∆ct+1, 1)µt + p21f (∆ct+1, 2) (1− µt)

f (∆ct+1, 1)µt + f (∆ct+1, 2) (1− µt)
, (3)

where f (∆ct+1, i) , i = 1, 2 is the normal density function of consumption growth conditional on

state i.

The agent’s preferences are represented by the generalized recursive smooth ambiguity utility

function,

Vt(C) =
[
(1− β)C

1−1/ψ
t + β {Rt (Vt+1 (C))}1−1/ψ

] 1
1−1/ψ

, (4)

Rt (Vt+1 (C)) =

(
Eµt

[(
Ezt+1,t

[
V 1−γ
t+1 (C)

]) 1−η
1−γ
]) 1

1−η

, (5)

where β ∈ (0, 1) is the subjective discount factor, ψ is the IES parameter, γ is the coefficient of

relative risk aversion, and η is the uncertainty aversion parameter and must satisfy η ≥ γ. Equation

(5) characterizes the certainty equivalent of future continuation value, which is the key ingredient

that distinguishes this utility function from Epstein-Zin’s recursive utility. In Equation (5), the

expectation operator Ezt+1,t [·] is with respect to the distribution of consumption conditioning on the

next period’s state zt+1, and the expectation operator Eµt is with respect to the filtered probabilities

about the unobservable state.
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Under this utility function, the stochastic discount factor (SDF) is given by

Mzt+1,t+1 = β

(
Ct+1

Ct

)−1/ψ ( Vt+1

Rt (Vt+1)

)1/ψ−γ

(
Ezt+1,t

[
V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)


−(η−γ)

. (6)

Stock returns, Re,t+1, are defined by

Re,t+1 =
P et+1 +Dt+1

P et
=

1 + ϕ (µt+1)

ϕ (µt)

Dt+1

Dt
,

where ϕ (µt) denotes the price-dividend ratio. Stock returns satisfy the Euler equation

Eµt,t
[
Mzt+1,t+1Re,t+1

]
= 1.

The risk-free rate, Rf,t, is the reciprocal of the expectation of the SDF:

Rf,t =
1

Eµt,t
[
Mzt+1,t+1

] .
We can rewrite the Euler equation as

0 = µ̃tE1,t

[
MEZ
zt+1,t+1 (Re,t+1 −Rf,t)

]
+ (1− µ̃t)E2,t

[
MEZ
zt+1,t+1 (Re,t+1 −Rf,t)

]
,

where MEZ
zt+1,t+1 can be interpreted as the SDF under Epstein-Zin recursive utility:

MEZ
zt+1,t+1 = β

(
Ct+1

Ct

)− 1
ψ
(

Vt+1

Rt (Vt+1)

) 1
ψ
−γ
,

and µ̃t can be interpreted as ambiguity distorted beliefs and represented by:

µ̃t =
µt

(
E1,t

[
V 1−γ
t+1

])− η−γ
1−γ

µt

(
E1,t

[
V 1−γ
t+1

])− η−γ
1−γ

+ (1− µt)
(
E2,t

[
V 1−γ
t+1

])− η−γ
1−γ

. (7)

As long as η > γ, distorted beliefs are not equivalent to Bayesian beliefs. This distortion is an

equilibrium outcome and is entirely driven by ambiguity aversion. Figure 2 shows the Bayesian

belief and the ambiguity-distorted belief filtered using the historical consumption growth data for

the period 1929–2011. The parameter values in the model are set to the estimates using the GSM
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Bayesian estimation method, which are shown below. It is obvious from Figure 2 that ambiguity

aversion distorts the Bayesian belief in a pessimistic way, and thus an ambiguity averse agent slants

his beliefs towards the bad regime.

We follow Ju and Miao (2012) and use the projection method with Chebyshev polynomials to

solve the model. Specifically, homogeneity in utility preferences implies Vt (C) = G (µt)Ct, and

G (µt) satisfies the following functional equation

G (µt) =

(1− β) + β

Eµt

(Ezt+1,t

[
G (µt)

1−γ
(
Ct+1

Ct

)1−γ
]) 1−η

1−γ


1−1/ψ
1−η


1

1−1/ψ

.

To solve for the value function, we approximate G (µt) using Chebyshev polynomials in the state

variable µt. The approximation takes the form

G (µ) '
p∑
j=0

φjTj (y (µ)) ,

where p is the order of Chebyshev polynomials, Tj (j = 0, ..., p) are Chebyshev polynomials, and

y (µ) maps the sate variable µ onto the interval [−1, 1]. We then choose a set of collocation points

for µ and solve for the coefficients {φj}j=0,...,p using a nonlinear equations solver. The expectation

Ezt+1,t [·] is approximated using Gauss-Hermite quadrature.

To solve for the equilibrium price-dividend ratio, we rewrite the Euler equation as

P et
Dt

= Et
[
Mzt+1,t+1

(
1 +

P et+1

Dt+1

)
Dt+1

Dt

]
.

The price-dividend ratio can also be approximated using Chebyshev polynomials in the state vari-

able µt. Since the pricing kernel Mzt+1,t+1 can be easily written as a functional of G (µt+1) and

consumption growth Ct+1/Ct, we can solve for the equilibrium price-dividend ratio in a similar way

as we solve for the value function.

After solutions are found, we simulate logarithmic values of consumption growth, stock returns

and risk-free rates: {
ln

(
Ct+1

Ct

)
, ln (Re,t+1) , ln (Rf,t+1)

}T
t=1

.
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3.2 The Alternative Model with Ambiguity Neutrality

Our discussion of equations (4) and (5) conveys one important message: ambiguity aversion has an

impact on the intertemporal decisions of the representative agent if and only if η > γ. If η = γ,

then the agent is ambiguity neutral. As a result, the agent’s preferences collapse to the familiar

Kreps and Porteus (1978) and Epstein and Zin (1989) preferences:

Vt(C) =
[
(1− β)C

1−1/ψ
t + β {Rt (Vt+1 (C))}1−1/ψ

] 1
1−1/ψ

,

Rt (Vt+1 (C)) = Et
[
V 1−γ
t+1 (C)

] 1
1−γ

.

It is immediately obvious that under ambiguity neutrality, the certainty equivalent in equation (5)

collapses to the familiar temporal expectation. Thus, the agent is faced with a Markov switching

structure in the aggregate consumption and dividend growth processes, following equations (1) and

(2), and makes decisions based on Epstein-Zin’s recursive preferences.

Given these preferences, the SDF is

Mt+1 = β

(
Ct+1

Ct

)−1/ψ ( Vt+1

Et (Vt+1)

)1/ψ−γ
.

We use the same solution method that we use for the benchmark model to solve the problem for the

ambiguity-neutral agent. After solving the model, we simulate logarithmic values of consumption

growth, stock returns and risk-free rates.

3.3 Estimation of Structural Model Parameters

The ideas behind GSM are straightforward. If one can simulate the data implied by a model at a

given value of its parameter θ, then one can determine the density implied by the model for the data

at that value by statistical nonparametric density estimation methods. Particularly convenient in

this context is the SNP nonparametric density estimator proposed by Gallant and Nychka (1987)

and modified for time series applications by Gallant and Tauchen (1989). The SNP density is a

sieve. A sieve is a parametric model with parameters arranged in an ordered sequence similar to the

way the coefficients of a polynomial are ordered by degree. Rather than make a tuning parameter

smaller to improve the fit to data as with kernel density estimators, one increases the number of

parameters with a sieve. One uses a data driven rule to make the choice. Denote the SNP sieve by
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f(ŷt | x̂t−1, η) where ŷt denotes the simulated data at time t — consumption growth, stock returns,

and bond returns in this instance — and x̂t−1 represents lagged values of ŷt. The data simulation

and nonparametric estimation algorithms determine a map η = g(θ) from the parameters θ of

the structural model to the parameters η of the SNP sieve. Denote the observed data by yt,

t = 1, 2, . . . , n. Once the map η = g(θ) is determined, L(θ) =
∏n
t=1 f [yt |xt−1, g(θ)] is used as the

likelihood for Bayesian inference. With a likelihood L(θ) in hand, MCMC (Markov Chain Monte

Carlo) is a convenient Bayesian estimation strategy.5 Especially in this instance, because if one

puts the parameters θ on a grid, one only needs to determine the map η = g(θ) at a finite number

of θ, many of which recur in the MCMC chain, in which case computation of g(θ) need not be

repeated. The numerical implementation of these ideas is discussed in Aldrich and Gallant (2011)

and the references therein. Code and a User’s Guide implementing the GSM method, including

generation of the MCMC chain, are at http://www.aronaldg.org/webfiles/gsm.

3.4 The Auxiliary Model

The trivariate SNP auxiliary model that we use is determined statistically and can be viewed as

a one-lag VAR model with a BEKK (Engle and Kroner (1995)) variance structure that has one

lag in both the ARCH and GARCH components of the BEKK and a leverage effect. The leverage

effect enters through the ARCH component, where the ARCH coefficient takes one of two values

depending on the sign of the innovation. The auxiliary model is determined from simulations of

the structural model so issues of data sparsity do not arise; one can make the simulation length

N as large as necessary to determine the parameters of the auxiliary model accurately.6 Using

the Bayesian information criteria (BIC) protocol for selecting an SNP density, we chose a model

with the aforementioned (Section 1) location and scale specifications and non-Gaussian errors for

innovations, which are of the degree four SNP type (Gallant and Nychka (1987)). The auxiliary

model has 37 parameters.

5 MCMC generates a correlated sequence of draws from the posterior density from which estimates of location and
scale from the posterior density can be computed. The sequence of draws is termed an MCMC chain. See Gamerman
and Lopes (2006) for details. We used chains of length 100,000 past the point where transients died off using a
move-one-at-at-time Gaussian proposal density.

6 We used N = 1000. We found that using larger values of N did not change results other than increase run times.
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4 Inference for Generalized Scientific Models

Here we describe the particulars of our implementation of the GSM Bayesian method described in

Subsections 3.3. and 3.4.

Both the benchmark and alternative models are richly parameterized. For the benchmark model,

parameter is θ = {β, γ, ψ, η, p11, p22, κ1, κ2, λ, σ∆c, σ∆d}. Measures of location and scale of the prior

for the benchmark model parameters are reported in the first numerical block of Table 2. The prior

for the alternative model is the nearly the same except as noted in the legend of Table 2 due to the

fact that γ and η are forced by the alternative model prior to be equal. Initially the priors for the

benchmark and alternative models are Gaussian independence priors; i.e., the prior for the joint is

the product of the marginals. However, due to support conditions described immediately below and

exclusion of parameter values for which an equilibrium does not exist, the effective prior is not an

independence prior. In general, this prior is in line with other Bayesian macro studies. Measures

of location and scale for the posterior for the benchmark and alternative model are reported in

the second and third numerical blocks of Table 2, respectively. The mean of the posterior is what

is typically reported but the model is never actually simulated at the mean. The mode has the

advantage that it must satisfy support conditions and the model has been simulated at that value.

In addition to the prior, we impose the following support conditions. The subjective discount

factor β is between 0.00 and 1.00. We bound the coefficient of risk aversion γ to be above 0.00.7

We impose the following on the coefficient of ambiguity aversion η: in the benchmark model, η > γ.

We need this restriction for ambiguity aversion to exist. Hayashi and Miao (2011) and Ju and Miao

(2012) furnish detailed discussions of this requirement. Briefly, with η ≤ γ, compound predictive

probability distributions are reduced to an ordinary predictive probability, removing ambiguity

from the model and leaving no room for ambiguity aversion to play a part in agent’s allocations.

To preserve concavity in attitudes toward ambiguity, we need η > γ. Naturally, in the alternative

model we force these two parameters to be nearly equal to obtain ambiguity neutrality. Kreps and

Porteus (1978) and Epstein and Zin (1989) preferences require a separation between risk aversion

and intertemporal substitution. As a result, intertemporal elasticity of substitution parameter ψ

cannot assume either 0 or 1 values. For ψ we impose 1.00 < ψ. We constrain 0.9396 < p1,1 <

0.999620, 0.2514 < p2,2 < 0.7806, 0.01596 < κ1 < 0.02906, −0.1055 < κ2 < −0.0302, 0 < λ,

7 In line with recommendations of Mehra and Prescott (1985), the mean of the prior distribution for this coefficient is
set to 2.00.
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0.02646 < σ∆c < 0.03608, and 0.06542 < σ∆d < 0.1746 based on numerical experience acquired

with these model in previous studies.

4.1 Empirical Results

We report estimation results for the benchmark model featuring ambiguity aversion and the alter-

native model with ambiguity neutral agent in Table 2 for both annual and quarterly-sampled data.

As mentioned above, we assume a 5% measurement error in the real, per capita, consumption levels.

We estimate a total of 11 parameters for the benchmark model. Log dividend growth process, ∆dt,

is the latent variable in our estimation. Estimation results for the benchmark structural model

featuring ambiguity aversion and learning are reported in columns 5 to 7 in Table 2. We report

estimated parameters for the alternative structural model with no ambiguity aversion in the last

three columns of Table 2.8 Estimation results for annually sampled data appear in Panel A of Table

2, and those for quarterly sampled data appear in Panel B.

Estimates of mode and mean measures of subjective discount factor β are stable across our

benchmark and alternative models and between annual and quarterly-sampled results. Moreover,

they are reasonably close to values reported by Aldrich and Gallant (2011) and Bansal et al. (2007).

Thus, they do not cause any concern for us and imply precise measurements of the target parameter.

We observe the following regularities in estimated parameters: The magnitude of risk aversion

parameter, γ, is sensitive to the presence of ambiguity aversion. The mode and the mean of the

posterior of the estimated γ based on annual data in the alternative model are as much as 4

times larger than the value of the corresponding estimate in the benchmark model with ambiguity.

Estimated mean and mode of γ in alternative model with no ambiguity aversion are an order of

magnitude larger than those for benchmark model featuring ambiguity aversion based on quarterly-

sampled data. This result is related to estimation outcomes reported in Jeong et al. (2014) for their

baseline models II (recursive utility) and III (MPU), where aggregate wealth consists of financial

wealth alone. Using MPU, Jeong et al. (2014) report γ ranging between 0.2 to 2.9, while using only

recursive utility this value is 4.9. Thus, mode and mean values for γ equal to 1.4453 and 1.2481

(annual) and 1.4971 and 1.3368 (quarterly) are in agreement with Jeong et al. (2014) estimates.

In comparison with Aldrich and Gallant (2011), our estimates for γ are substantially smaller than

what they report for both habit formation model and long-run risk model, but similar to prospect

8 We force η = γ throughout the estimation. Thus, θ for the alternative model featuring ambiguity neutrality has 10
parameters.
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theory-based results. The difference between estimates of mode and mean of posterior values of γ

in our alternative model and the LRR model in Aldrich and Gallant (2011) are still non-negligible.

Under the benchmark model, we obtain estimates for the mode and the mean of IES, ψ, that

are larger than unity as is advocated by the long run risk literature. This regularity holds across

estimates based on annual and quarterly-sampled data, with the difference that These estimated

values are much larger than estimates reported by Aldrich and Gallant (2011), which are in the

neighborhood of 1.50. However, our mode and mean estimates under both benchmark and alter-

native models are significantly more stable than values reported by Jeong et al. (2014). Their

estimates, across five models and two assumptions for volatility dynamics (time-varying volatility

and nonlinear stochastic volatility) range between 0.00 to ∞. Their benchmark MPU model ψ

estimates, when all parameters are estimated from the data and wealth is only a function of returns

to financial investments, are equal to 0.68 with time-varying volatility and 11.161 with nonlinear

stochastic volatility. When wealth is assumed as the sum of financial and labor income, and hence

some parameters are calibrated rather than estimated, their EIS estimates range between 1.17 to

15.13. As such, our estimates of posterior means that range between 3.31 and 4.56 are both more

stable and more plausible, especially in comparison with EIS estimates in financial wealth-only,

fully estimated cases in Jeong et al. (2014) that are directly comparable to our estimated models.

The EIS parameter ψ, as discussed in Liu and Miao (2014), is a crucial parameter for matching

macroeconomic and financial moments. The risk aversion parameter and the EIS both determine

the representative agent’s preference for the timing of resolution of uncertainty. If γ > 1/ψ, the

agent prefers an early resolution of uncertainty (see Epstein and Zin (1989) and Bansal and Yaron

(2004)). By this measure, both benchmark and alternative models point to a representative agent

who desires an early resolution of uncertainty. Based on our estimation results, and as expected due

to the impact of ignoring ambiguity aversion on the estimated value of risk aversion parameter, this

effect is stronger in the alternative model. Thus, based on the GSM estimation of the structural

models with and without ambiguity aversion, we find strong support for a large literature on long

run risks.9

We report the first direct estimates of the ambiguity aversion parameter η. The posterior mode

9 In the empirical literature, some papers (e.g. Hall (1988) and Ludvigson (1999)) find that the EIS estimate is close
to zero using aggregate consumption data. Other papers find higher values using cohort- or household-level data
(e.g., Attanasio and Weber (1993) and Vissing-Jorgensen (2002)). Attanasio and Vissing-Jorgensen (2003) find that
the EIS estimate for stockholders is typically above 1. Bansal and Yaron (2004) argue that estimates of the EIS
based on aggregate data will be biased down if the usual assumption that consumption growth and asset returns are
homoscedastic is relaxed.
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and mean values of this parameter are 29.72 and 27.31 for annual data and 54.45 and 55.95 for

quarterly data in our benchmark model. In comparison with calibration exercises in the literature,

our estimates are larger than calibrated values in an endowment economy (η = 8.86 in Ju and

Miao (2012)) and in a production economy (η = 19 in Jahan-Parvar and Liu (2014)). Obviously,

our estimated results meet the criteria that η � γ. Our estimated results for ambiguity aversion

parameter imply that the mapping between annual and quarterly estimates of η may not be linear

and that agents are more ambiguity averse in higher sampling frequencies. Intuitively, a higher

sampling frequency for data collection implies a shorter decision horizon and more frequent shocks

to beliefs (µ̃t) for the agent, thus more room for pessimism.

Jeong et al. (2014) report an indirect measure for ambiguity aversion based on MPU equal to

0.34. Their estimation result is not directly comparable to ours, since it is based on a very different

functional form and underlying assumptions. In fact, it is best described as a lower bound on the

beliefs about the probability of the state of the economy in the MPU model, and not a measure for

ambiguity aversion. Thus, as a probability measure, it is bound between 0 and 1. Similarly, Viale

et al. (2014) characterize cross-sectional ambiguity as the likelihood ratio between MPU-distorted

and reference models. Ilut and Schneider (2014) and Bianchi et al. (2014) present estimates of

MPU ambiguity measures in DSGE settings. Ilut and Schneider (2014) posits an autoregressive

and exogenous process for ambiguity, while Bianchi et al. (2014) – similar to Jeong et al. (2014) –

find bounds for beliefs about uncertainty. As such, these findings are not directly comparable with

ours.

Ahn et al. (2014) study smooth ambiguity aversion as part of their experimental research on

ambiguity. They report values for the ambiguity aversion parameter based on the static formulation

of smooth ambiguity aversion ranging between 0.00 and 2.00, with mean value of 0.207 for all

subjects in their experiment population. They choose their population such that both “ambiguity

neutral” and “ambiguity loving” subjects are represented. Thus, estimates for ambiguity aversion

parameter for 5 to 50th percentiles of their population are zero. In addition, the value of ambiguity

aversion parameters – regardless of whether smooth or kinked specifications are estimated – are at

least an order of magnitude smaller than dynamic model-based estimates such as ours.10 We believe

10 We find that the difference in the magnitude of these estimates is similar to the difference between static estimates
of Gul (1991) disappointment aversion parameter reported by Choi, Fisman, Gale, and Kariv (2007) and dynamic
estimates reported by Feunou, Jahan-Parvar, and Tédongap (2013). Thus, these differences are more likely to be
an outcome of ignoring the dynamics in the data, rather than a result of using alternative estimation methods.
For example, while we use GSM Bayesian methodology, Feunou et al. (2013) implement a frequentist maximum
likelihood estimator. Yet, similar discrepancies between statically and dynamically estimated preference parameters
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that ignoring intertemporal dimensions of choice under ambiguity explains these differences in the

magnitude of estimated parameters. As mentioned earlier, while estimated ambiguity aversion

parameters based on kinked specification are statistically different from zero in Ahn et al. (2014),

the estimated smooth ambiguity parameters are not. In comparison with these findings, η in our

benchmark model is tightly estimated – standard deviations of the posterior are less than 15 percent

of the value of the posterior mean.

Thimme and Völkert (2015) use quarterly data to estimate smooth ambiguity parameter based

partial calibration of pother parameters (specifically, they calibrate ψ) and a linearized SDF. Their

estimates based on ψ = 2 (IES = 0.5) and ψ = ∞ (IES = 0.00), yield η = 35.09 and 61.03

respectively. These partially estimated values are comparable in magnitude with our quarterly

estimation results, but fall deep in the tails of the posterior distribution of η.

Our estimates of the transition probabilities (p11 and p22), low and high mean consumption

growth (κ1 and κ2), and the volatility of consumption growth (σ∆c) are close to empirical results

reported in other studies such as Cecchetti, Lam, and Mark (2000) for both benchmark and alter-

native models. The main difference lies with the benchmark model which yields lower estimated

values for p22, κ1 and σ∆c. The difference between Cecchetti et al. (2000) estimates of these pa-

rameters and ours are not negligible. In particular, the difference between Cecchetti et al. (2000)

estimate of p22 and ours points to about 50% difference. However, this is not surprising. Cecchetti

et al. (2000) estimates (reported in Table 2, page 790 in their paper) are based on a reduced-form

fitting of the data. Ours are based on a structural model. Besides, we use different data and

methodology. Our data set is both more recent (1929-2011 vs. 1871-1993) and shorter.

Our estimates for leverage ratio (λ) and the volatility of dividend process (σ∆d) are not directly

comparable to estimates reported in Aldrich and Gallant (2011), Gallant and McCulloch (2009),

or Bansal et al. (2007) due to different specifications for modeling dividend growth. Specifically,

the LRR model features time variation in the volatility of fundamentals, while we rely on Markov-

switching and distortions in state beliefs to deliver the time-variation in the volatility of returns.11

However, our estimated σ∆d is close in magnitude to the volatility of dividend process in the prospect

theory model estimated in Aldrich and Gallant (2011). In their formulation of a prospect theory-

based asset pricing model, Aldrich and Gallant posit constant volatility for this process. Thus,

are observed.
11 Jahan-Parvar and Liu (2014) discuss this feature of asset pricing models based on smooth ambiguity aversion prefer-

ences in detail both theoretically and based on simulation exercises.
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magnitudes of estimated parameters are comparable, since estimation methodology is essentially

the same in both studies.

5 Model Comparison and Robustness

5.1 Relative Model Comparison

Relative model comparison is standard Bayesian inference. The posterior probabilities of the models

with and without ambiguity aversion are computed using the Newton and Raftery (1994) p̂4 method

for computing the marginal likelihood from an MCMC chain when assigning equal prior probability

to each model. The advantage of that method is that knowledge of the normalizing constants of the

likelihood L(θ) and the prior π(θ) are not required. We do not know these normalizing constants

due to the imposition of support conditions. It is important, however, that the auxiliary model be

the same for both models. Otherwise the normalizing constant of L(θ) would be required. One

divides the marginal density for each model by the sum for both models to get the probabilities for

relative model assessment.

The computed odds ratio is 1/5.85e−184, which strongly favors the benchmark model over the

alternative model. This ratio implies that our benchmark model provides a better description of

the available data in the framework of the equilibrium model discussed in Section 3. Given the

values of the log likelihoods for the benchmark and alternative models reported in Table 2 one

hardly needs to bother with odds ratios. The verdict is obvious.

5.2 Forecasts

We can view a forecast as a functional Υ : f(·|·, η) 7→ υ of the auxiliary model that can be computed

from f(·|·, η) either analytically or by simulation. Due to the map η = g(θ), we view such a forecast

as both a forecast from the structural model and as a function of θ. Viewing it as a function of θ, we

can compute υ at each draw in the posterior MCMC chain for θ which results in an MCMC chain

for υ. From the latter chain and the mean, mode, and standard deviation of υ can be computed.

The same quantities can be computed for draws from the prior. Two example are Figures 4 and 5,

which plot the mean prior and posterior forecasts of the benchmark model (left hand side) and the

alternative model (no ambiguity aversion, right hand side). These forecasts are generated for two

periods, ending in 2006 and 2011 respectively, to illustrate the impact of going into and emerging

17



from a period of significant economic uncertainty and the role of ambiguity aversion in such times.

Prior forecasts appear in Figure 4. As expected, they do not differ much between pre- and

post-Great Recession periods. There are, however, differences between prior forecasts based on the

benchmark model and the alternative model. The main difference is the disparity in the level of

benchmark and alternative model-based forecasts of the short rate. The benchmark model forecasts

a higher level for the short rate (and wider posterior standard deviations) than the alternative

model. These forecasts are counterintuitive, since we expect the agent to have a higher demand

for a safe asset that pays the short rate, and hence a lower short rate. Once we take the forecast

standard deviations into account, they appear less counterintuitive. The second difference is the

slight increase in consumption growth path forecast by the benchmark model, against the drop in

consumption growth path forecasts by the alternative model.

Prior forecasts are not a measure of a model’s success in capturing the data dynamics. For

that purpose, we rely on posterior forecasts, which we report in Figure 512. As the Figure shows,

consumption growth dynamics differ both between the benchmark and the alternative model, and

across pre- and post-Great Recession forecasts. Both observations are in line with the theory and

our expectations. Our discussion is based on comparing mean posterior forecasts. The posterior

forecast paths generated by both modes are on average similar, but the benchmark model implies

more variation in consumption growth in the future.

The benchmark model yields little variation in consumption growth forecasts. Both benchmark

and alternative models forecast a slight drop in consumption growth for pre-recession period. Simi-

larly, both models forecast a flat trajectory for consumption growth based on available information

by the end of 2011.

In pre-recession period, the benchmark model forecasts a steeper drop in equity returns in

comparison with the alternative model, roughly 10% against 5%, respectively. For the post-Great

Recession period, the benchmark model yields stock return posterior forecasts that are 50% lower

than the alternative model. Simply put, ambiguity aversion implies modest equity premium (around

4.5%) for the foreseeable future, while ambiguity neutral alternative model predicts a bull market

– equity premium close to 10%. The difference, reflects the role of the third term in SDF equation

(6) for the benchmark model, and its absence in the SDF for the alternative model, both between

models and across forecast periods. This gap in forecasts between the two models is in line with

12 The dramatic change in the standard errors of the forecasts between prior and posterior gives one an intuitive feel
for the information contained in the data.
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earlier findings. For example, Aldrich and Gallant (2011) report forecasts of roughly 6% for equity

returns for 2009-2013 period for the long-run risk model of Bansal and Yaron (2004), based on

data ending in the Great Recession period, which may be viewed as high given the recent past

experience.

It is clear from this figure that the benchmark model predicts both a drop in the risk-free rate

and an overall lower risk-free rate in comparison with the predictions of the alternative model, across

pre- and post-Great Recession periods.13 This empirical regularity echoes the findings of earlier

theoretical research. Ambiguity aversion implies a more pessimistic attitude, and as result, a higher

precautionary saving demand than the precautionary demand that Epstein and Zin utility induces

in the alternative model. As a result, the prices of the risk-free bonds are higher, leading to lower

yields. The difference between forecasts are not negligible: in both pre- and post-recession periods,

it amounts to roughly 1% in real interest. Given recent announcements by various practitioners,

academicians and former policy makers about likelihood of interest rates reverting back to “old

normal” levels, our benchmark model forecasts seem reasonable.14

Given that Bayesian model comparison prefers the benchmark model over ambiguity neutral

alternative model, these forecasts merit attention. The two models lead to very different dynamics

for consumption growth and asset returns. If we indeed live in a world populated by ambiguity

averse agents – implied by our results – then policy and decision makers need to be aware of the

inherently different implications generated by these two class of preferences.

5.3 Asset Pricing Implications

In this section, we discuss the asset pricing implications of our estimated models. As mentioned

earlier, our benchmark model is the exchange economy of Ju and Miao (2012). We are interested in

comparing how closely asset pricing quantities generated by calibrating this model using estimated

parameters, reported in Table 2, match sample moments reported in Table 1. Besides, we compare

the results generated from the alternative model with ambiguity neutrality with those from the

benchmark model. In addition, we compare the performance of this calibration with results reported

in the original study by Ju and Miao. These comparisons show that our estimated parameters imply

13 While this observation is in line with the zero-lower bound environment since the Great Recession, they should not be
viewed as synonymous. We are forecasting real risk-free rates. They are not influenced by fiscal or monetary policy,
and are endogenously determined.

14 For example, according to Reuters in May 16, 2014, former Federal Reserve Chairman Ben Bernanke opined that low
interest rate environment is likely to continue beyond many current forecasts.
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better performance in the asset pricing dimension.

We report model generated unconditional means and standard deviations of risk-free rate, rf,t

and equity premium, re,t − rf,t. In addition, we report Sharpe ratios and the ratio of volatility of

the SDF to expected value of the SDF, σ(Mt)/E(Mt), which is interpreted as the market price of

risk. The results are reported in Table 3.

In comparison with sample data presented in Table 1, and with Ju and Miao (2012), we observe

the following.15 First, the benchmark model generates risk-free rate moments that are much closer

to sample moments than the alternative model. While the volatility of risk-free rate is largely

controlled by the magnitude of the IES parameter, introduction of ambiguity aversion seems to

improve the model generated excess volatility in risk-free rates in the alternative model.

Second, while both benchmark and alternative models yield model generated volatilities for

equity premium that are very close to sample volatility for this quantity, they differ dramatically

in terms of their performance in matching the mean equity premium. In our sample, the mean

equity premium value is 7.88%. At 9.44%, the benchmark model generates a larger mean equity

premium. However, this value is much closer to the sample mean than 3.83% mean equity premium

generated by the alternative model. As documented in Bansal and Yaron (2004), it is a well-known

fact that without high risk aversion parameter values, Epstein and Zin (1989) recursive preferences

have difficulty in matching the mean equity premium. In their study, Bansal and Yaron have to set

γ equal to 10 – at the end of admissible range suggested by Mehra and Prescott (1985) – to match

the mean equity premium. Since the estimated γ for the alternative model is smaller (E(γ) = 7.52

and σ(γ) = 0.56), the alternative model falls into this well-documented trap.

The market price of risk, defined as σ(M)/E(M), is closely related to the moments of asset

returns via the Hansen-Jagannathan bound. Ju and Miao (2012) find that the market price of risk

is about 0.60 as implied by the calibration with ambiguity aversion. In a production setting, Jahan-

Parvar and Liu (2014) find that the market price of risk is about 0.94 with ambiguity aversion. In

the data, the Sharpe ratio is about 0.40–0.50. The alternative model implies that the market price

of risk is 0.37, which is lower than the empirical Sharpe ratio and violates the Hansen-Jagannathan

bound. On the other hand, the benchmark model generates a market price of risk of 2.33, which

satisfies the Hansen-Jagannathan bound and also enables the model to match the key financial

moments.

15 Ju and Miao (2012) use data from 1871-1993 sample period. Thus, our findings are not directly comparable with
theirs.
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Finally, an important question is: does our structural estimation imply a reasonable magnitude

of ambiguity aversion? To address this question, we use detection-error probabilities to assess the

room allowed for ambiguity aversion based on our structural estimation results. This exercise is

meaningful because our estimation is grounded in the data and thus is more informative about

the behavior of economic agents and the dynamics of economic variables. For comparison, we also

calculate detection-error probabilities using the calibrated parameter values in Ju and Miao (2012).

Detection-error probabilities are an approach developed by Anderson et al. (2003) and Hansen

and Sargent (2010) to assess the likelihood of making errors in selecting statistically “close” (in

terms of relative entropy) data generating processes (DGP). In this paper, a DGP refers to a

Markov switching model for consumption growth as specified in Equation (1). Without ambiguity

aversion, transition probabilities are defined as in the transition matrix P in Section 3.1, and in this

case we obtain the reference DGP. However, ambiguity aversion implies distortion to the transition

probabilities in a pessimistic way and thus gives rise to the distorted DGP. The Appendix shows

that the reference DGP and the distorted DGP differ only in terms of transition probabilities. We

adapt to the current endowment economy the approach of computing detection-error probabilities

in Jahan-Parvar and Liu (2014). This approach enables us to simulate artificial data from the

reference and distorted DGPs and to evaluate the likelihood explicitly. Details of the algorithm of

computing detection-error probabilities are included in the Appendix.

A sizable detection-error probability associated with a certain value of the ambiguity aversion

parameter, η, implies that there is a large chance of making mistakes in distinguishing the reference

DGP from the distorted DGP, and thus ample room is allowed for ambiguity aversion. With the

estimated structural parameters in Table 2, the detection-error probability is 22.41%. This finding

implies that the ambiguity-averse agent in our estimation faces significant difficulty is distinguishing

between the reference and distorted DGPs.

6 Conclusion

Smooth ambiguity preferences of Klibanoff et al. (2005, 2009) have gained considerable popularity

in recent years. In part, this popularity is due to clear separation between ambiguity – a char-

acteristic of a representative agent’s subjective beliefs – and ambiguity aversion that derives from

the agent’s tastes. In this paper, we estimate the endowment equilibrium asset pricing model with
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smooth ambiguity preferences proposed by Ju and Miao (2012) using U.S. data and GSM Bayesian

estimation methodology of Gallant and McCulloch (2009) to a) investigate the empirical properties

of such an asset pricing model as an adequate characterization of the returns and consumption

growth data and, b) provide an empirical estimation of the ambiguity aversion parameter and its

relationship with other structural parameters in the model. Our study contributes to the existing

literature by providing a formal empirical investigation for adequacy of this class of preferences

for economic modeling, and presenting estimations for the structural parameters of this model.

The estimated structural parameters are in line with theoretical expectations, and are comparable

with estimated parameters in studies using similar or related estimation methods. With respect

to measurement of ambiguity aversion, our results show a marked improvement over the existing

literature. The existing empirical literature either provides measures of ambiguity (which is usually

the size of the set of priors in the MPU framework) – but not ambiguity aversion of the agent – or

statistically implausible estimates for smooth ambiguity aversion parameters. Our study addresses

both shortcoming in the extant literature.

We find that Bayesian model comparison strongly favors the benchmark model over the alterna-

tive model featuring Epstein and Zin recursive preferences. In addition, we find that the estimated

ambiguity aversion parameter is higher than the values in calibration studies. We explore fore-

casting and asset pricing implications using our estimated model. We find marked differences in

forecasts generated from the benchmark model and the alternative model. In short, the benchmark

model generates more conservative forecasts for equity premium and real interest rates in compar-

ison with the alternative model. We find that based on the estimated parameters, the equilibrium

asset pricing model can successfully reproduce main stylized facts about asset returns. In addi-

tion, detection-error probabilities computed using the estimated parameters imply ample scope for

ambiguity aversion.
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7 Appendix: Detection Error Probabilities

• In constructing distorted transition probabilities, we consider a “full information model”,
where the agent is ambiguity averse but state zt is observable. In this case, the Euler equation
is

0 = p11E1,t

[
Mzt+1,t+1 (Re,t+1 −Rf,t)

]
+ (1− p11)E2,t

[
Mzt+1,t+1 (Re,t+1 −Rf,t)

]
for zt = 1 and

0 = (1− p22)E1,t

[
Mzt+1,t+1 (Re,t+1 −Rf,t)

]
+ p22E2,t

[
Mzt+1,t+1 (Re,t+1 −Rf,t)

]
for zt = 2. The Euler equation can be rewritten as

0 = p̃11E1,t

[
MEZ
zt+1,t+1 (Re,t+1 −Rf,t)

]
+ (1− p11)E2,t

[
MEZ
zt+1,t+1 (Re,t+1 −Rf,t)

]
0 = (1− p̃22)E1,t

[
MEZ
zt+1,t+1 (Re,t+1 −Rf,t)

]
+ p̃22E2,t

[
MEZ
zt+1,t+1 (Re,t+1 −Rf,t)

]
where MEZ

zt+1,t+1 is the SDF under recursive utility without ambiguity aversion, and p̃11 and
p̃22 are distorted transition probabilities and are given by

p̃11 =
p11

p11 + (1− p11)

E2

[
V 1−γ
zt+1,t+1

]
E1

[
V 1−γ
zt+1,t+1

]
−

η−γ
1−γ

, (8)

p̃22 =
p22

(1− p22)

E1

[
V 1−γ
zt+1,t+1

]
E2

[
V 1−γ
zt+1,t+1

]
−

η−γ
1−γ

+ p22

, (9)

where Vzt,t, (zt = 1, 2) are solutions to the following value function under full information:

Vzt,t(C) =

[
(1− β)C

1− 1
ψ

t + β
{
Rzt

(
Vzt+1,t+1 (C)

)}1− 1
ψ

] 1

1− 1
ψ ,

Rzt
(
Vzt+1,t+1 (C)

)
=

(
Ezt
[(

Ezt+1,t

[
V 1−γ
zt+1,t+1 (C)

]) 1−η
1−γ
]) 1

1−η

.

• The numerical algorithm of calculating detection-error probabilities takes the following steps:

1. Repeatedly draw {∆ct}Tt=1 under the reference data generating process (DGP), which is
the two-state Markov switching model with transition probabilities p11 and p22.

2. Evaluate the log likelihood function under the reference DGP by computing

lnLrT =
T∑
t=1

ln

{
2∑

zt=1

f (∆ct|zt) Pr (zt|Ωt−1)

}

where πt−1 = Pr (zt = 1|Ωt−1) are filtered probabilities implied by the Markov switching
model.
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3. Evaluate the log likelihood function under the distorted DGP by computing

lnLdT =
T∑
t=1

ln

{
2∑

zt=1

f (∆ct|zt) ˜Pr (zt|Ωt−1)

}

where ˜Pr (zt|Ωt−1) are the filtered probabilities that are obtained by applying the dis-
torted transition probabilities p̃11,t and p̃22,t (in place of the constant transition proba-
bilities p11 and p22) to the Markov switching model’s filter.

4. Compute the fraction of simulations for which ln
(
LdT
LrT

)
> 0 and denote it as pr. The

fraction approximates the probability that the econometrician believes that the distorted
DGP generated the data, while the data are actually generated by the reference DGP.

5. Do a symmetrical computation and simulate {∆ct}Tt=1 under the distorted DGP. Com-

pute the fraction of simulations for which ln
(
LrT
LdT

)
> 0 and denote it as pd. This fraction

approximates the probability that the reference DGP generated the data when actually
the distorted DGP generates the data.

Assuming an equal prior on the reference and the distorted DGP, the detection error
probability is defined by (see Anderson et al. (2003)):

p (η) =
1

2
(pr + pd) . (10)

In the approximation, we set T = 100 years and simulate 20,000 samples of artificial
data.
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Table 1: Summary Statistics of the Data

rft ret ret − r
f
t ∆ct

1929-2013

Mean 8.54 1.07 7.47 1.85
St Dev 20.35 0.06 20.35 2.15
Skewness -0.29 0.60 -0.29 -1.49
Kurtosis -0.72 1.32 -0.72 5.01
J-B test 0.3938 0.0133 0.4012 0.0001

1947:Q2-2014:Q2

Mean 8.76 1.05 7.71 1.91
St Dev 16.43 0.02 16.44 1.02
Skewness -0.57 0.99 -0.57 -0.42
Kurtosis 1.90 1.27 1.90 1.11
J-B test 0.0013 0.0001 0.0013 0.0017

This table reports summary statistics for annual (1929-2013) and quarterly (1947:Q2-2014:Q2) U.S. data. 1-year Treasury

Bill rate (rft ), aggregate equity returns (ret ), excess returns (ret − r
f
t ), and real, per capita, log consumption growth (∆ct) are

expressed in percentages. Mean and standard deviation of quarterly data are annualized. The row titled “J − B test” reports
the p-values of Jarque and Bera (1980) test of normality.
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Table 3: Asset Pricing Implications

Benchmark Model Alternative Model Ju and Miao
E(rf,t) 0.98 2.14 2.66
σ(rf,t) 0.12 2.34 1.16
E(re,t − rf,t) 9.44 3.83 5.75
σ(re,t − rf,t) 19.75 19.86 18.26
Sharpe Ratio 0.48 0.19 0.31
σ(Mt)/E(Mt) 2.33 0.37 0.60

We present the asset pricing quantities implied by calibrating the model in Ju and Miao (2012) and the alternative model
featuring ambiguity neutrality using the estimated parameters presented on Table 2. In addition, we present the original
quantities reported by Ju and Miao (2012) for 1871–1993 sampling period. Unconditional means and standard deviations,
E(xt) and σ(xt), are in percents.
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Figure 1: Risk Free Rate, Aggregate Equity Returns, Excess Returns, and Consumption Growth
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The figure shows, from top to bottom, annual returns of CRSP-Compustat value weighted index returns, 1-year Treasury Bill
rates, excess returns over 1-year T-Bill rate, and annual real per capita log consumption growth for 1929-2013 period.
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Figure 2: Bayesian and Ambiguity-Distorted Beliefs
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The figure plots Bayesian belief, defined in Equation (3), and ambiguity-distorted belief, defined in Equation (7), based on
1929-2011 historical consumption growth data.

33



Table 4: Prior Forecasts

Benchmark Model Alternative Model

Pre-Great Recession Forecasts
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The figures show, from top to bottom, prior forecasts for consumption growth, equity returns and the short rate for both our
benchmark model featuring ambiguity aversion and the alternative model with ambiguity neutral agents. The left hand panel
contains forecasts for the benchmark model, and the right hand panel does the same for the alternative model. The dashed
lines are the ±1.96 posterior standard deviations.
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Table 5: Posterior Forecasts

Benchmark Model Alternative Model
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The figures show, from top to bottom, prior forecasts generated for (rows 1 to 3) and posterior forecasts (rows 4 to 6) for
consumption growth, equity returns and the short rate for both our benchmark model featuring ambiguity aversion and the
alternative model with ambiguity neutral agents. The left hand panel contains forecasts for the benchmark model, and the
right hand panel does the same for the alternative model. The dashed lines are the ±1.96 posterior standard deviations.
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