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Abstract— The ever increasing use of intelligent multi-agent
systems poses increasing demands upon them. One of these is the
ability to reason consistently under uncertainty. This, in turn, is
the dominant characteristic of probabilistic learning in graphical
models which, however, lack a natural decentralised formulation.
The ideal would, therefore, be a unifying framework which is able
to combine the strengths of both multi-agent and probabilistic
inference

In this paper we present a unified interpretation of the infer-
ence mechanisms in games and graphical models. In particular,
we view fictitious play as a method of optimising the Kullback-
Leibler distance between current mixed strategies and optimal
mixed strategies at Nash equilibrium. In reverse, probabilistic
inference in the variational mean-field framework can be viewed
as fictitious game play to learn the best strategies which explain
a probabilistic graphical model.

I. INTRODUCTION

Multi-agent systems have become an attractive approach
to solving complex and distributed activities. They are par-
ticularly useful when the task becomes too expensive or
impossible to accomplish by a single agent, be it due to
physical, geographical or temporal constraints. Application
examples in which such problems occur range from control of
vehicles in wide geographical terrains, global communication
networks, economics and parallel optimisation.

In a multi-agent system, each agent has its own expert
knowledge and observation domain. Its action responses are
based on its local view (formed by fusing observations from
its local environment), observed past actions and its belief of
future actions of some of its neighbouring agents. Since there
is typically no central controller, the aim is therefore to achieve
emergent global behaviour whereby a common goal is solved.
However, a common hurdle in real world applications is that
information isn’t exact and thereby requiring that an agent
fuses uncertain information consistently. We may consider two
ways of tackling this task: 1) either adapt probabilistic methods
to multi-agent domains [1] or 2) incorporate probabilistic
reasoning into current multi-agent systems [2], [3]. The former
approach, has unfortunately lead to systems that are rigid
with regards to the agent’s environment. In such systems
the topology of all agent interactions is predefined and is
often singly connected. In the latter approach, the agent’s
environment is changing and this will have an affect on

the probabilistic solution. Communication loops, for instance,
result in over-confident probability estimates and thus incorrect
decision making. In this approach in general, it is far from
clear what, if at all, solutions are reached.

Typically, there a few questions one might want to ask about
the solutions:

1) How good is a solution? By good, we mean robustness
to changes in the variables due to noise or other envi-
ronmental factors.

2) Will the system always converge or can it exhibit limit
cycle behaviour, and under what conditions can this
happen?

3) How many equilibria are there and what is the size of
the solution clusters?

These are all questions about the global behaviour of locally
acting agents that is hard to understand and subject to intensive
research. Furthermore, an additional ad hoc embedding of
probabilistic inference renders these questions even more
intractable.

The most fruitful approach to this problem, in our opinion, is
that of finding a unifying cost-function view of the multi-agent
learning under uncertainty. The more we know about the cost
function, the more can be said about the global behaviour of
the system. Here, we assume that there exists a clear functional
relationship between the global cost function and the local
(agent-specific) cost functions, e.g. team game cost functions
in [4].

In this paper we interpret learning in games as that of
finding (as a result of iterative play) the strategy closest to
the optimal Nash strategy. Closeness is, subjectively, measured
by a Kullback-Leibler distance. This measure of distance
is typically used for probabilistic inference – the method
used to learn optimal models of real-world observations. In
particular, a certain simplification of the Kullback-Leibler
distance, known as the variational mean-field framework, is
shown to be equivalent to independent players competing to
find the best explanation of the world.

In section II of this paper we review fictitious play and the
cost function view of it. Section IV demonstrates the use of an
identical cost function in probabilistic learning and highlights
the equivalences between learning games and probabilistic



models. Section V points to extensions that can be made based
on the similarities observed in the previous section.

II. (LEARNING IN) GAMES: FICTITIOUS PLAY

We consider non-cooperative strategic-form games with I

players, indexed by i ∈ {1, · · · , I} 1. We split the set of
players into two subsets, I = {i, ī}, consisting of player
i and all other players ī = {1, 2, · · · , i − 1, i + 1, · · · , I}.
Each player has a finite set of pure strategies (or actions)
Si - typically assumed to be discrete 2. The space of all
possible combinations of actions is given by the strategy
profile S =

∏I

i=1 Si = S1 × S2 · · · × SI . Each player’s
mixed strategy is a distribution over her set of pure strategies
Qi(Si) ∈ ∆i(Si) ∀i = 1, · · · , I , where ∆i(Si) is the set
of all probability distributions over Si. Analogous to the
pure strategy profile, the mixed strategy profile is given by
Q(S) =

∏I

i=1 Qi(Si) = Q1(S1)×Q2(S2) · · · ×QI(SI), and
is an element of ∆(S) =

∏I

i=1 ∆1(S1)×∆2(S2) · · ·×∆I (SI)
. We will use Sī and Qī(Sī) to mean all other players’ pure
strategy profile and the mixed strategy profile, respectively,
i.e. Qī(Sī) =

∏

j 6=i Qi(Si) = Q1(S1) × Q2(S2) · · · ×
Qi−1(Si−1)×Qi+1(Si+1) · · · ×QI(SI) and Sī =

∏

j 6=i Si =
S1×S2 · · ·×Si−1 ×Si+1 · · ·×SI . The payoff to each player,
i, is a function mapping all pure strategy combinations of all
players on the real line, i.e. `i(S) : S → R for a given pure
strategy profile S = Si × Sī.

We define the utility function then as the expected reward
obtained by player i, given the mixed strategies Qi(Si) of all
of i’s opponents

Ri(Q(Si), Qī(Sī)) , E(`i(S)) =

∫

· · ·

∫

Q(S)`i(S) d S.

(1)

When solutions to each player’s utility maximisation goal
form a fixed point, it is known as an equilibrium. It specifies
the joint mixed strategy composed of independent mixed
strategies every player adopts for a particular game. In par-
ticular, the Nash equilibrium is given as the optimal mixed
strategy Q∗

i (Si) of player i

Ri(Q
∗
i (Si), Q

∗
ī (Sī)) = Ri(Qi(Si), Q

∗
ī (Sī)) ∀i = 1, · · · , I

(2)
i.e. each player has no incentive to deviate from the equilib-
rium strategy assuming none of the other players do.

A model for learning the optimal mixed strategy attained at
Nash equilibrium is fictitious play. During play, every player
monitors the action of the opponents and continually updates
the beliefs about the opponents’ strategies. The action each
player plays is the best response to the opponents’ current
mixed strategies. Thus, starting with some prior beliefs about

1We abuse notation using I to denote both the set of players and the
cardinality of the set.

2For reasons of notational clarity any integration over the strategy space
will be denoted by an integral, irrespective of whether the space is discrete
or continuous.

strategies, at discrete time-step t the strategies are updated
according to

Qt+1
i (Si) ∈

(

1 −
1

t + 1

)

Qt
i(Si) +

1

t + 1
β(Qt

i(Sī)) (3)

where β(Qt
i(Sī)), the best response to the other players mixed

strategies, is defined as the mapping

β(Qt
ī(Sī)) : Qt

i(Sī) → Qt
i(Si) (4)

where

β(Qt
ī(Sī)) = argmax

Qi(Si)∈∆i(Si)

Ri(Qi(Si), Qt(S̄i)). (5)

At Nash equilibrium, the mapping reaches steady state

Q∗
i (Si) = βi(Q

∗
ī (Sī)) ∀i = 1, · · · , I (6)

and every player adopts the mixed strategy that maximises the
expected utility.

One objection to fictitious play has been that players almost
never play mixed strategies. Instead they myopically choose
a pure strategy which maximises the immediate payoff. As a
result, they may constantly switch between the pure strategies
with ever increasing cycle durations [5]. To overcome such
problems, fictitious play has been generalised to smooth fic-
titious play, in which players begin play sub-optimally and
increasingly play myopic best responses as time, t, passes [5].
In such cases, the utility function is augmented to

Ri(Qi(Si),Qī(Sī)) =
∫

· · ·

∫

Q(S)`i(S) d S + τH(Qi(Si))
(7)

so that the smooth best response becomes

βi(Qī(Sī)) =

argmax
Qi(Si)∈∆(Si)

{Ri(Qi(Si), Qī(Sī)) + τH(Qi(Si))} (8)

while the iterative update of the mixed strategies still fol-
lows (3). The temperature parameter, τ , controls the degree of
sub-optimality played by the players and can be regarded as
determining the amount of perturbation of the expected reward
Ri(Qi(Si), Qī(Sī)). The perturbation to player i’s payoffs,
H(Qi(Si)) is required to be a smooth strictly differentiable
concave function the slope of which approaches infinity as
Qi(Si) reaches the boundary of ∆i(Si). One of the functions
which satisfies the conditions for the second term in (7) is the
entropy function

H(Qi(Si)) = −

∫

Qi(Si) log Qi(Si) d Si. (9)

Under these assumptions, the best response mixed strategy
that maximises (8) can be derived by differentiating (8) with
respect to Qi(Si) and gives rise to

Qi(Si) ∝= exp
1

τ

∫

· · ·

∫

Qī(Sī)`i(S) d S̄i (10)

which, in the game theory literature is often abbreviated to

Qi(Si) ∝ exp
1

τ
Ri(Si, Qī(Sī)) (11)



III. INFORMATION THEORETIC VIEW OF FICTITIOUS PLAY

Smooth fictitious play with exponential best response func-
tions, as in (10), can be viewed from an information theoretic
perspective. From that, so far over-looked correspondence,
the aim of fictitious play is to minimise the Kullback-Leibler
divergence, which is defined as

D(f(x))‖g(x)) =

∫

f(x) log
f(x)

g(x)
d x (12)

between any distributions f(x) and g(x) of x.
To see this, consider some distribution, Pi(Vi, S|θi), of

payoffs Vi for player i and the set of played strategies of all
players, S. The vector θi parameterises the mixed strategy dis-
tribution of all players, which is unknown but inferred through
repeated play. Being a distribution, it can be formulated also in
terms of prior payoffs of player i, Pi(Vi|θi), and the posterior
distribution over strategies given i’s payoffs, Pi(S|Vi, θi),

Pi(Vi|θi) =
Pi(Vi, S|θi)

Pi(S|Vi, θi)
(13)

From an information theoretic perspective, the aim of the
game is now to achieve the highest reward probability. The
relationship to standard game rewards will be described at the
end of this section.

The term on the left of equation (13) is simply (the
probability of) the expected reward after all mixed strategy
distributions have been integrated out - similar to the integral
action in equation (1).

Taking the logarithm on either side and taking the expecta-
tion with respect to any arbitrary mixed strategy distribution
Q(S), we obtain

∫

· · ·

∫

Q(S) log(Pi(Vi|θi)) d S =
∫

· · ·

∫

Q(S) log(Pi(Vi, S|θi)) d S−
∫

· · ·

∫

Q(S) log(Pi(S|Vi, θi)) d S

(14)

which, since the term on the right side of the equation is
independent of S, can be simplified to

log(Pi(Vi|θi)) =
∫

· · ·

∫

Q(S) log(Pi(Vi, S|θi)) d S−
∫

· · ·

∫

Q(S) log(Pi(S|Vi, θi)) d S

(15)

The meaning of the above equation becomes more apparent
if we reformulate equation (15) to

log(Pi(Vi|θi)) =
∫

· · ·

∫

Q(S) log

(

Pi(Vi, S|θi)

Q(S)

)

d S+

∫

· · ·

∫

Q(S) log

(

Q(S)

Pi(S|Vi, θi)

)

d S

(16)

The last term in (16) is the KL-divergence (equation (12))
between the equilibrium distribution and the current distribu-
tion over strategies. It is well-known that the KL-divergence
is strictly non-negative and zero if and only if Pi(S|Vi, θi) =
Q(S). This fact implies that the left-hand term in (16) is a
strict bound on the equilibrium expected reward.

∫

Q(S) log

(

Pi(Vi, S|θi)

Q(S)

)

d S ≤ log(Pi(Vi|θi)) (17)

As is common when using Energy minimisation concepts
for optimisation purposes, we can use Boltzmann distributions
to map energy values to probabilities. Using the same idea, we
can map rewards to probabilities. In particular, the probabili-
ties are constructed such that the smallest total reward, `i for
player i, leads to the highest probability

P (Vi|θi)) ∝ exp(`i). (18)

Using (18) in (17) leads to the lower bound estimate
∫

Q(S) log

(

P (Vi, S|θi)

Q(S)

)

d S ≤ `i (19)

Equation (17) is identical to (7), bar the fact that we have
ignored the temperature parameter τ for ease of presentation
reasons. Fictitious play can thus be seen as a two-step iterative
procedure. In the

1) update the current mixed strategies probabilities given
the action observed in the last round,

2) the algorithm computes expected rewards based on
current belief about the mixed strategies θi and, sub-
sequently, the best response.

From the analogy of fictitious play and KL divergence,
which is used in graphical model optimisation, we can draw
a simple (and for this case rather uninteresting) graphical
model of the game, shown in figure 1. The actions are random
variables with unknown distributions and referred to as latent
random variables (shown as clear nodes in 1). The rewards,
akin to measurement observations, are given and considered
instantiated random variables (shaded nodes).

IV. VARIATIONAL LEARNING

The Kullback-Leibler minimisation criterion is well known
and used in machine learning, for example in the estimation of
probabilistic models, known as graphical models. Thus, from
the machine learning point of view, fictitious play resembles
the well known Expectation Maximisation (EM) algorithm [6],
which has a cost function that is, in principle, identical to (17).

Consider again I players, index by ∀i = 1, · · · , I , and split
into two sets, I = {i, ī}. The pure strategy space of each player
is denoted by Si, that of the opponent players by Sī, and the
strategy profile by S. The mixed strategy profile is given by
Q(S), where make the specific assumption that all players,
and subsequently their mixed strategies, are independent

Q(S) =

I
∏

i=1

Qi(Si). (20)
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Fig. 1. Graphical model representation of fictitious play for two players with
mixed strategies θ1/θ2, rewards `1/`2 and actions S1/S2. Random variables
are drawn as circles, observed variables as shaded circles.

This is known as the “mean field” assumption in the variational
learning framework.

The payoffs are now generalised from discrete matrix pay-
offs to payoff functions, `(S, θ) with parameters θ. Typically
in machine learning, the payoffs take form of a model pos-
tulated to underly the experimental data generating processes
(a.k.a. generative model). Furthermore, omnipresent observa-
tion noise is captured by (more often than not) additive random
perturbations which follow certain probability distributions.

Frequently, the modelling using probability is described
as a two-player zero-sum game against nature [7], [8]. In
batch learning algorithms, nature is implicitly assumed to
play following a stationary (mixed) strategy. The observations
the researcher makes are nature’s signals which the research
uses to infer nature’s true state (type). This, effectively global
payoff function, splits into smaller components so that mod-
elling can be viewed as a cooperative game against nature.
The logarithm of the distributions is used for mathematical
convenience (the exponential family of distributions plays a
very dominant role in machine learning). Thus, the payoffs
for modelling observations D are written as

`(S,D|θ) , log P (S,D|θ) (21)

The analogy between fictitious play and the variational
methods can then be established through the cost function.
In particular, the variational learning approach finds the
maximum entropy equilibrium distribution, Q(S) subject to
maximising the expected reward (log-probability of the model)

D(Q(S)||P (S|θ)) =

∫

· · ·

∫

Q(S)`(S,D|θ) d S + τH(S)

=

∫

· · ·

∫

Q(S) log

(

Q(S)τ

p(S,D|θ)

)

d S

(22)

The second equality highlights the fact that the variational cost
functions (22) is a Kullback-Leibler divergence, as would by

the fictitious play cost function (7) with exponentiated payoffs
R.

The optimal distribution Qi(Si) of player i is one which
minimises the Kullback-Leibler divergence (22), assuming all
other players ī adopt the mixture strategy Qī(Sī). It is obtained
by partial differentiation of (22). In fact, the definition of Nash
equilibrium (2) is a partial differential in disguise. Thus, the
variational best response is a mixed strategy distribution which
takes the general form [9]

Q(Si) ∝ exp

{

1

τ

∫

· · ·

∫

Qī(Sī)`(S,D|θ) d Sī

}

(23)

This is identical to smooth fictitious play best response (25),
which as shown to converge to equilibrium for fictitious
play [10] and for the Expectation Maximisation (EM) algo-
rithm [11], which is a particular variational learning method.

Variational “play” then proceeds in two steps, commonly
referred to as the E- and M-step:

• The E-step computes player i’s best response, Q(Si),
based on the opponents’ mixed strategies Qī(Sī).

• The M-step updates the model parameters (mixed strate-
gies) θ.

There are some important differences machine learning and
learning in games is the reward.

a) Reward: The major difference is the reward. Rewards
are very frequently concave (log) functions . This represents
the fact that machine learning tasks deal with modelling real
observations. Our lack of complete information about nature,
however, makes minimum risk strategy the optimal choice
and hence a concave utility [8]. Thus, from a game theoretic
view, machine learning is a game against nature. The players
are the probability distributions imposed on parameters of the
experimental data model. They may be independent players,
characterised by independent distributions. Thus, they compete
against each other to find the best sparse mixed strategy against
nature.

By comparison with economic applications of game the-
ory [12], the currency of machine learning games is the
“information”, in the sense of log-probability. Just like normal
currency, it has no additional attributes to it. Conversion
between different monetary currencies is via exchange rates,
whilst the information currency is converted through use of
conditional probabilities.

b) Temperature: Another difference is the fact, that
the greater part of machine learning algorithms keep the
temperature parameter constant, bar for example simulated
annealing [13], annealed Markov Chain Monte Carlo [14] and
deterministic annealing [15].

c) Perturbation function: The parameters of the model
are not fixed. They are unknown and, in the Bayesian frame-
work, have associated prior and posterior distributions. These
distributions can then be considered as additional players in
the game. The value of the game in the Bayesian framework
is usually known as the evidence, the marginal probability of
the observations. In the EM learning the value becomes the
maximum likelihood of the data.



Rewards, in the EM method, can be exactly maximised.
That is in the sense that a point estimate for the parameters
of the payoff function θ was obtained. However, uncertainty
about the rewards may also exists. To deal with this uncer-
tainty in the Bayesian framework, priors are imposed on the
payoff function parameters. This leads to an extension of the
variational learning scheme, in which the maximum entropy
is not taken with respect to a flat measure over the space of
possibilities, but with respect to a particular hypothesis - that
of the prior. The adjusted cost function (24) takes the form of

D(Q(S, θ)||P (S, θ)) =

=

∫∫

Q(S)Q(θ) log

(

Q(S)τQ(θ)τ

p(S,D|θ)p(θ)

)

d S d θ

=

∫∫

Q(S)Q(θ) log

(

Q(S)τQ(θ)τ

p(S, θ,D)

)

d S d θ

(24)

This is the Kullback-Leibler divergence between the exact
posterior distribution, p(S, θ,D), and an approximation to it,
Q(S, θ). This KL divergence is typically used when integration
to obtain of exact marginal distributions, such as P (S) or
P (θ), is intractable [16]. The KL divergence between the
approximate and true posterior is minimised leading to coupled
update equations for the distributions. In the mean field
assumptions they take the general form

Q(Si) ∝ exp

{

1

τ

∫∫

Qī(Sī)Q(θ)`(S, θ,D) d Sīθ

}

Q(θ) ∝ exp

{

1

τ

∫

Q(S)`(S, θ,D) d S

} (25)

These are then iterated until convergence. In essence, all vari-
ables are now random variables with associated distributions.
Thus, the set of players in now augmented to include players
whose strategy space are the payoff function parameters.

V. IMPLICATIONS AND EXTENSIONS TO GAME PLAYING

A. Global vs Local Rewards

So far, no specific assumption has been made about the
form of the payoffs. In their simplest form, the payoffs may
be private to each player

`(S) = {`i(Si, Sī)} ∀i = 1, · · · , I (26)

One the other hand, we may presume that some that some
player’s payoffs affect only few other players. For example,
consider a 3 player extension of the 2-player matching pennies
game. In the extension the third player’s rewards depend on
how the other 2 players play against each other, i.e. they do
not consider player 3 in their play. The game designer thus
imposes a the structural form on the payoff relationships, for
example as

`(S) = {`(S1, S2), `(S2, S1), `(S3, S1, S2)}. (27)

Viewed from a probabilistic derivation ”payoffs” (22), the
structural relationships between their individual components
may stem from apriori knowledge of causal relationships
between parameters of the experimental data model. Thus, they

specifically state knowledge relating local to global reward
functions. In general, for computing best response, each player
must consider players affecting her, players she influences and
other players affecting the players she influences (in graph
theory terms the Markov blanket, that is parents, children and
children’s parents [17].

B. Independent Mixed Strategies

In addition to assumptions affecting the payoffs, there is the
assumption about the independence of players (20). Both, the
machine learning as well as game theoretic learning exposition
above assumed independent players. This assumption naturally
arose from the problem statement, such as distributed con-
trol. However, the machine learning literature has developed
methods for finding marginal equilibrium distributions when
there exist some probabilistic dependence between the players’
mixed strategies. For certain dependence topologies, e.g. trees,
exact methods can be derived [18]. Structure of mixed strategy
distributions encode a more direct dependence between the
players, one mediated through probabilistic inference rather
than payoffs. It is conceivable that such dependence structures
find their equivalences in coalition formation in games.

C. Quality of Equilibrium

Quantifying the tightness of the bound (24), and hence the
quality of the equilibrium , is subject to current research.
Generally speaking it will depend on degree of discrepancy
between the true and approximate distribution. One approach
uses sampling methods have been used to improve on the
equilibrium distribution [19]. Alternatively, the empirical in-
tegration in (25) can be performed and has been applied to
large scale optimisation problems [20].
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