Unsupervised Structure Learning: Hierarchical
Recursive Composition, Suspicious Coincidence
and Competitive Exclusion

Long (Leo) Zhu'!, Chenxi Lin?, Haoda Huang?, Yuanhao Chen®, and Alan
Yuille!#

! Department of Statistics, University of California, Los Angeles
{1zhu,yuille}@stat.ucla.edu
2 Microsoft Research Asia
{chenxi.lin,hahuang}@microsoft.com
3 University of Science and Technology of China
yhchen4Qustc.edu
4 Department of Psychology and Computer Science, UCLA

Abstract. We describe a new method for unsupervised structure learn-
ing of a hierarchical compositional model (HCM) for deformable objects.
The learning is unsupervised in the sense that we are given a train-
ing dataset of images containing the object in cluttered backgrounds
but we do not know the position or boundary of the object. The struc-
ture learning is performed by a bottom-up and top-down process. The
bottom-up process is a novel form of hierarchical clustering which re-
cursively composes proposals for simple structures to generate proposals
for more complex structures. We combine standard clustering with the
suspicious coincidence principle and the competitive exclusion principle
to prune the number of proposals to a practical number and avoid an
exponential explosion of possible structures. The hierarchical clustering
stops automatically, when it fails to generate new proposals, and out-
puts a proposal for the object model. The top-down process validates
the proposals and fills in missing elements. We tested our approach by
using it to learn a hierarchical compositional model for parsing and seg-
menting horses on Weizmann dataset. We show that the resulting model
is comparable with (or better than) alternative methods. The versatility
of our approach is demonstrated by learning models for other objects
(e.g., faces, pianos, butterflies, monitors, etc.). It is worth noting that
the low-levels of the object hierarchies automatically learn generic image
features while the higher levels learn object specific features.

1 Introduction

The goal of this paper is to learn a hierarchical compositional model (HCM) for
deformable objects. The learning is unsupervised in the sense that we are given
a training dataset of images containing the object in cluttered backgrounds but
we do not know the position or boundary of the object. Unsupervised learning is

Fig. 1. Left:The learning is unsupervised in the sense that we are given a training dataset of images
containing the object in cluttered backgrounds but we do not know the position or boundary of the
object. Right: The hierarchical representation of the object. The boxes represent non-leaf nodes. The
circles denote leaf nodes that directly relate to properties of the input image. The topology of the
structure is not given, but learnt in an unsupervised way.

desirable since it avoids the need for time consuming hand labeling and prevents
implicit biases. We apply the model to tasks such as object segmentation and
parsing (matching of object parts).

Learning a hierarchical compositional model is very challenging since it re-
quires us to learn the structure of the model (e.g. the relationships between the
variables, and the existence of hidden variables) in addition to the parameters of
the model. The difficulties are visually illustrated in figure 1: (i) the objects are
deformable so there is ambiguity in the structure. (ii) there is cluttered back-
ground noise. (iii) parts of the object may be missing, (iv) the input is simple
oriented edge features, which is a simple and highly ambiguous representation.

We now discuss some critical computational issues for unsupervised learning
which motivate our hierarchical approach and contrast it to other unsupervised
approaches for learning object models (e.g. [1], [2]). An abstraction of the struc-
ture learning problem is that we have a dataset of images each of which contain
approximately M object features and N total features. In this paper, we are
considering the case of M = 100 and N = 5000. Learning an object model
requires solving a complicated correspondence problem to determine which fea-
tures are object, which are background, and the spatial relationships between the
object features. There are several strategies for addressing this correspondence
problem. The first naive strategy is brute force enumeration which involves test-
ing all N™ possibilities. This is only practical if M and N are small and the
appearances of the features are sufficiently distinctive to enable many possible
correspondences to be rejected. The second strategy is to learn the model in
a greedy (non-hierarchical) way by sequentially growing subparts one by one
[1,2]. This is practical in cases where brute force fails, but it still makes two
assumptions: 1) sparseness assumption which requires M and N to be fairly
small, e.g., M = 6 and N = 100 in [1] and 2) small ambiguity assumption which
requires the appearances of the features to be somewhat distinctive. Neither of
these two strategies are applicable if the features are edgelets, because M and
N are both large and all edgelets have the same appearance which leads to big
ambiguity. (One strategy is to use more powerful features, but we argue that

this merely postpones the complexity problem). The purpose of this paper is to
develop a more general unsupervised learning method without making strong
assumptions of sparseness and low ambiguity. In other words, we try to provide
a unified learning scheme for both generic features and object structures. Hence,
we are driven to a third strategy, named as Recursive Composition, that creates
a model by combining elementary structures to build a hierarchy.

Our strategy is based on a novel form of bottom-up hierarchical clustering.
We assume that the object can be expressed in terms of recursive compositions
of elementary structures (see the right panel of figure 1). We learn the struc-
ture by repeatedly combining proposals for substructures to make proposals for
more complex structures. This process stops when we cannot generate any more
proposals. A huge number of proposals are examined and stored at every level
to avoid ambiguity since small substructure are not necessarily distinct enough
between object and background. However, combining proposals in this way risks
a combinatorial explosion (imagine that the number of combinations will grow
exponentially as we go up to the upper levels). We avoid this by the use of two
principles: (i) suspicious coincidences, and (ii) competitive exclusion. Suspicious
coincidences eliminates proposals which occur infrequently in the image dataset
(in less than 90 percent of the images). The competitive exclusion principle is
adapted from ecology community where it prevents two animals from sharing
the same environmental niche. In this paper, competitive exclusion eliminates
proposals which seek to explain overlapping parts of the image.

The bottom-up clustering is followed by a top-down stage which refines and
fills in gaps in the hierarchy. These gaps can occur for two reasons. Firstly, the
competitive exclusion principle sometimes eliminates subparts of the hierarchy
because of small overlaps. Secondly, gaps may occur at low-levels of the hierarchy,
for example at the neck of a horse, because there are considerable local shape
variations and so suspicious coincidences are not found. The top-down process
can remove these gaps automatically by relaxing the two principles. For example,
at higher levels the system discovers more regular relationships between the head
and torso of the horse which provides context enabling the algorithm to fill in
the gaps.

In summary, hierarchical bottom-up and top-down procedure allows us to
grow the structure exponentially (the height of a hierarchy is log(M)) and end
up with a nearly complete structure (the resulting representation is dense and the
size M could be big). We tested our approach by using it to learn a hierarchical
compositional model for parsing and segmenting horses on Weizmann dataset [3].
We show that the resulting model is comparable with (or better than) alternative
methods. The versatility of our approach is demonstrated by learning models for
other objects (e.g., faces, pianos, butterflies, monitors, etc.).

2 Background: Hierarchical Structure Learning

Hierarchical design dates back to Fukushima’s Neocognitron [4]. Recently, there
have been many new developments including new representations and learning

algorithms. For example, Geman et al. [5] propose a hierarchical object model
designed by a compositional principle using an AND/OR graph. Inference algo-
rithms have been invented for this type of model [6], which we will adapt and
use to perform inference in this paper (Note [6] does not address any learning
algorithm). Deep networks [7], another type of multi-layer system, has recently
been proposed by Hinton et al. [7]. Ullman et al. [8] learns a hierarchical fea-
ture representation in a supervised manner. Poggio and his colleagues’[9] build
a hierarchical structure for rapid object recognition motivated by mimicing the
architecture of the visual cortex of the human brain. Ahuja and Todorovic’s
hierarchical representation [10] is based on segmented image regions. Fleuret
and Geman [11] provide a coarse-to-fine strategy which starts from edgelets. Fi-
dler and Leonardis[12]’s unsupervised learning approach is most related to our
work (the main difference is that they treat rigid objects, have a less dense rep-
resentation, and do not have a top-down stage). In summary, in several cases
these models[5, 6, 9] are not learnt but are specified by the user. Some unsuper-
vised methods [8] assume that background is clean and the object is roughly
aligned. Unsupervised learning (in the sense of this paper) has been performed
[1,2] (without a hierarchy) but for object models with limited number of object
features (as discussed earlier). Most models [1,9, 8, 5, 2] focus on recognition or
categorization, but not parsing.

3 The Hierarchical Compositional Model (HCM) and the
Inference algorithm

3.1 The Hierarchical Compositional Model (HCM)

The graph structure for the hierarchical model is depicted in the right panel of
figure 1 and defined as follows. We let V,. be the set of nodes of the graph with
root node r. Each node v € V,. has a set of child nodes T}, (a node is constrained
to have a single parent), V,FEAF are the leaf nodes (the only ones which interact
with the image). For any node v € V., we can define a graph V,, with root node
v containing the descendants of v. The edges for the graph are of three types:
(i) vertical data edges which relate the leaf nodes to the image, (ii) horizontal
edges relating the children of each node to each other (described below), and
(iii) vertical edges relating parents to children (specified by {7, }). In this paper,
all vertical edges are directed. The horizontal edges only connect the child nodes
with the same parent. Moreover, we restrict the number of child nodes to be less
than six, i.e., |T,| < 6. This ensures that the size of the biggest clique of the
hierarchy is small. We use the notation {2, to represent the graph (i.e. the set of
nodes V. and the set of edges).

A configuration of the graph is an assignment of state variables z = {z,}
to all v € V,.. In this paper, we set z, = (z,,¥y,0,,5,) , where (z,y), § and s
denote image position, orientation, and scale respectively (the scale is the area
of the image that the node represents). We use the notation 7, = {z, : p € V,,}
to denote the state of node v and all its descendent nodes.

We define a Gibbs distribution P(z,d;w, {2) for the probability of the graph
as follows:

P(z,dyw, 2) = exp{—E(z,d;w, 2)}. (1)

1
Z(w,)
where Z(w, 2) is the partition function, d is the image, w denotes the parameters
of the distribution and {2 denotes the graph structure (i.e. the nodes and the
edges). The energy function E(z, d;w, £2) is the sum of three terms corresponding
to the three types of edges in the graph:

Eqi(d, Zryw,2) + En(Zr;w, 2) + Ey(Zr;w, 2), (2)

where E4, Ey, B, are energy terms defined at the data, horizontal, and vertical
edges. We now describe the specific choices used in this paper.
The data term E, is given by:

Eo(d, Zeiw, 2) = D fldu,2), (3)

IJEVTLEAF

where VIFAF is the set of the leaf nodes and f(.,.) is the (negative) logarithm
of a Gaussian defined over the grey-scale intensity gradient (i.e. d, = VI,). Tt
biases the leaf nodes to be located at image locations where the image gradient
is large, and for their orientations to be perpendicular to the image gradient.
This term is fixed and not learnt.

The horizontal term Ep, is given by:

Eh(ZT;w, .Q) = Z Z g(z#,zp,zT;w), (4)

veVy /VEEAE (1,p,7):u,p,7€T,

where g(2,, 2, 2r;w) is the (negative) logarithm of Gaussian distribution defined
on the invariant triplet vector (ITV) l(zy, z,, 2-) constructed from (z,, 2z,, 2r)
[2]. (The ITV is invariant to the translation, rotation, and scaling of the triple,
which ensures that the full probability distribution is also invariant to these
transformations). The summation is over all triples formed by the child nodes
of each parent, see the right panel of figure (1). The parameters of the Gaussian
are indicated by w = (u, o).

The wvertical term FE, is used to hold the structure together by relating the
state of the parent nodes to the state of their children. It is defined by:

By(Zpw,2)= > hzi{zstueT}), (5)

veV, /VEEAF

where h(.,.) = 0 provided the average orientations and positions of the child
nodes are equal to the orientation and position of the parent node — formally
(@0, Y0, 00) = (1/|T0]) 22 er, (T Yus 0,). 1f this equality does not hold, then
h(.,.) = K, where & is a large positive number. The scale variable s, = ZMGTV P
hence the parent node represents the sum of the regions in the image represented
by its children.

Observe that the nodes of the graph have the same variables at all levels (i.e.
(z,y,0,s)). This makes use of hierarchical independence assumption—the higher
level interactions depend only on the summarization of all child nodes at the
lower levels. More precisely, the child nodes only propagate a limited summary
(center position, total size and orientation) of their state information to their
parents. The choice of the vertical term E,, means that this information is simply
the average of their node variables.

We stress that we can use equations (2,3,4,5) to calculate the energy for any
subgraph by specifying the root node. This gives an effective way for computing
the full energy, by combining the energy of the subgraphs, and is exploited during
inference and learning. We can also exploit this hierarchy in order to compute
other important properties, such as the partition function Z(w, (2). Note, in
figure 1, the vertical edges are directed and horizontal edges only connect the
child nodes (less than six) with the same parent. Therefore, the partition function
can be factorized into several components (corresponding to the cliques) whose
sizes are small.

3.2 The Inference Algorithm for parsing when HCM is known

We now specify an efficient inference algorithm for the HCM. This algorithm
will be used both when we are learning the model, see section (4), and when we
are applying the model to new images to perform detection, segmentation, and
parsing. We adapt a compositional algorithm that was designed for inference on
AND/OR graphs [6] (Note their work does not present any learning algorithm
which is the major topic of this paper). The algorithm has a bottom-up and a
top-down stage. We only take the bottom-up stage which makes proposals for
the states of the node variables Z,. For brevity we omit the details. See [6] for
more details.

4 Unsupervised Structure Learning

We now address the critical issue of how to learn the structure of the hierarchical
model from a set of images which contain an example of the object with varying
background. Formally, this requires us to estimate the structure parameters (2
and the distribution parameters w. The task of the unsupervised learning is
defined as :

(w*, 2%) = arg max P(w, 2|d) (6)
= arg max P(d|w, 2)P(w, §2) (7)
= argmax »_ P(d|z,w)P(z|w, Q) P(w, £2) (8)

where P(d|z,w)P(z|w, 2) = P(d, z|w, 2) is defined in equation (1). P(w, 2) ac-
counts for the prior distribution of the structure which plays a similar role of

structure regularization. P(w, §2) is factorized into P(w) and P(§2). The param-
eters indicated by w are p and o in the gaussian functions. The prior on ¢ is of
the form A(0, 3I). The prior on u' at certain level [puts hard constraints on the
range of the distance allowed between any two substructures. The prior of {2 is
uniform distribution. The summation) P(d|z,w)P(z|w, 2)P(w, £2) is used as
a score function to measure the goodness of the fit of the structure. Intuitively,
the score function tells us how frequently a structure encoded by ({2, w) appears
in the training set. Our approach is based on a bottom-up process to propose a
set of structures ({2, w) followed by a top-down process which refines the result
by adjusting (£2,w).

Our algorithm makes several approximations to simplify the learning prob-
lem. Firstly, we will exploit the hierarchical nature of the model to estimate the
parameters w locally. In principle, we could use these local estimates to initial-
ize an EM algorithm to determine the parameters globally. Secondly, while our
algorithm proposes a structure {2 we cannot guarantee that it is the globally op-
timal structure. But our experimental results, see section (5), provide empirical
evidence that these approximations are reasonable.

4.1 The Bottom-Up Process

The bottom-up process constructs hierarchical object models by composing them
from more elementary components. We use two principles to prevent a combi-
natorial explosion of compositions and to ensure that our compositions result in
desirable object models. The two principles are: (i) suspicious coincidences where
we keep compositions which occur frequently in the images and reject composi-
tions which do not, and (ii) competitive exclusion where we remove compositions
which match to regions of the image which overlap with other compositions. The
relative importance of these different principles is shown empirically in the re-
sults section, see table 2 and figure 6. For example, observe how competitive
exclusion play a small role when the compositions are small but is of major
importance as the compositions get large.

Our strategy proceeds by creating vocabularies of concepts at different lev-
els in the hierarchy, where each concept is a hierarchical compositional model.
See figure 2 for visual (symbolic) illustration. The concepts are generated by
composing concepts at lower levels. The basic ideas are to detect all instances
of the concepts at level [in the images (using the inference algorithm for each
concept). We form compositions of these concepts by identifying sets of these
concepts that appear in sub-regions of the images. We cluster these composi-
tions based on the spatial relationships between their elements (the instances of
the concepts at level [— 1) to get a set of concepts at level | whose distribution
parameters w are estimated from the clusters. We run the inference algorithm on
the images to find the instances of all the concepts. Then we use the suspicious
coincidence principle to remove concepts which occur infrequently (i.e. have few
instances). Next we use the competitive exclusion principle to remove concepts
whose instances overlap with those of other concepts (with better scores). The
remaining concepts form the vocabulary of concepts at level [+ 1. The process

Competitive
exclusion

: Pruning

Composition Clustering &
Parsing

Fig. 2. This figure illustrates the procedure of the unsupervised learning. The first column shows the
responses of the features from the ”vocabulary” at level 1. the second column shows the compositions
at step 1). the third column shows the clustering at step 2. The noise(non-regular) pattern bounded
by dotted line is pruned out by step 4. The last column plots the results after step 5. At step 5,
the compositions, which are constructed by different components, but parse the same areas in the
image, are grouped together (the maximum is kept

repeats until no new concepts are composed. For our applications (e.g. images
containing a large object with variable background), it will terminate automati-
cally in a small number of proposals when the hierarchy has reached a maximum
size (i.e. there is no larger structure to be found).

The full procedure is described more formally in the next few paragraphs
and is summarized by the pseudo-code in figure (3) and illustrated visually in
figure 2. First we introduce some notation. A concept at level [is notated by P, ,
It is a HCM with root node v and w represents the parameters of this model.
A wocabulary of concepts at level [is the set {PLV}. We can parse the training
dataset using the vocabulary of concepts at level [to get a set of instances of
each concept {MP,LG}7 where a = 1,..., N! indexes the set of instances. Each
instance is represented by its state variables Z,,.

We define the bottom-up process as follows. At each level I — 1 we have a
vocabulary of concepts {PL)‘Z}} and a set of instances of the concepts in the

images {M Plffl}. We then repeat the following steps.

a
1. Composition. We search through the images to find instances of triplets of
concepts M P, M P! MPL ! within subregions of size S;y (for all u, p, 7 in
the vocabulary). From each triplet instance we construct an instance P! where

node v has children p, p, 7 € T,,.

2. Clustering. We cluster the instances P. by the second order moments
of the shape descriptor (triplet vector) of the positions, scales and orientation
(p,Yp, 0y, 5p) of the children of v (this clustering is done separately for all triples
in the concept vocabulary at level [—1). The clustering outputs a set of concepts
at level [notated by {PLV}. Some of the parameters w = (u, o) of each concept
are estimated from the second order moments (see above) and the remainder are
inherited from the underlying concepts at level [— 1.

Input: {MPT} . Output: {MP,T}. & denotes the operation of combining two proposals.

— Bottom-Up-Structure-Construction(M P)
Loop:l=1to L
1. Composition: {P}} = @(MP, ', MP,J !, MP!TY) and T) = {p' =", p' =", 771}
Clustering: {Pw,l/} = Clustering({P,l,})
Parsing: for each ow/, {MP,f‘a} = Parser(owj, {1\4P}lfl R JWP})’ L MPJ_’1 H
Suspicious Coincidence (Pruning) : {PWL}{ow,\Score(ow,) > Tpruning
Competitive Exclusion: {(]VIP“,L, CL, :,)} =
CompetitiveEmclusion({Pu,i}, €region) where €region is the size of the win-
dow Wimage defined in regions which are covered by a set of images.
- P, = arg max, Score(Mow)
— Top-Down-Structure-Extension B
Loop: | = L to 2, for each node v at level | within P,,
e repeat B
1. Pw: = arg maxpwﬁrl Score(P, ® Pwifl)
2. A= Score(P, ® Pu}) — Score(P.,)
3. P,=P,0 P, T, =T, up'~?

5T
until A < Tepiension

B owN

t

Fig. 3. Bottom-up and Top-down Learning.

3. Parsing. We parse the image dataset using the inference algorithm (see
section (3.2)) for the set of concepts output by the clustering {P., ,}. This gives
a set of instances of the concepts in the dataset {M Plia}.

4. Pruning by Suspicious Coincidences. We remove concepts from {PLV} if
they do not have sufficient number of instances in the dataset (i.e. if there are
instances of the concept in less than ninety percent of the images).

5. Competitive exclusion. We remove concepts from {Pf“,} if their instances
have significant overlap with instances of other concepts (and the other concepts
have better scores).

The remaining concepts form the concept vocabulary {P!} at level I. Their
instances in the dataset {M P'} have already been calculated (in the parsing
step above). The process repeats itself until no new concepts are generated. In
practice, this happens within 4-5 levels (see experimental section). The process
is initialized for the leaf nodes. The vocabulary of concepts at level 1 {ij
v =1,...,4} consists of four types of edgelets characterized by their orientations
6 = mm/4 for m = 0, 1,2, 3. The size s is set to a default value s;. We parse the
training set of images to detect the instances of all the concepts (more precisely,
we compute the set of points (z,y) : Eq(VI(z,y), (x,y,mn/4,s1) < T1, where
T, is a threshold, for m = 0,1,2,3). This gives the set of instances of each
concept {P} ,}.

4.2 The Top-Down Process

The top-down process fills in the missing parts of the hierarchy and also adds a
dense representation at the lowest level (to enable segmentation of the image).
Missing parts of the hierarchy can occur for two reasons: (i) competitive exclusion
may be too strict at eliminating proposals which only slightly overlap, (ii) shape
variations at certain parts of the object may be big at small scales (hence rejected

by suspicious coincidences) but are removed at larger scales. For example, there
are big variations locally where the legs of a horse join the torso, which make
it hard to detect small scale regularities by clustering. But there are large scale
regularities between the legs and the torso which are found at higher levels in the
bottom-up process. The top-down process can fill in the gaps at lower level by
using the higher levels connections as “context” which allow the pruning criteria
to be relaxed.

A greedy strategy is used to examine every node in the hierarchy. For each
node v! at level I, we seek to add a substructure from the dictionary (the set of
proposals obtained in the bottom-up processing) at the lower level I — 1 as the
new child of v/ so that the extended structure fits the data best (locally). This
extension operation for the node /! is repeated until the gain is less than some
threshold. The extensions correspond to adding more energy terms defined in
equation (4) and (5). In figure (5), one can observe that substructure are added
into the hierarchy to capture the details of the head and hind leg.

5 Experimental Results

Performance Comparisons for segmentation and parsing. We applied
our approach to learn hierarchical composition models for a number of different
objects. We will first concentrate on the hierarchical model for the horse, learnt
from data from the Weizmann database [3] which is divided to training (12
images without labeling) and testing (316 images with groundtruth) sets. These
images cover many poses (standing, running, drinking, etc.), changes in viewing
angles, different scales, textured body patterns and cluttered background. Our
strategy to obtain segmentation, which is inspired by Grab-Cut [13] , is to obtain
the parse by the inference algorithm on the HCMs and then segment object by
graph-cut using the feature statistics inside the boundary as initializations (note
that, unlike us, Grab-Cut requires initialization by a human). The comparisons
using segmentation accuracy are shown in table 1. The methods in [14,15] are
based on supervised learning. Only two methods [16, 15] reported higher accuracy
than ours: but (i) Obj Cut[16] is tested on only five images while our method is
tested on more than 300 images; (ii) [15] assumes the position of object is given
for both learning and testing (Note our method does not make this assumption).
[6] manually designed the model (no learning) whose performance, i.e., about
91%, is similar to [14] and inferior to ours. [17] is not listed because they manually
select the best among top results (all other methods output single result). In
conclusion, our method achieves the comparable (if not the best) performance
even though we use far less information (we only know that the object is present
somewhere in the image, while the supervised methods know the precise location
of the boundaries). In addition, our model simultaneously performs other tasks
such as detection and parsing (labeling different parts of the horse). See figure 4
for the typical segmentation and parsing results (we also cropped the results from
[16] for comparison). Note that the color points indicate identities of object parts.
Our method obtains more complete and stable boundary than [16] which learns

Method Train| Test |Segmentation|Speed
Our method | 12 | 316 93.3 16.9s
Ren [14] | 172 [172 91.0 -

Borenstein [18]| 64 | 328 93.0 -
LOCUS [19] | 20 | 200 93.1 -
OBJ CUT [16]|N/A| 5 96.0 -

Levin [15] |N/A |N/A 95.0 -

Table 1. Results on horse dataset. Columns 2 and 3 give the size of images taken for training and
testing. Column 4 quantifies the segmentation accuracy. The last column shows the average time
taken for one image. Note that [16] is tested on only 5 images and [15] assumes the position of the
object is roughly given.

Fig. 4. In the top two rows, Columns 1 ,3 and 5 show parse results of our method followed by
segmentation results. The parse result is illustrated by the colored dots which correspond to the leaf
nodes of the object. The correspondences are consistent for different images. Rows 3 and 4 show the
parse results of our method and OBJ CUT (cropped from [16]) on 5 images used in [16] respectively.
Note our method obtains more complete boundary.

object model from video where extra motion cues are used to make learning
easier. The average time of our inference algorithm including both parsing and
segmentation is 17 seconds.

Study the Hierarchy. The final hierarchy for horse is depicted in the left
panel of figure 5. The mean position and orientation of edgelets of leaf nodes are
depicted to sketch the model learnt by the unsupervised method. The colored
rectangles in the dotted box highlight the parts filled in at the top-down stage.
Note that the final skeleton of horse is nearly complete while the sketches ob-
tained by the bottom-up processing miss several parts (head, leg and back). The
responses of subparts of the hierarchy is depicted in the right panel of figure 5.
One can see that the numbers of proposals decrease from low level to high level.

Complexity Analysis. Our experiments also show the relative effectiveness
of our two principles as we form compositions at different levels of the hierar-

4

)

S
7

| e R AS =
=8 ey

\}
Z

{

g

14
o)
LA
Rl
“F

\;./
4

LS
!
ST TR o P
S e 2 |
'1‘%4';,) ;
% " A<
B

)\uﬂ\ =)\‘ﬁh '\’ﬂ?\
AERAFR AT SR
Lom ! Vom Som
NN R 7

Fig. 5. Left: The hierarchy shows the learnt hierarchical model. The colored rectangles highlight the
identities of the structures. All parts are obtained at the bottom-up state except that the rectangles
in the dotted boxes show the parts of the model that were learnt in the top-down stage. Right:
The rows illustrate structures at levels 4,3,3,2,2 (i.e. top row is level 4, next row is level 3,...). The
first column gives the structure (with three children colour coded). The second column shows the
structure detected on a specific image. The third, fourth, and fifth columns show the proposals for
the sub-structure — colour coded.

L|Composition|Clusters|Suspicious Coincidence|Competitive Exclusion|Time
0 4 1s
1 167431 14684 262 48 117s
2| 2034851 741662 995 116 254s
3| 2135467 (1012777 305 53 99s
4] 236955 72620 30 2 9s

Table 2. Columns from 2 to 5 show the numbers of proposals after composition (step 1), clusters
after clustering (step 2), after pruning (step 4) and after competitive exclusion (step 5) respectively.
The next column shows the time (seconds) taken for each level. Level 0 shows the results of the
grouping of the edge points(360 degrees are divided into 4 angle ranges). all numbers are calculated
over 12 real images in the training dataset.

chy, see table (2). The reduction in compositions by clustering is fairly large (a
reduction factor of 10) at level 1 but becomes negligible at higher levels as the
compositions get more distinct. Suspicious coincidences causes major reductions
in compositions with reduction factors ranging from 60 to 2000. This is because
the vast number of compositions occur infrequently. Competitive exclusion has
little effect at level 1 (a reduction factor of 5) but increases rapidly at higher
levels to a reduction factor of 15 at level 4. This is because larger compositions
are more likely to overlap and compete for the same niches in the images. Com-
petitive exclusion principle is the main factor that causes the bottom-up process
to stop at a specific level.

Analyze the Hierarchical Dictionary. It seems plausible that our al-
gorithm will learn generic features (e.g., oriented straight lines, single curves,
double edges, Y-junctions, T-junctions, etc.) at low-level of the hierarchy and
more specific object features at the higher-levels. This is confirmed by observ-
ing the vocabularies that are extracted at different levels, see the left panel of
figure (6). Recall that all these features are encoded by the same hierarchical

Level 4 \\,/\" \\4 20
Level 3 ’———\ r \r r\ \\ \\ g
DN Yy A s T
Level2z| Y N\ / i =™ ¥ Py E s
— e \ ")
Level 1| —we N _or § = S B oo ’ 0 o 2 30 % 50 60
Levero| = w A e

Fig. 6. Left: This figure shows elements of the vocabulary for horses at different levels (mean values
only). Observe how the vocabulary contains “generic” shapes at low levels, but finds horse specific
parts at the higher levels. Right: This figure shows the histogram of concepts at the different levels
of the dictionary. A point in a curve quantifies the number of concepts which have a certain number
of instances.

©XIE€

Fig. 7. This figure illustrates the generality of our approach. We show some typical training images
which contain cluttered background, different shapes and deformations. The red-sketch images show
the learnt models.

composition principle. In the right panel of figure (6), we also plot the distribu-
tion of the concepts at the different levels of the dictionary. The peaks of levels
4, 3, 2 and 1 appear from right to left. Note that the concepts at level 1 have
only one instance per image.

More objects. To demonstrate the generality of our approach, we apply it
to learn models for a range of other objects collected from Caltech 101 [20], MIT
LabelMe [21] and internet, see figure (7). These images cover different types of
shapes (man-made structure and animal), cluttered background (monitor, face
and deer) and rotation (violin). These models were learnt using a small amount of
training data (12 images per object). They can be applied to parse images using
the inference algorithm. This experiment shows the versatility of our approach
while modeling different types of shapes of objects.

6 Conclusion

We described a new method for unsupervised structure learning of a hierar-
chical compositional model for deformable objects. The structure learning was
performed by a bottom-up and top-down process. We tested our approach by
using it to learn hierarchical models for horses and other objects (e.g. watches,
purses, faces, grand pianos, violins, revolvers, butterflies). We evaluated the re-
sulting models by comparing their performance to alternative methods.

Acknowledgements

We gratefully acknowledge support from the National Science Foundation with NSF
grant number 0413214 and from the W.M. Keck Foundation.

References

10.

11.
12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised
scale-invariant learning. In: CVPR (2). (2003) 264-271

Zhu, L., Chen, Y., Yuille, A.L.: Unsupervised learning of a probabilistic grammar
for object detection and parsing. In: NIPS. (2006) 1617-1624

Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: ECCV (2).
(2002) 109-124

Fukushima, K.: Neocognitron: A hierarchical neural network capable of visual
pattern recognition. Neural Networks 1 (1988) 119-130

Jin, Y., Geman, S.: Context and hierarchy in a probabilistic image model. In:
CVPR (2). (2006) 2145-2152

Chen, Y., Zhu, L., Lin, C., Yuille, A.L., Zhang, H.: Rapid inference on a novel
and/or graph for object detection, segmentation and parsing. In: NIPS. (2007)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Computation 18 (2006) 1527-1554

Epshtein, B., Ullman, S.: Feature hierarchies for object classification. In: ICCV.
(2005) 220227

Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual
cortex. In: CVPR (2). (2005) 994-1000

Ahuja, N., Todorovic, S.: Learning the taxonomy and models of categories present
in arbitrary image. In: ICCV. (2007)

Fleuret, F., Geman, D.: Coarse-to-fine face detection. In: IJCV. (2001)

Fidler, S., Leonardis, A.: Towards scalable representations of object categories:
Learning a hierarchy of parts. In: CVPR. (2007)

Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: interactive foreground extrac-
tion using iterated graph cuts. ACM Trans. Graph. 23 (2004) 309-314

Ren, X., Fowlkes, C., Malik, J.: Cue integration for figure/ground labeling. In:
NIPS. (2005)

Levin, A., Weiss, Y.: Learning to combine bottom-up and top-down segmentation.
In: ECCV (4). (2006) 581-594

Kumar, M.P., Torr, P.H.S., Zisserman, A.: Obj cut. In: CVPR (1). (2005) 18-25
Cour, T., Shi, J.: Recognizing objects by piecing together the segmentation puzzle.
In: CVPR. (2007)

Borenstein, E., Malik, J.: Shape guided object segmentation. In: CVPR (1). (2006)
969-976

Winn, J.M., Jojic, N.: Locus: Learning object classes with unsupervised segmen-
tation. In: ICCV. (2005) 756-763

Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories. Comput. Vis. Image Underst. 106 (2007) 59-70

Russell, B., Torralba, A., Murphy, K., Freeman, W.: Labelme: a database and
web-based tool for image annotation. Technical Report (2005)

