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Abstract—This paper presents the qualitative nature of com-
munication network operations as abstraction of typical ther-
modynamic parameters (e.g., order parameter, temperature, and
pressure). Specifically, statistical mechanics-inspired models of
critical phenomena (e.g., phase transitions and size scaling) for
heterogeneous packet transmission are developed in terms of mul-
tiple intensive parameters, namely, the external packet load on the
network system and the packet transmission probabilities of het-
erogeneous packet types. Network phase diagrams are constructed
based on these traffic parameters, and decision and control strate-
gies are formulated for heterogeneous packet transmission in the
network system. In this context, decision functions and control
objectives are derived in closed forms, and the pertinent results of
test and validation on a simulated network system are presented.

Index Terms—Communication network, heterogeneous packet
transmission, phase transition, statistical mechanics.

I. INTRODUCTION

CONCEPTS of statistical mechanics have been extensively
used to model thermodynamic characteristics of physical

phenomena in terms of their relationships between micro-
and macrobehaviors [1], [2]. From this perspective, tools of
statistical mechanics are appropriate for modeling the behavior
of multiagent systems (e.g., communication networks) because
their global behavior emerges from the local dynamics of
the participating agents. This phenomenon has inspired many
researchers to investigate complex networks from the mathe-
matical perspectives of thermodynamics and statistical mechan-
ics [3]. Specifically, Hui and Karasan [4] have addressed the
thermodynamic formalism of communication networks. More
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recently, Albert and Barabasi [5] have reported a comprehen-
sive review of the recent literature in this field.
The behavior and topological organization of communication

networks [6] and sensor networks [7] have similar characteris-
tics as many natural and human-engineered systems, such as
those found in the disciplines of sociology [8], biology [9], and
finance [10]. Phase transition is a characteristic phenomenon of
complex systems, consisting of interacting and interdependent
dynamics, where a nonsmooth change in the output behavior
may take place with a relatively small variation of the system
parameter(s). In this context, tools of statistical mechanics are
useful for characterization of critical phenomena corresponding
to the dependence of the global behavior (e.g., connectivity,
average rate of change of queue length, and average packet
drop rate) of communication networks on their local parameters
(e.g., communication radius, packet load, and transmission
probability) [11]–[14].
A key task in the analysis of phase transitions is the identifi-

cation of the system behavior in the vicinity of a critical point,
where a global parameter quantifies the presence of order in
the underlying system. Usually, this order parameter [1], [2]
is zero in the disordered phase and may have increased to a
significant nonzero value in the ordered phase. In essence, a
phase transition is realized as a discontinuity in the zeroth or
a higher derivative of the order parameter for a change from
zero to a nonzero value if an intensive parameter (e.g., tempera-
ture T ) of the system is perturbed from its critical value. In gen-
eral, the nature of phase transition is classified into two types:
1) first-order phase transition, where the order parameter
changes discontinuously with the intensive parameter at the
critical point and 2) continuous (also called second or higher or-
der) phase transition, where the order parameter varies contin-
uously with an intensive parameter during the phase transition
but its first or a higher derivative with respect to the intensive
parameter at the critical value is discontinuous [15]. For exam-
ple, ferromagnetism is a well-known case of continuous phase
transition, where the order parameter is magnetization M(T )
with a nonzero value leading to spontaneous magnetization at
temperatures below the critical temperature, called the Curie
point [1], [2].
The congestion phenomenon in communication networks is

an example of a phase transition. Typically, the concept of
bottleneck buffers (routers) is used to detect and control (i.e.,
mitigate or prevent) congestion in communication networks.
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The network structure could be reduced to a multisource and
single destination (or vice versa) through the usage of bottle-
neck buffers, and thus, mean-field models have been developed
for such cases [16]. However, analysis of certain problems
(e.g., distributed decision making, perimeter surveillance by
static sensor networks, and statistical estimation of parameter
distribution over the entire space) is apparently very difficult
and often intractable. Moreover, in many applications, on-
line adaptation of the packet routing sequence is required to
maintain acceptable performance in the presence of uncertain
exogenous perturbations and channel fluctuations. For example,
sensor networks are often employed in environments with
limited communication capability. In such applications, the in-
formation travels between sensor nodes through a combination
of relay nodes and other sensor nodes. For communication-
constrained sensor networks, the information that is transmitted
is usually event driven (e.g., detection of intruders) and is
thus intermittent in nature. For this reason, it is important to
have a controllable routing procedure that takes advantage of
the available network structure to avoid bottlenecks and other
congestion issues.
From the aforementioned perspective, this paper presents

a statistical mechanics-inspired concept, namely, equilibrium
thermodynamics formalism, that is more suitable in event-
driven situations compared to the traditional time-driven mod-
eling approaches. Phenomena of phase transitions and size
scaling are characterized in large-scale communication net-
works. The underlying theories have been tested and validated
on a simulation test bed that consists of a 2-D square-grid
network model. The objective here is to obtain an unambiguous
understanding of the critical behavior on a relatively simple
network with tractable dynamic properties. The simulation
experiments would help establishing a knowledge base for
the synthesis of decision and control laws in different classes
(e.g., wired and wireless) of real-life communication networks.
Network phase diagrams are constructed based on the network
parameters to formulate control strategies for heterogeneous
packet transmission. In this regard, closed-form solutions for
a simulated network system are presented.
This paper is organized in five sections, including the present

one. Section II describes the model of the network along with
the architecture of the simulation test bed. Then, the qualitative
nature of phase transition in the underlying system is charac-
terized, and the effects of network size are analyzed. In these
analyses, phase transitions are investigated based on a single
intensive parameter, namely, the external packet load of the
communication network system. Section III investigates the ef-
fects of two intensive parameters on the network performance.
Phase diagrams are constructed for these cases by defining
network analogs of thermodynamic quantities (e.g., order pa-
rameter, temperature, and pressure). Based on the equilibrium
phase diagrams, Section IV presents a novel thermodynamic
approach for controlling heterogeneous packet transmission. It
also presents the basic philosophy of the control approach along
with a representative numerical experiment on the network
architecture of the current study. The paper is summarized and
concluded in Section V along with recommendations for future
research.

Fig. 1. Network structure in the simulation model.

II. NETWORK SIMULATION TEST BED

The network test bed simulates a 2-D square grid [12] as
shown in Fig. 1, where the nodes (routers) are placed at the
grid points. For a square-grid network withN ×N nodes, there
are (4N − 4) boundary nodes (shown as squares in Fig. 1) and
(N2 − 4N + 4) internal nodes (shown as circles in Fig. 1).
Only boundary nodes are assumed to be the sources and/or
the sinks for packet generation and destruction; internal nodes
can only transmit the packets. Each node receives packets in a
queue (with a finite buffer length) from its neighboring nodes,
and packets are terminated after reaching their respective desti-
nations. In each time unit, packets are created in the boundary
nodes with a Poisson arrival rate λ. For simplicity, all packets
are considered to be of unit length. The destination of a packet
is chosen randomly from the set of boundary nodes, including
its source node. Each node (boundary or internal) transmits
one packet from the head of its queue to a deterministically
chosen neighboring node at each time unit. The node chosen
to forward a data packet is selected so that the packet travels
via the shortest path to its destination. When there are more
than one candidate nodes for the shortest path, the node with a
smaller queue length is chosen to reduce the probability of early
congestion in the network. A node drops the oldest packet from
its fully occupied queue to accommodate a new packet.

A. Network Congestion Modeled as a Phase Transition

Congestion is a phenomenon of significant importance in
communication networks. Before a congestion occurs (i.e., the
network is capable of handling the average number of arriving
packets), the average packet drop rate remains negligibly small.
However, as the packet influx rate crosses a critical threshold,
the drop rate increases to a nonnegligible value. Thus, at a
steady state, the nonzero average packet drop rate can serve
as an index of the degree of congestion. The phenomenon of
congestion can be viewed as a continuous phase transition from
a steady state to an unsteady state of network communications,
which is characterized based on the concepts of equilibrium
thermodynamics in this paper. Previous papers [11], [17] re-
ported similar characterization based on the average rate of
change of queue length; however, they required the assumption
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of infinite queue length. This assumption is removed in this
paper to address the congestion problem in a more realistic
scenario.
As discussed in Section I, a global order parameter of the sys-

tem under consideration needs to be identified for investigating
the occurrence of phase transitions in communication networks.
The packet drop rate is a feasible candidate to serve as the
order parameter in this analysis. Furthermore, global intensive
parameters that trigger the network phase transition need to be
identified, and in this problem, packet influx rate λ is one such
parameter. Since only 4(N − 1) boundary nodes generate the
packets in this simulated network and all N2 nodes receive
these packets, a surface correction is needed to accurately
define the intensive parameter, namely, effective load per node
λeff , which is defined as follows to avoid the introduction of
the surface effects:

λeff
Δ=

(
4(N − 1)

N2

)
λ. (1)

A few scaling adjustments are made to define the order
parameter. Let d(t) be the total number of packets dropped in
the network at time t. Thus, the instantaneous packet drop rate
(per node) at time t is d(t)/N2 and its time-averaged value is

denoted as D
Δ= d(t)/N2. The order parameter M is defined

based on the normalization of D with respect to λeff

M =
D

λeff
. (2)

Note that the order parameter M is the fraction of incoming
packets that are dropped from the network nodes per unit time.
Therefore, in the absence of congestion,M could be assumed to
be negligibly small, i.e., there is no packet drop. As the network
becomes congested, the worst case scenario is the dropping of
all incoming packets, i.e.,M approaches 1.
Following the aforementioned procedure,M is computed for

given values of λeff . To eliminate the effects of transients,
the expected value of D is calculated using only steady-state
time series data. The plot of M versus λeff for the 10 × 10
simulated network is shown in Fig. 2. It is seen that there is a
critical value λc

eff ≈ 0.11 of effective load per node such that,
for λeff < λc

eff , the order parameter M is almost negligible;
in contrast, for λeff > λc

eff ,M takes on nonzero values. This
change of network behavior across the critical value λc

eff is
identified as a continuous phase transition, where the network
moves from an uncongested phase (U) of negligibly small M
to a congested phase (C) of finite positiveM .

B. Construction of Size Scaling Laws

It is very important to understand the laws of size scaling for
human-engineered multiagent systems (e.g., communication
network systems) due to their inherent finite and smaller sizes,
as compared to their natural counterpart. In general, for finite-
sized systems, the critical value of the intensive parameter
λc

eff (N) is a function of size N , and as N goes to infin-
ity, λc

eff (N) converges to the λc
eff (∞) of the corresponding

Fig. 2. Continuous phase transition in a square-grid communication network.
The normalized packet drop rate (M) is plotted against the effective load per
node (λeff ).

infinite-sized system in the thermodynamic limit. In the sta-
tistical mechanics literature, the space correlation length ξ(Δ)
behaves as a function of |Δ| in a power law. Here, Δ can be
considered as λc

eff (N)− λc
eff (∞). Also, the following size

dependence form of a test function ξ(Δ) is assumed [18], which
conforms to the characteristics of ξ, and:

ξ
(
λc

eff (N)− λc
eff (∞)

)
= pN (3)

where p is the proportionality constant. Thus, the following law
is postulated based on the structure of the 2-D Ising model (also
known as the Onsager model) [1], [2]:

λc
eff (N) = λc

eff (∞) + qN− 1
ν (4)

where q and ν are constant model parameters that are called
the coefficient and index, respectively. However, in the present
problem, λeff ∼ (1/N). Thus, it is impossible to provide a
finite effective load per node to an infinite-sized network, which
implies that there cannot be any finite load phase transition in an
infinite-sized network, i.e., λc

eff (∞) = 0. Hence, for this case

λc
eff (N) = qN− 1

ν (5)

where the model parameters (i.e., coefficient q and exponent ν)
in (5) are identified by fitting with the simulation data generated
on the network test bed. Fig. 3 shows the closeness of the fitted
data with the model, where the identified parameters are as
follows: q = 100.034 ≈ 1.08 and ν = (1/1.1) ≈ 0.9.
Fig. 4 shows the possibility of generating a size-independent

global model for phase transition in square-grid communication
networks. Such a model can be constructed by using a reduced
(i.e., normalized) effective load λred = λeff/λc

eff instead of
λeff . This approach draws inspiration from classical ther-
modynamics, where compressibility curves for different pure
substances are unified by using reduced pressure or reduced
temperature instead of directly using pressure or temperature
as the independent variables.
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Fig. 3. Size dependence of critical network load. The critical value of effective
load per node (λc

eff ) is plotted against the size of the network (N) in the log-
log scale.

Fig. 4. Size-independent global model for network phase transition. The
normalized packet drop rate (M) is plotted against the effective load per node
(λeff ), normalized with respect to its critical value (λc

eff ).

Remark 2.1 (Critical Slowing Down): Note that there is a
slight mismatch among the phase transition curves in Fig. 4,
which can be attributed to the fact of critical slowing down [18].
The normalized time-correlation function φx(t1 − t2) of an
observable x(t) is defined [19] as

φx(t1 − t2) =

[〈x(t1)x(t2)〉 − 〈x〉2
]

[〈x2〉 − 〈x〉2] ≈ e−
|t1−t2|

τ (6)

where τ is the slowest relaxation time or temporal correlation
length of the observable x(t). It is known that, near a phase
transition point, the relaxation time τ of the slowest mode of
a system diverges, i.e., τ →∞. This phenomenon is known as
the critical slowing down, and as a consequence, it takes a long
time to make two consecutive independent observations near
a phase transition point. Therefore, it is difficult to simulate a
large system in the vicinity of the phase transition point.

Fig. 5. Average (over time) packet drop rate (D) as a function of packet
arrival rate (λeff ) and transmission probability (P ).

III. HETEROGENEOUS PACKET TRANSMISSION:
INTRODUCTION OF A SECOND INTENSIVE PARAMETER

Previous analyses studied the effects of variations of a single
parameter (e.g., packet arrival rate λ) on the average packet
drop rate in the network. This section introduces a second
network parameter, namely, the packet transmission probability
P , for networks transmitting heterogeneous packets. Given that
each node of the network has multiple independent queues
(buffers) for different packet types, packet transmission prob-
ability is defined as the probability of transmitting a particular
packet in a time unit.
In the previous case, with a single packet type, P was set

to unity. It is obvious that, when P is decreased from unity,
the network is expected to move from the steady phase to an
unsteady phase for lower values of the effective load λeff .
Similar phenomena take place in two-phase thermodynamic
(e.g., solid–liquid and gas–liquid) systems, where the critical
temperature of solid–liquid (or gas–liquid) transition can be
altered by changing the superincumbent pressure; lower pres-
sures usually lead to lower values of melting or boiling point.
In this context, the packet transmission probability P of the
nodes is called the network pressure, while λeff is called the
network temperature. Therefore, phase transition in the network
is a function of a combination of network temperature λeff and
network pressure P . Fig. 5 presents a 3-D plot of the average
packet drop rate as a function of λeff and P , and it is observed
that λc

eff decreases with a decrease in P .

A. Problem Formulation

The problem of heterogeneous packet transmission in net-
works is formalized in this section. Let there beK independent
queues for K types of packets for each node of the network.
For example, in the context of perimeter surveillance sensor
networks, heterogeneity may accrue from differences in the
sensor modality (e.g., audio, video, and magnetic sensor pack-
ets). In terms of packet arrival, let the effective Poisson arrival
rate of packet type i be simply (subscript eff is omitted)
denoted by λi (0 ≤ λi ≤ 1) for i = 1, 2, . . . K. However, only
one channel is used for packet transmission, i.e., at a given
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Fig. 6. Illustration for heterogeneous packet transmission mechanism.

time instant, a node can at most transmit one packet. A typical
scenario is illustrated in Fig. 6. The probability that a node in
the network transmits a packet of type i is denoted by Pi, where
0 ≤ Pi ≤ 1. A single transmission channel leads to the con-
straint

∑K
i=1 Pi ≤ 1. In this setting, the network is analogous

to multicomponent materials in a thermodynamic sense. Thus,
phase diagrams can be constructed for the equilibrium states for
such networks which eventually lead to a probabilistic (static)
control strategy of heterogeneous packet transmission. The next
section presents the idea of phase diagrams for networks trans-
mitting heterogeneous packets with a representative example of
two packet types.

B. Construction of Phase Diagrams

In the current setting of independent queues for different
packet types, the uncongested phaseU (respectively, congested
phase C) for a particular packet type is characterized by zero
(respectively, nonzero) packet drop rate. Thus, with respect to
a particular packet type, a network is in an uncongested or a
congested phase. This leads to the existence of mixed phases,
where the network remains in an uncongested phase for some
packet types while being in a congested phase for the rest of the
packet types. For a network carrying K packet types, there are
2K possible phases, which include the fully uncongested, fully
congested, and mixed phases.
The purpose of a network phase diagram is to determine its

phase for given distributions of λi and Pi. A representative
example with two packet types is presented here. As discussed
earlier, there can be the following four different network phases
for this example.

1) Completely uncongested phase (U1 + U2): Both packet
types are in uncongested phase, which signifies negligibly
small values of average packet drop rates D1 and D2 for
both queues.

2) Congested packet type 1 and uncongested packet type 2
(C1 + U2): Packet type 1 has a relatively large (i.e.,
nonzero) drop rateD1 while packet type 2 still maintains
a negligibly small D2.

3) Uncongested packet type I and congested packet type II
(U1 + C2): Packet type 1 maintains a negligibly small
drop rate D1 while packet type 2 has a relatively large
(positive) drop rate D2.

4) Completely congested phase (C1 + C2): Both packet
types are in the congested phase, i.e., average packet drop
rates D1 and D2 are large for both queues.

Remark 3.1: When compared to a multicomponent material
in the thermodynamic sense, the network with two packet types
has a remarkable similarity with two-component mixtures, e.g.,

Fig. 7. Network phase diagram with two packet types. The transmission
probability of packet type i is denoted as Pi under the constraint P1 + P2 = 1.
The arrival rate for packets of type i is denoted at λi.

a mixture of olivine (i.e., an isolated tetrahedra) and pyroxene
(i.e., single chain tetrahedra). The corresponding phase diagram
is known as the binary eutectic phase diagram [20] that ex-
plains the chemical process of generating the two immiscible
crystals from a completely miscible liquid based on temperature
and pressure variations. This process also has four possible
phases, which are the following: completely liquid phase (anal-
ogous to C1 + C2), mixture of liquid olivine with pyroxene
crystals (analogous to C1 + U2), mixture of olivine crystals
with liquid pyroxene (analogous toU1 + C2), and, finally, the
completely crystallized phase (analogous toU1 + U2).
Fig. 7 shows a 3-D phase diagram for the aforementioned

example, which is constructed via Monte Carlo simulation.
Four different phases are color coded. Both λ1 and λ2 are varied
independently from 0 to 1. Under the constraint P1 + P2 = 1,
planes for three different values of P1, namely, 0.2, 0.5, and 0.8,
show changes in the sizes of the phases across the range of P1.
The regularity in shapes of different phase zones is attributed
to the independence of the queues in different packet types.
This type of phase diagrams leads to the concept of controlling
heterogeneous packet transmission from the perspectives of
statistical mechanics. The basic idea is to move as close as
possible to the phase boundary of the U1 + U2 phase from
outside by choosing an appropriate P1. On the other hand, if
the network is already inside the U1 + U2 phase, then the
strategy should be to move as far away as possible from its
phase boundary, also by choosing an appropriate P1. The key
objective is to achieve robustness against the uncertainties in λ1

and λ2 or any other internal disturbances.

IV. CONTROL OF PACKET TRANSMISSION

The thermodynamic approach, presented earlier to analyze
and understand the congestion phenomenon in communication
networks, could lead to a novel means to control heteroge-
neous packet transmission by tuning the packet transmission
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probability at a node level. This section presents the basic
philosophy of such a control strategy along with representative
numerical experiments on the network test bed. From a control
perspective, the congestion states of a network are categorized
into the following two types.

1) Phase Type I: At least a queue for one packet type is in
the congested phase.

2) Phase Type II: Queues for all packet types are not in the
congested phase.

The control strategies are fundamentally different for these
two phase types. For Phase Type I, the drop rate of at least one
type of packet is nonzero, where the objective is to choose a
probability distribution of packet transmission to minimize the
worst case drop rate among packet types with nonzero drop
rates that can be scaled by respective packet arrival rates and
also by a user-defined packet priority distribution. In contrast,
in Phase Type II, drop rates for all packet types are already
zero. Thus, any transmission probability distribution that keeps
all the drop rates at zero is an optimal distribution according
to the objective of Phase Type I. However, a unique solution
can be achieved by the use of a different objective that would
provide robustness against the uncertainties and/or fluctuations
in packet arrival rates. The idea here is to choose a transmission
probability distribution that pushes the network deeper into the
steady phase (i.e., away from the phase boundary) so that, even
with fluctuations or uncertainties in the packet arrival rate, the
probability of being in the unsteady phase is minimized. In
other words, the objective is to maximize the least uncertainty
tolerance in packet arrival rate. As before, the uncertainty
tolerance can be scaled by the respective packet arrival rates
and the user-defined packet priority distribution. In the sequel,
the control objectives are described formally along with optimal
solutions for general and special cases.

A. Control Objectives and Optimal Solutions

A user-defined packet priority distribution {αi}, with αi ∈
[0, 1] and

∑K
i=1 αi = 1, is considered for defining the control

objectives in both phase types. A higher value of αi signifies
higher priority for packet type i while lowering the drop rate in
Phase Type I or increasing the uncertainty tolerance in Phase
Type II.

1) Control Objective for Phase Type I: In Phase Type I, the
following model for the average drop rateDi of packet type i is
assumed:

Di = f1(Pi, λi) ∀i (7)

where Pi and λi are defined as before. To find an optimal
transmission probability distribution Pi for a given packet
arrival distribution λi and a packet priority distribution αi that
minimize the (weighted) worst case packet drop rate, the cost
functional is chosen as

C(P1, P2, . . . PK) = max
i=1,...,K

αiDi

λi
(8)

= max
i

αif1(Pi, λi)
λi

. (9)

The optimal packet transmission probability for each packet
type i is denoted as P ∗

i and is given by the constrained opti-
mization solution as

(P ∗
1 , P ∗

2 , . . . P ∗
K) = arg min∑

i
Pi≤1

C(P1, P2, . . . PK) (10)

= arg min∑
i
Pi≤1

max
i

αif1(Pi, λi)
λi

. (11)

Although the constraint on the transmission probability dis-
tribution is

∑
i Pi ≤ 1, the inequality is replaced by an equal-

ity sign for optimality. The rationale for involving λi in the
objective function is to normalize the drop rates for each
packet type as it was done to define the order parameter M
in Section II. In this context, the solution of the aforementioned
optimization problem is fairly straightforward. For the optimal
packet transmission probability distribution, a solution of the
form

αiDi

λi
=

αjDj

λj
∀i, j (12)

is globally optimal if it exists. This is because, if one chooses a
packet transmission probability distribution to reduce αiDi/λi

even further for some value of i, then αjDj/λj would increase
for at least one j. Thus, the cost functional would increase.
The proof of optimality is presented in Appendix A which
also introduces a sequential and recursive approach to min–max
optimization when the condition described in (12) does not
exist.

2) Control Objective for Phase Type II: In Phase Type II,
Di = 0, i.e., f1(Pi, λi) = 0 ∀i, which leads to the critical curve
that yields the critical transmission probability P c for a given
packet arrival rate λ. Let the critical curve be described as

P c = f2(λ). (13)

For a given packet arrival distribution λi, if the network is in
Phase Type II, then∑

i

P c
i =

∑
i

f2(λi) ≤ 1. (14)

This implies that the packet transmission probability distri-
bution P c

i , where
∑

i P c
i ≤ 1), is sufficient for the network

to be in Phase Type II. However, the queues for different
packet types can still use the remaining packet transmission
capability of the network expressed as (1−∑

i P c
i ). The goal

here is to distribute this remaining packet transmission capabil-
ity among the queues in an optimal sense. To formalize this
problem, a virtual packet arrival distribution λU

i is defined,
where λU

i (λi ≤ λU
i ≤ 1) denotes a distribution that includes

uncertainty/fluctuations in packet arrival rates, for which the
network just remains in Phase Type II. The corresponding
packet transmission probability Pi is given as f2(λU

i ), which
leads to

λU
i = λi + λ̃i (15)

⇒ λ̃i = f−1
2 (Pi)− λi (16)
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where λ̃i(≥ 0) uncertainty tolerance provided for packet type i,
for which the network still remains in the steady phase (Phase
Type II). The objective of the optimization problem for Phase
Type II is to choose a transmission probability distribution Pi

that maximizes the minimum uncertainty tolerance for packet
arrival statistics. Thus, the objective functional is the worst case
(weighted) tolerance λ̃i that is given as

O(P1, P2, . . . , PK) = min
i=1,...,K

λ̃i

αi
(17)

= min
i

f−1
2 (Pi)− λi

αi
. (18)

The constrained optimization problem that has to be solved
to obtain the optimal packet transmission probability is given as

(P ∗
1 , P ∗

2 , . . . P ∗
K) = arg max∑

i
Pi≤1

Pi≥f2(λ)

O(P1, P2, . . . PK) (19)

= arg max∑
i

Pi≤1

Pi≥f2(λ)

min
i

f−1
2 (Pi)− λi

αi
. (20)

The solution for the aforementioned optimization problem is

λ̃i

αi
=

λ̃j

αj
∀i, j. (21)

The details are presented in Appendix B. Note the use of the
packet priority distribution αi in the optimization problem,
where the queue for packet type i gains more uncertainty
tolerance for a higher value of αi.

B. Approximation of Functional Forms

The formulation of a general control strategy is presented
above. For a given network structure and routing strategy, one
needs to estimate the functions f1 and f2, for Phase Type I and
Phase Type 2, respectively, in order to implement the control
strategy (see Section IV-A). An example procedure is shown
in this section with respect to the network considered in the
current study. Fig. 5 generates an idea for constructing the
functional forms for both f1 and f2. For Phase Type I (i.e.,
average packet drop rate per node D > 0), the function f1 can
be approximated with a linear function, i.e., with a plane. As
there is no bias, the plane equation for D as a function of P
and λ is

D = aP + bλ. (22)

The linear least square fit of the (numerical) experimental data
is shown in Fig. 8, and the error is found to be sufficiently low.
Note that the plane (22) only fits the data in Phase Type I and is
not valid for Phase Type II data, where D is always zero. The
error in the fit is observed to increase near the critical curve
(see the circled zone in the figure). This can be attributed to
the problem critical slowing down near the critical points as
discussed earlier. Note that D decreases with an increase in P
and D increases with an increase in λ.

Fig. 8. Approximation of average (over time) packet drop rate (D) as a
function of packet arrival rate (λeff ) and transmission probability (P ) in
square-grid networks. (Note: The region forD < 0 is inaccessible because the
packet drop rate is nonnegative.)

The critical curve equation (for Phase Type II) is found by
setting D = 0. In other words, the critical curve is the straight
line at which the least square fit plane intersects the D = 0
plane. Thus, the following equation for the critical curve is
obtained:

P c = cλ (23)

where c is a positive constant as P c must increase with an

increase in λ. Furthermore, c is expressed as follows: c
Δ=

−b/a, where b is positive and a is strictly negative (i.e., a =
−|a| < 0). Fig. 8 shows the critical line (dotted) for the current
network model.
The aforementioned approximate functional forms allow the

derivation of the closed-form solutions (for both phase types)
of the optimal packet transmission probability distribution by
solving algebraic equations.

1) Solution for Phase Type I: In Phase Type I, the suffi-
ciency criterion for the optimal distribution is given by the
solution of the following system of algebraic equations:

αia

λi
Pi + αib =

αja

λj
Pj + αjb ∀i, j ∈ {1, . . . , K}. (24)

For a network with K packet types, the above system pro-
vides (K − 1) independent equations, and the Kth equation is
provided by the constraint

∑
i Pi = 1.

Defining Q
Δ= (αia/λi)Pi + αib ∀i ∈ {1, . . . , K}, (23) and

(24) are combined to obtain

Q =
αi|a|
λi

(P c
i − Pi) ∀i ∈ {1, . . . , K}. (25)

It follows that Pi can be evaluated in terms of Q as

Pi = P c
i −

Qλi

αi|a| . (26)
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The parameter Q is evaluated by summing the expressions for
all i and using the constraint

∑
i Pi = 1

Q =

K∑
i=1

P c
i − 1

K∑
i=1

(
λi

αi|a|
) . (27)

However, for certain choices of αi, the solution of Pi may be
negative for a given distribution of λi, which does not satisfy
the constraint Pi ≥ 0 ∀i. This implies that a solution for the
set of equations in (24) does not exist in the feasible region.
Therefore, as described in Appendix A, the negative solutions
should be constrained to zeros, and the optimization should
be repeated for the rest of the packet types in order to satisfy
the constraint

∑
i Pi = 1. The algorithm for such a sequential

optimization procedure is given hereinafter.

Algorithm for Sequential Optimization
Q(1) = (

∑K
i=1 P c

k − 1)/
∑K

i=1(λk/αk|a|);
P

(1)
j = P c

j − (Q(1)λj/αj |a|); (Evaluate P
(1)
j ∀j)

i = 1;
while P

(i)
j < 0 for some jdo

for all j : P
(i)
j < 0do

P
(i)
j ← 0;

end for
i← i + 1
Q(i) = (

∑
k={j:P (i−1)

j
�=0} P c

k − 1)/

(
∑

k={j:P (i−1)
j

�=0}(λk/αk|a|));
for all j : P

(i−1)
j �= 0do

P
(i)
j = P c

j − (Q(i)λj/αj |a|);
end for

end while

Note that, as a consequence of the aforementioned algorithm,
the transmission probability distribution may have Pi = 0 for
some values of i and the rest of the elements will have Pj > 0
(where j ∈ {1, 2, . . . ,K} \ {i}). The scaled drop rates can be
written as

αiDi

λi
= αib− αi|a|

λi
Pi. (28)

Therefore, ∀j, k ∈ {1, 2, . . . ,K} \ {i} (i.e., for all packet types
with nonzero transmission probability), the solution obtained
from the algorithm will satisfy

αjDj

λj
=

αkDk

λk
∀j, k. (29)

Thus, due to the constraints on the transmission probability
distribution, the optimal condition described in (12) will only
be satisfied on a subset (containing packet types with nonzero
transmission probability) of the set of all packet types. The
rest of the packet types will have zero transmission probability
essentially due to their low (α/λ) ratio. As an example, for a

network with two packet types, the optimal packet transmission
probability for type 1 is given by P1

P1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if α1
α2

<max
[
1− 1

cλ2
, 0

]
α2+cλ2(α1−α2)

λ2

[
α1
λ1

+
α2
λ2

] ifmax
[
1− 1

cλ2
, 0

]
≤ α1

α2
≤ 1

max
[
1− 1

cλ1
,0
]

1 if α1
α2

> 1

max
[
1− 1

cλ1
,0
]

and P2 = 1− P1. Note that, in Phase Type I,
∑

i P c
i =

c
∑

i λi > 1 which ensures that max[1− (1/cλ2), 0] ≤
(1/max[1− (1/cλ1), 0]).

2) Solution for Phase Type II: For Phase Type II, as dis-
cussed earlier, the remaining transmission capability (beyond
the critical curve) 1−∑

i P c
i is distributed among the queues

of different packet types. To achieve the closed-form solution,
we begin with the solution for Phase Type II [given in (21)].
Using the model in (23), the optimal solution can be written as

Pi

c − λi

αi
= R ∀ i (30)

whereR is a constant. Appendix B establishes the existence and
optimality of the solution. Therefore

Pi = c(Rαi + λi). (31)

The value of constant R is evaluated using the constraint∑
k Pk = c

∑
k(Rαk + λk) = 1 as

R =
1
c
−

∑
k

λk. (32)

Thus, the optimal packet transmission probability distribution
for Phase Type II is given by

Pi = cλi + αi

[
1− c

∑
k

λk

]
. (33)

For example, the exact solution for the network with two packet
types is

P1 = α1 + c [λ1 − α1(λ1 + λ2)] (34)

and P2 = 1− P1.

C. Representative Experimentation

A representative experimentation on the simulated network
test bed is presented in this section to validate the effectiveness
of the control strategy developed earlier. The simulation test bed
is the same network system analyzed in this paper. This network
structure has the potential of serving as a fundamental building
block for real-life (and hence more complex) networks. For
example, the network structure used here can be considered
as a part of a larger sensor network, where edges of the
current (smaller) network interact with the rest of the network.
In [21], an important observation is made that distinguishes
sensor network routing from other classical IP-based routing
schemes. In sensor networks, generated data have significant
redundancy as multiple sensors in the vicinity of an event may
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Fig. 9. System trajectory in the phase diagram for the representative
experimentation. The transmission probability of packet type i is denoted as
Pi under the constraint P1 + P2 = 1. The arrival rate for packets of type i is
denoted at λi.

generate the same data. Routing protocols should use such
redundancy to improve energy and bandwidth utilization. The
redundancy can be used by implementing an activity schedule
where a significant fraction of nodes are kept inactive at a given
time. Furthermore, often events to be detected by large sensor
networks are local, rare, and random. Such information needs
to be propagated throughout the network for activity scheduling
as well as for achieving robustness to node failures. This paper
addresses the issue of information propagation by multisource
and multidestination types of communication.
Two different types of packets, namely, packet type 1 and

packet type 2 (e.g., video and audio sensors), are considered
for the validation of the underlying concept. Following the
notations used in this paper, the packet arrival statistics is
described by λ1 and λ2, packet priority distribution is denoted
by α1 (taken as 0.6) and α2 (taken as 0.4), and drop rates are
denoted by D1 and D2. The goal here is to estimate λ1 and
λ2 over a time window, then to detect the phase type with
respect to the estimated arrival rates, and to implement the
optimal packet transmission probability distribution P1 and P2.
Let the time scale of network dynamics be denoted as fast time
scale (denoted by Time) and the time scale of arrival statistics
estimation be denoted as slow time scale. In this experiment,
a slow time-scale epoch contains a window of 2000 fast time-
scale epochs.
Fig. 9 shows the steady-state position of the network in the

equilibrium phase diagram at different slow time-scale epochs.
The phase diagram is the same as the one shown in Section III.
Also, the time-series response ofD1 andD2 is shown in Fig. 10
along with the corresponding control set point P1.
For model identification purpose, parameters are identified

to be a = −0.0771, b = 1.0404, and c = −b/a = 13.4942.
Initially (Time = 1), the network is at state 1 (as shown in
Fig. 9) with λ1 = 0.05, λ2 = 0.01, and P1 = P2 = 0.5. Over
slow time-scale epoch 1, λ1 and λ2 are estimated, and at the
beginning of slow time-scale epoch 2 (Time = 2000), the
network moves to the optimal location with P1 ≈ 0.8 (state 2 in

Fig. 9). As a consequence, the very small ripples noticed in the
D1 time series in slow time-scale epoch 1 disappear. (Note that
this is a Phase Type II control.) Although lower P1 would have
been permissible, it reached P1 = 0.8 to optimally move away
from the phase boundary. At the beginning of slow time-scale
epoch 3 (Time = 4000), the packet arrival statistics is changed
to λ1 = 0.01 and λ2 = 0.05 (state 3 in Fig. 9), and it can be
observed that, after some initial transience response, D2 settles
to a nonzero value during slow time-scale epoch 3 whereas D1

remains at zero. Upon estimation of λ1 and λ2 over slow time-
scale epoch 3, the controller takes the network to the optimal lo-
cation withP1 ≈ 0.26 (state 4 in Fig. 9) at the beginning of slow
time-scale epoch 4 (Time = 6000). As a consequence, D2

response dies down, keeping theD1 = 0 response. The network
is still in Phase Type II. Finally, at the beginning of slow time-
scale epoch 5 (Time = 8000), the packet arrival statistics is
changed to λ1 = 0.15 and λ2 = 0.15 (state 5 in Fig. 9); bothD1

and D2 responses settle in a nonzero value over the slow time-
scale epoch 5. However, the steady-state value of D1 is higher
than that of D2 as the packet transmission probability distribu-
tion is still in favor of packet type 2 (with P1 = 0.26 and P2 =
0.74). From the control point of view, the network is in Phase
Type I, and the controller drives the network to the optimal lo-
cation with P1 ≈ 0.8 (state 6 in Fig. 9) at the beginning of slow
time-scale epoch 6 (Time = 10 000). Higher value of P1 com-
pared to that of P2 is due to the higher priority of packet type
1 over packet type 2 (α1 > α2). Consequently, D1 settles to a
lower value compared to D2 over the slow time-scale epoch 6.

V. SUMMARY, CONCLUSION, AND FUTURE WORK

This paper presents statistical mechanics-inspired analysis
of critical phenomena in square-grid wired communication
networks and validates the pertinent results on a simulation test
bed. A comprehensive finite-size scaling analysis has been per-
formed for a specific network structure, where network analogs
of intensive thermodynamic variables (e.g., order parameter,
temperature, and pressure) are introduced to unambiguously ex-
plain the underlying concepts. Phase diagrams are constructed
for networks transmitting heterogeneous packet types for the
control of the network system. Control strategies are synthe-
sized to achieve robustness in the fully uncongested phase
and to mitigate the worst case packet drop rate in congested
phases. Closed-form solutions for optimal control strategies
have been formulated for the square-grid communication net-
work structure. The analysis framework, reported in this paper,
can be potentially extended to ad hoc wireless sensor networks
for boundary surveillance problems, where spatially distributed
autonomous agents with (possibly multimodal) sensing capa-
bilities collaboratively monitor a given environment. In general,
different sensors sense the environment in a distributed manner
and need to communicate with other types of sensors for in-
formation fusion to make a comprehensive decision. Therefore,
complex multihop routing of (possibly multipriority) informa-
tion packets in a sensor network bears significant relevance. In
addition, such a simple network structure may serve as subsets
of large complex networks, where a thorough understanding of
small subsets is necessary for the control of the entire network.
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Fig. 10. Time series observation of packet drop rates for packet type 1 (D1) and packet type 2 (D2) and transmission probability for packet type 1 (control
input) P1.

In this paper, the packet arrival statistics is estimated in a cen-
tralized fashion, and a global packet transmission probability
distribution is broadcasted for optimal control. In this context,
the (statistical mechanics-inspired) ensemble approach may
allow the control algorithm to be executed over a network in a
communication-constrained environment via sparse statistical
sampling for the estimation of network performance parame-
ters. It will be more useful if each node takes its own decision
based on the local (its own or of its neighborhood) estimation of
packet arrival statistics and yet the global objective is satisfied.
Due to the ensemble approach of the current study, such a
distributed control problem is not intractable as well and will be
an important topic of future research. This approach will also
enable the routing strategy to handle different packet arrival
statistics in different locations of the network.
This initial study develops a priority-based queuing mecha-

nism and does not include the aspect of scheduling mechanism
for temporal management of packet transmission. Therefore,
from an application perspective, the dynamic aspects of the
network behavior need to be addressed in future, particularly to
handle distributed implementation of the algorithm and varying
packet arrival statistics.
Apart from the issue of distributed realization, the following

topics are recommended for future research from the per-
spectives of stability, performance analysis, and decision and
control:

1) validation of the theoretical results in more complex and
realistic network scenarios with various features (e.g.,
layered architectures and industry-standard protocols);

2) investigation of the effects of network topology (e.g.
rectangular instead of square grid), packet arrival statis-
tics, and distributions of source and destination nodes on
performance analysis and decision and control;

3) dynamic analysis for convergence and stability of the
network system as an augmentation of the equilibrium
behavior analysis, reported in this paper;

4) handling of distributed implementation of the algorithms
and varying packet arrival statistics.

APPENDIX A
MIN–MAX OPTIMIZATION

Let gi, i = 1, 2, . . . ,K, be continuous and strictly monoton-
ically decreasing functions defined as

gi : [0, xc
i ] →

[
gmin

i , gmax
i

]
where 0 < xc

i ≤ 1, gi(0) = gmax
i , and gi(xc

i ) = gmin
i .

The optimization task is to minimize the cost functional

C(x1, x2, . . . , xK) = max
i

gi(xi)

under the equality constraint
∑

i xi = 1 in the domain
[x1x2 . . . xK ] ∈ [0, xc

1]× [0, xc
2]× . . .× [0, xc

K ]. It is noted
that the feasible region is nonempty under the condition∑

i xc
i ≥ 1. In this context, the following two cases are

considered.

Case 1) Let there exist a solution [x∗1 x∗2 . . . x∗K ] (in the fea-
sible region and satisfying the equality constraint)
such that g1(x∗1) = g2(x∗2) = . . . = gK(x∗K) = g∗,
which implies that the cost C(x1, x2, . . . , xK)=g∗.
Now let a nontrivial perturbation to another

point in the feasible region be [x̃1 x̃2 . . . x̃K ].
Due to the constraints

∑
i x∗i =

∑
i x̃i = 1, there

must exist at least one m such that x∗m > x̃m.
Consequently, gm(x∗m) < gm(x̃m) implying that
C(x∗1, x

∗
2, . . . , x

∗
K) < C(x̃1, x̃2, . . . , x̃K). This es-

tablishes that [x∗1x
∗
2 . . . x∗K ] is the globally optimal

solution.
Case 2) If a solution of the form [x∗1 x∗2 . . . x∗K ] such

that g1(x∗1) = g2(x∗2) = . . . = gK(x∗K) = g∗ does
not exist, then it implies that the solution lies on
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the edge of the feasible region. A constraint is
activated by choosing an index m with the smallest
gmax

m and constraining xm = 0. The solution of the
remaining problem is similar to the original problem
except that it has one fewer function. This solution
is locally optimal, and the process is iterated recur-
sively to arrive at the final solution. In other words,
the scheme is to sequentially activate constraints
xi = 0 until a solution is found. Consequently, the
maximum number of iterations that may be required
for convergence is equal toK.

APPENDIX B
MAX–MIN OPTIMIZATION

Let hi, i = 1, 2, . . . ,K, be continuous and strictly monoton-
ically increasing homeomorphic functions defined as

hi : [xc
i , 1] → [0, hmax

i ]

where 0 ≤ xc
i < 1, hi(xc

i ) = 0, and hi(1) = hmax
i .

The optimization task is to maximize the cost functional

O(x1, x2, . . . , xK) = min
i

hi(xi)

under the equality constraint
∑

i xi = 1 in the domain
[x1 x2 . . . xK ] ∈ [xc

1, 1]× [xc
2, 1]× . . .× [xc

K , 1]. It is noted
that the feasible region is nonempty under the condition∑

i xc
i < 1.

Let there exist a solution [x∗1 x∗2 . . . x∗K ] (in the fea-
sible region and satisfying equality constraint) such that
h1(x∗1) = h2(x∗2) = . . . = hK(x∗K) = h∗, which implies that
O(x1, x2, . . . , xK) = h∗. Let a nontrivial perturbation to an-
other point in the feasible region be [x̃1 x̃2 . . . x̃K ]. Due to
the constraints

∑
i x∗i =

∑
i x̃i = 1, there must exist at least

onem such that x∗m > x̃m. Consequently, hm(x∗m) > hm(x̃m)
implying that O(x∗1, x

∗
2, . . . , x

∗
K) > O(x̃1, x̃2, . . . , x̃K). This

establishes that [x∗1x
∗
2 . . . x∗K ] is the globally optimal solution.

The subsequent part shows the existence of such a solution.
Let y ∈ ⋂K

i=1[0, h
max
i ] = [ymin, ymax], where ymin = 0

and ymax = mini hmax
i . Let a function J be defined on

[0,mini hmax
i ] as

J(y) =
K∑

i=1

h−1
i (y) y ∈ [ymin, ymax].

In the above equation, the inverse exists due to the continuity
and strict monotonicity property of hi. Under the assump-
tion of homeomorphism, h−1

i , i = 1, 2, . . . ,K, are also strictly
monotonically increasing functions.
The evaluation of J at ymin and ymax yields

J(ymin) =
K∑

i=1

h−1
i (0) =

∑
i

xc
i < 1

J(ymax) =
K∑

i=1

h−1
i

(
min

i
hmax

i

)
≥ h−1

m (hmax
m ) = 1

where m = arg mini hmax
i . Therefore, the inequalities

J(ymin) < 1 ≤ J(ymax) imply that there exists an
h∗ ∈ [ymin, ymax] such that J(h∗) = 1. The optimal solution
is obtained as x∗i = h−1

i (h∗), which satisfies the necessary
condition h1(x∗1) = h2(x∗2) = . . . = hK(x∗K) = h∗ under the
constraint

∑
i x∗i = 1.
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