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Abstract

While intelligent tutoring systems (ITSs), also called knowledge based tutors, are becoming more common
and proving to be increasingly effective, each one must still be built from scratch at a significant cost. We
have developed domain independent tools for authoring all aspects of a knowledge based tutor: the domain
model, the teaching strategies, the student model, and the learning environment. In this paper we describe
these tools, discuss a number of design issues and design tradeoffs that are involved in building ITS
authoring tools, and discuss knowledge acquisition and representation issues encountered in our work. We
also describe how we plan to use these tools (collectively called Eon), including "ontology objects," as a
meta-authoring tool for designing special purpose authoring tools tailored for specific domain types.
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1. Introduction
Intelligent tutors. Intelligent Tutoring Systems (ITSs) are computer-based instructional systems that have
separate data bases, or knowledge bases, for instructional content (specifying what to teach), and for
teaching strategies (specifying how to teach), and attempt to use inferences about a student's mastery of
topics to dynamically adapt instruction. ITS design is founded on two fundamental assumptions about
learning. First, that individualized instruction by a competent tutor is far superior to classroom style learning
because both the content and style of the instruction can be continuously adapted to best meet the needs of
the situation [Bloom 1956]. Second, that students learn better in situations which more closely approximate
the situations in which they will use their knowledge, i.e. they "learn by doing," learn via their mistakes, and
learn by constructing knowledge in a very individualized way [Bruner 1966, Ginsburg & Opper 1979].
Individually paced instruction and frame-based computer aided instruction (CAI) comprised early attempts
to provide adaptive instruction, and, though successful for some types of learning, fell short because their
learning environments were too contrived and their ability to adapt was limited to branching between static
screens. ITSs, also called knowledge based tutors, use techniques that allow automated instruction to come
closer to the ideal, by more closely simulating realistic situations, and by incorporating computational
models (knowledge bases) of the content, the teaching process, and the student's learning state [Wenger
1987].

The need for ITS authoring tools. In the last half decade ITSs have moved out of the lab and into
classrooms and workplaces where some have proven to be highly effective as learning aides [Shute and
Region 1990]. For example, students working with an Air Force electronics trouble shooting tutor for only
20 hours gained proficiency equivalent to that of trainees with 40 months (almost 4 years) of on-the-job
experience [Lesgold et al., 1990]. In another example, students using the LISP tutor [Anderson 1990]
completed programming exercises in 30% less time than those receiving traditional classroom instruction
and scored 43% higher on the final exam. While intelligent tutoring systems are becoming more common
and proving to be increasingly effective, each one must still be built from scratch at a significant cost. Little
is available in terms of authoring tools for these systems. Authoring systems are commercially available for
traditional CAI and multimedia-based training, but these authoring systems lack the sophistication required
to build intelligent tutors. Commercial authoring systems excel in giving the instructional designer tools to
produce visually appealing and interactive screens, but behind the presentation screens is a shallow
representation of content and pedagogy. Some [Youngblut, 1995] say there are too few ITS's to make
informed design decisions about ITS shells and authoring tools. There is certainly a grain of truth to this,
but it is also true that so few ITSs exist for evaluation and generalization because they are so difficult and
expensive to build. Some of us must build chickens, and some of us must build eggs, all artifacts limited by
the nascency of the field, if the field is to mature.

Our approach to developing ITS authoring tools is motivated by issues of pragmatics and usability. Rather
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than starting with a laboratory-based AI tutoring system and asking how it can be generalized to produce
more generic shell, as is the case in the design of some ITS authoring shells, our design base-line is
commercially available and widely used authoring systems for traditional computer-based teaching, such as
Authorware and Icon Author. Our goal was to extend rather than replace the capabilities afforded by such
systems, to preserve the level of usability and some of the authoring methods instructional designers have
become familiar with, and add additional tools, features and authoring paradigms to allow more powerful
and flexible tutors to be built.

In this paper we will first describe how the knowledge based approach to computer based instruction differs
from the more traditional approach. Then we will describe a suite of authoring tools we have developed for
building knowledge based tutors. Next we will discuss design tradeoffs involved in building authoring tools.
Finally we will summarize what was learned about representing pedagogical knowledge in knowledge based
tutors and how these ideas have become part of the design of the underlying representational scheme of
authoring tools.

2. From CAI Story Boards to ITS Knowledge Bases
There is a large established user population using COTS (common off the shelf software) to create
instructional software. We will call these users instructional systems designers (or instructional designers,
though in other contexts the term may have a more specialized meaning). We would like to facilitate cost-
effective ITS production by these instructional designers, as well as by those who have traditionally built
ITSs from scratch (primarily those in academic and industrial research labs). Empowering instructional
designers to build these more powerful systems requires new tools and a paradigm shift in the way many of
them conceptualize instructional systems. However, we want this shift to be accessible, incremental, and
evolutionary. For this reason, on the surface many of our tools have a look and feel similar to COTS tools,
yet allow additional levels of abstraction, modularity, and visualization necessary for producing an ITS.

Specifically, we proposed that moving from CAI authoring to ITS authoring involves a fundamental
paradigm shift from "story board" representations of instructional material to more powerful and flexible
"knowledge based" representations. The basic concept is not new; in fact, it is fundamental to all AI work.
Our contribution is in fleshing out how the knowledge based paradigm can be best presented to empower
instructional designers.

Figure 1: CAI story board vs. ITS knowledge base 
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Commercially available authoring systems assume and support a representation of instructional content and
instructional flow that is explicit, non-modular, and fairly linear. At a conceptual level, the instruction is
specified like this (see Figure 1): "Bring up screen # 41; If the user clicks on button A, then go to screen #
26." Though branching is allowed, each branch must be explicitly specified. Adding a new topic or question
involves explicitly encoding the branches to this content. Designing new content requires a duplication of
efforts. We call this paradigm for designing instructional systems "story boarding" because it is based on
enumerating all of the screens and the explicit links from each screen to the next. In contrast, in a
knowledge based tutor the instructional content is separated from the specifications of how and when that
content is presented to the student, so that the content can be used and re-used in multiple ways. Specifying
how and when the content is to be presented is done with generic, reusable teaching strategies. For
example, a CAI system may be programmed to give two hints for wrong answers to exercises. If the author
later realizes that three hints are necessary, he has to go back and change every link associated with giving
hints. In contrast, in the knowledge based model, there is one strategy specifying how and when hints are
given, so that changing from 2 to 3 hints is a matter of making one change. 

Stretching COTS to the limit. Actually, many "power users" of commercial authoring tools such as
Authorware have already begun this paradigm shift. They have built layers, shells, or macros on top of the
existing authoring systems that capture the repetitive or modular format of their instructional application, so
they don't have to repeat the same work with every new topic or question. But these additional layers are
usually large and awkward patches that result in increased authoring efficiency, but at a loss of generality,
since they are created for a specific application. The powerful features of the authoring tool are
compromised, because commercial packages allow, but do not support, this type of abstraction. For instance
Authorware has an edit-in-place feature that allows the designer to pause the tutorial, click on text or
graphics, and edit right on the screen. This is extremely useful, because the screen may contain a number of
text and graphic items that were brought up at different times and specified in distant portions of a large
curriculum control structure. With edit-in-place the user does not have to search through this structure to
find each piece. But when a shell incorporating more general procedures that access a database of questions
is built on top of Authorware, the edit-in-place feature is lost. When power users pause in such an
augmented system to correct, say, a spelling error in a question, the display shows a variable called "the-
current-question," rather than the actual text of the question sought. To edit the actual text they have to
switch to a different program (the database program), search for it in the data base, then edit it and return to
the original program to see if their change resulted in the desired effect on the screen. This is one of many
ways in which the powerful features of CAI authoring tools are compromised or lost when they are coerced
into a form which allows separation of subject matter and instructional strategy.

2.1 Benefits of the Knowledge Based Approach

The knowledge based approach includes the following design principles:

Represent instructional content and instructional strategies separately.

Modularize the instructional content for multiple use and re-use.

Create generic teaching strategies that can be used with different instructional content.

Explicitly represent abstract pedagogical entities (such as "topics").

Design at the pedagogical level, as opposed to the media level, when possible.
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Designing tutoring systems in this way has many advantages over the traditional CAI design paradigm:

1) The behavior of the tutor can be easily modified. As shown above, to change when hints are given, only
a single "give hint" strategy needs to be changed and this effects how hints are given through the entire
curriculum.

2) The content of the knowledge base is modular and can be used for several purposes. For example, a
"topic" object in the knowledge base can contain information about how to teach itself, summarize itself,
give examples of itself, introduce itself, and test the student's knowledge of itself. The same topic can then
be used in many parts of the tutorial, for example, giving a summary at some point and teaching itself later
on.

3) Instruction can be much more learner-centered, since modularization allows students to navigate to the
topics they want to learn, and to ask for hints, examples, etc.

4) The authoring tools for a knowledge based system can be built to provide multiple and abstracted views
of the instructional content. Instructors need be able to easily view, inspect and navigate through these
knowledge bases.

2.2 Designing at the Pedagogical Level

In traditional CAI instructional actions are encoded using building blocks at the level of the media: text,
pictures, button clicks, etc. In contrast, knowledge based tutors can facilitate the design of instructional
actions using pedagogically relevant building blocks. For example: "give a hint," or "teach the
prerequisites". Designing instruction using building blocks such as "hint," "prerequisite," "if-confused,"
"known," and "summarize" is much more powerful than designing instruction at the level of "show video,"
"present picture" or "wait for the button click" The instructor can conceptualize the curriculum at a more
natural level of abstraction. An instructional strategy in the intelligent tutor might be: "if the current topic is
conceptual and the student is doing poorly, give several examples." Alternate strategies can be created, so
that the appropriate strategy can be used according to the needs of the student (e.g. learning style or mastery
of the current topic) or the pedagogical characteristics of the content being taught (e.g. whether it is
procedural or conceptual information).

2.3 Preliminary Research

This work is an outgrowth of an earlier investigation of tools for the acquisition of ITS domain and teaching
knowledge which culminated in a dissertation thesis and a system called KAFITS (Knowledge Acquisition
Framework for ITS) [Murray 1991]. The problem being addressed by this work was the gap between the
ITS research community and the educational research community, as ITSs of increasing complexity were
being developed without tools that would allow practicing educators to participate knowledgeably in the
design process [Clancey & Joerger 1988]. Several tools were created, including a semantic network editing
tool for visualizing topics the their relationships, and an editor for creating instructional strategies in the
form of Parameterized Action Networks (similar to ATNs but replacing states with actions to create a
planning rather than parsing formalism). Our sixteen month case study of three educators using the tools to
build a 41 topic tutor for high school Statics (representing about six hours of on-line instruction) was
reported in [Murray 1993, Murray & Woolf 1992a, and Murray & Woolf 1992b]. Figure 2 shows the
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productivity data for the domain expert (physics teacher), the "knowledge base managers" who did most of
the data entry, and the knowledge engineer who did most of the knowledge representation work. Figure 2
gives an indication of the relative amounts of time spent on different activities:

An analysis of productivity indicated that it took about 100 person-hours of development time per hour of
instruction (596 total hours for 6 hours of instruction, or about 15 hrs per topic);

The above data was interpreted cautiously but we did note that it compared favorably with the 100 to 300
hours often given for building traditional (non-intelligent) CAI;

The domain expert invested a significant time in designing and debugging the tutor, 47% of the total, while
the knowledge based managers worked 40% of the total time, and the knowledge engineer only worked
13% of the total time;

Design constituted abut 15% of the total time, and implementation the other 85% (time spent on formative
evaluation is not included in the data); and

Training totaled about 15% of the total time (vs. 85% for development). 

Figure 2: Person-hours vs. Participant Role in building the Statics Tutor

We also studied the design process itself, and well as several usability and representational issues. We
learned of the importance of 1) providing clear visual representations of the underlying concepts and
structures of the system; 2) providing features which reduced cognitive load on working memory (by
reifying information and structure) and long term memory (by providing remindings); 3) facilitating
opportunistic design by not forcing the user to make decisions in a rigid order; and 4) allowing quick
movement and iteration between testing and modifying what is being built.

In sum, this work, combined with experience the author later gained using COTS authoring tools to build
training systems in industry, formed the conceptual foundation for the Eon authoring tools project. The
productivity data, though only from a case study of building one tutor, have given us some guidelines for
estimating productivity figures on other projects, and also yielded the encouraging suggestion that intelligent
tutors can be built with human resources comparable to building CAI.

3. The Eon ITS Authoring Tools
Next we will describe the authoring tools by showing how they were used to build a tutor which teaches
how a refrigerator works. In later sections we will discuss knowledge representation issues and make
comparisons with other ITS authoring projects.
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The Refrigeration Tutor. The Refrigeration Tutor was designed to be used in a new UMass course called
"Engineering, the Human Enterprise," a sort of "engineering for poets" class that has as its goal to give non-
technical students a sense for the history, concepts, processes, and wider social aspects of engineering and
design. A large section of the class will be based upon the evolution of the needs for and
engineering/scientific responses to societies needs for refrigeration. The class is scheduled to be first taught
in the Fall of 1997.

The Refrigeration Tutor teaches about the operation of the refrigerator, an a general understanding of the
relationships between temperature, pressure, volume, energy, and phase so that students can grapple with
such questions as:

- How is it that we can cool something off by putting energy into  it?

- Why is the refrigerant boiling in the colder part of its cycle?

- Why is it that if you leave the refrigerator door open in the kitchen the room gets hotter?

- Why would a fluid such as water not work as well as Freon and other materials used as refrigerants?

The Refrigerator Tutor is relatively simple (its interactions are mainly multiple choice and point-and-click
interactions) and it does not fully utilize much of Eon's functionality, but it forms a good example case for
describing the tools due to this simplicity. Since our goal is to describe the authoring tools, not the tutor
itself, we will only describe enough of the tutor to show all of the tools at work. 

3.1 Design Steps and Authoring Tools

We will present the tutor design process in an order which best suits the tools description, but in fact the
design of the tutor happened with several stages taking place in parallel, and in a much more opportunistic
fashion. The Eon tools can be used in any order that is logically consistent. Top down, bottom up, and
opportunistic design approaches are possible. Eon does not walk the author through a series of design steps,
nor does it have "wizards" that instruct authors in certain steps (though these would be useful). As explained
later, Eon is expected to be used by design teams with at least one person having a moderate level of
training (though in Section 6 we discuss methods for scaffolding the process). The Refrigeration Tutor was
authored primarily by two members of our lab, who worked closely with the domain expert, who did not
have the time to learn to use many of the tools (except the Contents Editor).

Design of a tutor can start from a concrete, bottom up orientation, designing the screens and interface the
student will use, and sketching out story boards of typical interactions. However, in our example of
authoring the Refrigeration Tutor we will start top-down, with the most abstract components of the tutor,
i.e. the topics and the topic network which comprise the domain model in Eon tutors. Following that we will
jump down to the concrete level and describe tools for authoring the student screens and learning
environment. Next we will describe how the student model is authored. Finally we will describe how
instructional strategies are authored using flowlines. Figure 3 shows the relationship between the knowledge
bases in Eon (domain model, teaching model, interface specification, and student model) and the authoring
tools used to build them.
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Figure 3: Eon Authoring Tools and Knowledge Bases

3.2 Authoring the Domain Model

A major difference between ITSs and conventional CAI systems is that ITSs contain an inspectable model
of domain expertise. This expertise can be either runnable (usually a rule-based expert system) or non-
runnable. The domain model also contains two types of information: performance information, which
represents knowledge about the subject matter and problem solving in the domain, and pedagogical
information (information relevant to learning or teaching the content---we discuss the need for representing
pedagogical knowledge at length in Section 5.1). The domain model in Eon consists of a semantic network
representation of the units of knowledge (called topics) that the tutor is designed to teach. Although this
semantic network may represent domain expertise such as part-whole relationships and sequences of steps,
the focus is on pedagogical information, i.e. links such as part-of and prerequisite which can be used in
sequencing the instruction.

The Topic Ontology Palette

The first step in building a tutor is to map out the learning goals or topics and their relationships in the form
of a topic network, using the Topic Network Editor. However, prior to this we must define the "topic
ontology," which specifies the types of nodes and links allowed, and also the types of properties topics can
have. Figure 4 shows the Topic Ontology Palette which is a visual representation of the topic ontology and
is used to draw topics onto the topic network. The topic ontology defines a number of "topic types" (or
knowledge types), which are shown in a pop-up menu on the palette, with each topic type having its own
shape. For the Refrigeration Tutor we defined these types: Fact (square), concept (pentagon), principle
(triangle), physical component (circle), and unspecified (oval). The topic ontology also defines a number of
"topic properties." For the Refrigeration Tutor we defined "importance" (with allowed values one to five
associated with the topic node's color) and "difficulty" (with allowed values "easy, moderate, difficult"
associated with the topic node's border color). The topic ontology also defines "topic link types," and for the
Refrigeration Tutor we defined "prerequisite" (red), "part-of" (black), "is-a" (blue), and "context-for"
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(green). The topic ontology also defines "topic levels," which we will discuss later, and which are not shown
graphically on the Ontology Palette or on the topic network.

Figure 4: Topic Ontology Palette

Eon does not yet contain a tool for defining the topic ontology itself, and this must be done via a text file
that contains lines like this:

NewTopicOntology <name>

NewTopicLinkType <name>

NewTopicProperty <name> <allowedvalues>

NewTopicLevel <name>

NewTopicType <name> <allowedLinkTypes> 
<allowedProperties> <allowedLevels>

Additional information is included in the text file to define how graphic properties (shapes, colors, etc. ) are
associated with these semantics.

When this file is loaded it defines a topic ontology, and the Topic Ontology Palette (also called simply the
"Topic Palette") shows a visualization of the ontology. To create a new topic the author selects the desired
topic type and property values. The appropriate graphic attributes are shown in the "new topic" node on the
palette. The author types the desired name for the new topic to the right of this new node. Finally, to
instantiate this new topic the author drags the node onto the Topic Network Editor and drops it at the desired
location.

The Topic Network Editor
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Once the topic ontology is defined the author can use the topic palette to draw out the topic network. Figure
5 shows the Topic Network Editor and the topic network developed by our domain expert. New topics are
created as described above, and they can be repositioned on the screen by dragging them. To create links
between the topics the author selects the link type at the bottom of the ontology palette, then clicks the "link
creation tool" button on the Topic Editing Tools Palette, shown to the bottom left in the figure, and defines
a segmented line from one topic to another. In the figure some lines are "part of" links and some lines are
"prerequisite" links (they are black and red, respectively, on the computer screen).

Figure 5: Topic Network Editor

The flow of instruction in the Refrigeration Tutor is organized around the parts of the refrigeration cycle.
The student is taken on several trips around the cycle, each one having more difficult information and
questions. The main components involved are the compressor, which compresses the gaseous refrigerant and
heats it up, the condenser, which cools down the gas and turns it into liquid (fanning the heat to the outside),
the expansion valve, which cools down the refrigerant, causes a drop in pressure, and a partial phase change
back to gas, and the evaporator, which absorbs heat from the inside of the refrigerator, causes the refrigerant
to boil and become completely gaseous again.

The domain expert has identified eleven important locations to focus on in this cycle, and these are shown in
the topic network as sub-parts of each of the components (labeled Ln-XXX, to the far right in Figure 5).
The main concepts being learned are also shown in the topic network, including understanding the
relationships between pressure, temperature, and phase. The student model (explained later) is used to infer
the student's mastery of each of these topics. In some of the tutors built with Eon, the topic network is
essential to sequencing the material that the student sees. In such tutors (the Statics tutor, for example) the
sequencing of topics, and thus instructional material, is determined dynamically using a network traversal
procedure defined by the author (using flowlines, described later). However, in the Refrigeration Tutor,
sequencing is fairly simple, as the eleven locations are cycled through three times giving questions with
more difficulty each time.

3.3 Authoring the Learning Environment
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The aspect of most ITS authoring shells that is most sorely lacking, in relation to COTS CAI authoring
systems, is student interface design, which for ITSs is also called learning environment design. Eon allows
authors to completely customize the student interface to create highly interactive learning environments.

The Interaction Editor and Interface Extensibility

Eon's Interaction Editor tool contains a hierarchical pallet of user interface components called widgets.
There are simple widgets such as buttons, text, pictures, sliders, movies, and hot-spots, and more complex
widgets such as multiple-choice dialogs, tables, and graphs (there are a total of 26 widgets in six categories:
Basic, Controller, Geometrical, Complex, Special, and Custom). Widgets are selected for drawing onto the
interaction screen using the Widget palette (see Figure 6, which shows the Basic widgets) .

 

Figure 6: Widget palette Figure 7: Crane Boom Widget

The Widget Palette is extensible via the "Custom" category. Arbitrarily complex widgets can be
programmed outside of Eon, and "dropped in" as needed for particular domains. These custom widgets can
be device simulations or whole learning environments. For example, our Statics Tutor has a "crane boom"
widget (see Figure 7) which lets students manipulate positions of objects and cables and observe the
resulting static forces. In order for custom widgets to inter-operate with the rest of the Eon tools, they must
adhere to a simple protocol which involves specifying the "parameters" used to set a widget's properties,
and the student "events" that the widget recognizes. The events can be simple as "button-pushed," or require
some processing as in a multiple choice widget's "correct answer" event, and can be arbitrarily sophisticated,
as in a "student has moved the load past the tension limit of the cable" event in the crane boom widget.
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Figure 8: Interaction Editor

Widgets are selected from the Widget Palette and drawn onto the Interaction Editor (see Figure 8). Figure 8
shows the screen design for the Refrigeration Tutor's multiple choice questions. It includes a picture, text
areas for the question and answer choices, a text area for hints and an "elaboration," an icon-ized map of the
refrigeration cycle (lower right) onto which a "you are here" indicator is placed. This is a reusable template
screen which was built using text, graphic, multiple choice, and button widgets from the widget palette.

Eon distinguishes two types of widget attributes: "options" and "properties." Options comprise most of the
widgets attributes, will usually remain as initially set during the tutorial, and are set using the widget's
options dialog. Figure 9 shows the options dialog for a push-button widget, and gives an indication of the
complexity of Eon's widgets. Widget properties are the small set of the most important widget attributes that
deal with student input or instructional content, for example, the text of a text widget, and the picture in a
graphic widget. Properties are likely to change during the course of the tutorial. The widget properties of the
multiple choice widget are: the question text, the answer choices text, the correct answer index, and the
answer selected by the student (which is set at run time by the student, not the author). Both options
and properties can be manipulated dynamically at run time (using a scripting language), allowing for
dynamic screens with content generated on the fly. Properties, however, have additional flexibility as
described below.
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Figure 9: Options Dialog for a Push-button Widget. 

Content Generation and Re-use

Widget properties, such as text and graphics, can be set in several ways:

1. Single value. E.G. a graphic widget always has the same picture.

2. Calculated value. The value can be attached to a script. E.G. each time the picture is shown in the
tutorial, the script is evaluated to produce a new value (e.g. a pointer to a new picture).

3. Template. Screens containing widgets can be specified as "templates" which get reused. In such cases the
properties of the widgets are stored in "Contents" objects (described below).

Using template interactions the author can create re-usable screen formats, and then create "Content" objects
to fill in the template. Figure 8 shows one of the template-based interaction screens authored for the
Refrigeration Tutor. The figure shows the default contents of this template. About fifty Contents objects
have been created to fill in this template, each with its own question, picture, explanation, and hints. As the
author adds widgets to the screen a data base entry form called the Contents Editor is created showing the
properties of the widgets. Figure 10 shows the Contents Editor for the multiple choice template screen, with
the contents object MCQ-L1-Q1 shown. The Contents Editor shows all of the properties of all of the
widgets on the student screen. Some properties are designated "D" to use the default value (a "C" would
indicated that the value is computed dynamically, i.e. attached to an author-defined script). The author can
edit widget properties directly from the Interaction Editor (which is WYSIWYG), or she can edit the
properties using the Contents Editor (which is like a database form). In the bottom left of the Contents
Editor and the Interaction Editor (of template interactions) is a pop-up menu listing all of the contents that
have been created for this template (MCQ-L1-Q1 is one of them), an item "default" to view the default
contents, and an item "New" to create a new contents item. The "Views" button to the right of this button is
for easy navigation between the three tools which constitute three views of this domain content: the
Interaction Editor, the Contents Editor, and the Flowline Editor (see below).
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Figure 10: Contents Editor showing widget properties 

To summarize, content reuse is facilitated by allowing an author to create interactive screens as templates.
The widgets are drawn once using the Interaction Editor, and then numerous Contents are created using the
Contents Editor. This facilitates "canned" material to be entered into the domain knowledge base. Additional
flexibility is available by attaching widget properties to scripts (as opposed to canned material) so that
interactive screens can be generated on the fly.

3.4 Connecting Topics to Contents

Thus far we have shown how the author works at the abstract level of the curriculum, i.e. in mapping out the
topic network, and at the concrete level, i.e. designing the interactive screens and (if they are template
screens) filling in data base forms to define the Content objects that fill in the screens with domain content
(the questions, hints, explanations, etc.). In this Section we will describe how the abstract level is linked to
the concrete level. Basically, Content objects are assigned to the topics, but it is a bit more complex than
that, and to explain how, first we must add one detail about topics left out of the earlier discussion: Topic
Levels.

In Eon topics need not refer to a single monolithic entity, but have an extra level of internal structure called
Topic Levels. Each topic has one or more Topic Levels which can specify different aspects or uses for the
topic, for instance: introduction, summary, teach, test, beginning level, difficult level, etc. In the
Refrigeration tutor the topics levels "Introduce," "Teach," and "Summary" were defined. A list of Content
objects are assigned to each Topic Level for each topic. Thus when we want to "introduce a topic" we give
the Contents in its Introduction level, and when we want to teach a beginning level of a topic we give the
Contents listed in its Beginning level. The list of Contents in a Topic Level is usually thought of as a
sequence of contents to present, but it can also be a set of applicable Content objects, and selection and
sequencing of these can be left to the teaching strategy (for example choosing randomly from the set). The
topic levels used in a tutorial are defined in the Topic Ontology object, described previously.
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Thus far we have described the curriculum contents as it is stored in modular, declarative units: as Topic
and Content objects. Later we will discuss teaching strategies, which are used to determine how this
declarative information is used: i.e. how the topics are sequenced, when each topic level is given, how the
Content objects are sequenced, when the interactive screens are shown, and how student behavior is
responded to. For now, we will only remind the reader that all of the domain information discussed thus far
is strategy-independent. It can be sequenced in arbitrary ways, as specified in the teaching strategies.

The Topic Contents Browser. The Topic Contents Browser is an authoring tool that shows another view of
the topic space, a tabular one as opposed to the graphic view given in the Topic Net Editor. Figure 11 shows
the Topic Contents browser for the topics in the Refrigeration Tutor. The Topic Contents Browser shows a
list of all of the topics, and the links and Properties of the selected topic, and, unlike the Topic Network
Editor, it shows the Topic Levels and the Content objects associated with each level.

Figure 11: Topic Contents Browser

3.5 Authoring the Student Model

The student model is the component of the system that keeps track of student behaviors and makes
inferences about what the student knows. Eon uses a variation of an "overlay student model" [Wenger 1987]
in that mastery values are calculated to correspond with each topic. The Eon student model can also be used
as a "bug library," since topic types for "mis-knowledge" such as misconceptions and buggy procedures can
be defined to keep track of known classes of common deficiencies. We call our student model a "Layered
Overlay Student Model" because values are inferred a several "decision layers," as shown in Figure 12. Most
overlay student models assign values to topics only. In Eon values are assigned to objects at several decision
layers: Lesson, Topic, Topic Level, Presentation Contents, and Events. Objects at each layer are composed
of objects at the next lower layer, for example, running a lesson will invoke the teaching of a number of
topics, teaching a topic will run a number of its topic levels, and each topic level consist of a number of
Contents (representing student interactions or blocks of information). Within a Content, a multiple choice
question for example, a number of low level student and tutor events will occur, such a selecting an answer
or asking for help (a student event), or giving a hint (a tutor event). As shown in the Student Model Editor
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(Figure 12) objects at each level can have a value. The value of objects at any level is determined by the
Student Model rules written for that level. These rules specify how the value of an object depends on the
values of the objects at the next lower level. 

Figure 12: Student Model Editor

Figure 12 shows the rules for mapping from the Events level to the Presentation Contents level for the
Statics Tutor. For the Refrigeration tutor, some example rules are:

Topic Level to Topic: my Teach Level is KNOWN OR all of my Parts are KNOWN ==> KNOWN my
Teach Level is SHOWN OR my Introduce Level is SHOWN OR my Summary Level is SHOWN ==>
SHOWN 

Presentation to Topic Levels: greater than 80% of my Presentation Contents are CORRECT ==>
KNOWN any of my Presentation Contents is SHOWN ==> SHOWN 

The student model is used to make the tutorial adaptive to the student's inferred state. This is accomplished
by referring to student model values in decisions in teaching strategies (and meta strategies), for example,
decision branches predicated upon whether a topic is "mastered" or whether a Contents has been "shown"
already. The refrigeration Tutor uses the student model to ask fewer easy questions if a topic is near
mastery, and to give more hints if the topic is far from mastered.

The vocabulary of terms used to define the student model values (e.g. "known," "mastered," "suspected
misconception") is customizable for each tutorial using the student model editor. We have found the current
Student Model Editor to be too restrictive however, since values and rules can only be defined on a per-
decision-level basis, i.e. every item in a decision level has the same rules and the same set of allowed
values. We are working on an extension to this system to allow rules to be assigned to groups of objects.
We would like some topics to use different student modeling rules than others, for example, in the
Refrigeration tutor we would like the topics representing the important concepts (to the left in Figure 5) to
use a different rule set than the topics representing the components and locations within the refrigerator (to
the right in Figure 5).

3.6 Authoring the Teaching Model
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To represent teaching strategies we use a flowline paradigm, a graphically portrayed procedural
representation of strategic knowledge, which explicitly shows structural and contextual control information.
Our Strategy Editor (also called the Flowline Editor) has a look and feel similar to commercially available
authoring tools such as Authorware and Icon Author. Eon flowlines, like procedures in programming
languages, can have input parameters, local variables, and can return values. All variable referencing and
naming is facilitated by menus and drag and drop tools, so the author does not have to memorize or type in
references to them.

 

Figure 13: Icon Palette and Flowline

Figure 13 shows the Flowline Editor and the Icon palette used to drag and drop flowline icons onto the
flowline. Flow of control travels down the flowline icons, and branches to the right for some icon types. The
Run Icon invokes another flowline and the Return Icon is used to exit a flowline prematurely, or to specify
a returned value. The icons in the palette are, from top to bottom: 

Sound-- to play any type of sound resource.

Message Box -- quick way to show text to the student (without an interaction screen).

Script -- arbitrary scripts which can refer to flowline local variables.

Erase/Remove -- hide or show widgets.

Run -- invoke another flowline, passing input parameters if needed.

Home -- return from a flowline, returning a value if needed.

Decision -- repeat loops, branching, If-Thens, etc.

Branch -- individual decision branches.
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Interaction -- bring up an interaction screen and respond to student-generated widget events.

Copy Data-- transfer data from one location to another (e.g. from a Content object to a local variable).

Animate -- animate widgets along an arbitrary path.

Composite -- a sub-flowline.

In the flowline in the Figure 13 the main multiple choice screen interaction is brought up, and branches are
defined for giving feedback on student answer selections, for pushing the Next or Quit buttons, and for
selecting the Elaborate button.

Meta-strategies

Effective teaching systems need multiple instructional strategies, and meta strategies for choosing among
them, to be able to respond to a variety of learning conditions and types of knowledge [Ohlsson 1987]. In
Eon we use a flowline parameterization approach. "Strategy parameters" are defined using the MetaStrategy
Editor (Figure 14). These parameters are like global variables that can be used in decision points in
flowlines. For example, a parameter called "number of hints" can be defined and used in a flowline to
specify whether one, two, or three hints are given. A "student control" strategy parameter can be defined and
used in a flowline to decide whether to allow students to skip the current question. Unlike normal global
variables, which would be manipulated in the flowlines, the strategy parameters are set using meta-
strategies. Each meta-strategy includes a set of strategy parameters, and a setting for each of those
parameters. Also, each meta-strategy has an "applicability condition" that defines when the MetaStrategy is
triggered. For example, in the "High Feedback" MetaStrategy shown in Figure 14, the applicability
condition is "Recent Wrong" (a variable in the student model) is greater than 50%. When this is true, the
High Feedback strategy is triggered. When it is triggered it sets the values of several strategy parameters:
number of hints, student control, auto-explanations, and difficulty level. Since these strategy parameters are
used in branch and decision icons in flowlines, the behavior of the tutor will be changed.

Figure 14: MetaStrategy Editor

Though the Meta-Strategy Editor is functional, we have not used it yet in any tutors. We hope to include
meta-strategies in the Refrigeration Tutor before it is used in the classroom.

3.7 Other Tools and Capabilities, and Implementation
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The authoring tools have a WYSIWYG pause-and-edit feature, which allows the author to test run a
tutorial, pause it at any point, and easily access the Interaction Editor, Contents Editor, or Flowline Editor, to
modify the data bases of teaching strategies. Eon has a number of other tools not described above, including
tracing and debugging tools, and a Document Browser which gives a hierarchical view of every object in a
tutorial document. The Document Browser is shown in Figure 15. The document browser is an alternate
way to view, access, and edit any object or object attribute. Double clicking on an object in the document
browser brings up the appropriate editor (e.g. the Flowline Editor if a flowline name is double-clicked).

Figure 15: Document Browser

Eon is implemented in a high level programming language called SK8, developed by Apple Computer's
Advanced Technology Group (see http://SK8.research.apple.com). Unfortunately, SK8 language
development and support was discontinued while the language was still in an alpha stage (it is now available
in the public domain). As a result, the Eon authoring tools are relatively slow, take an inordinate amount of
memory to run, run only on Quadra-generation Macintoshes, and experience occasional crashes (all of these
problems were to be fixed at the SK8 language level, had it continued as an Apple product). The upshot is
that the Eon tools are alpha prototypes, useful for demonstrating ITS authoring, and capable of producing
ITSs given certain restrictive hardware limitations on the runtime environment. Despite these hindsight
problems with using the SK8 development environment, we have been able to build a very large and
complex system, with a high degree of interactivity and usability, in a fraction of the time (about 20%) it
would have taken to build in a more traditional programming environment. Thus, from a research
perspective we made the right choice, but in order for the authoring tools to be a viable ITS development
platform, the system needs to be re-implemented in another environment (C++ or Java, for example). In the
mean time we are developing a Java-Based runtime engine, which will run Eon-built ITSs over the World
Wide Web.

3.8 Other Tutors Built with Eon

Eon has been used to build four other tutors, which we describe briefly below. The tutors are all early
prototypes. Some will find their way into instructional situations and evaluation. While most were designed
to demonstrate and test specific Eon capabilities, the Keigo and Refrigerator Tutors were designed to
address real educational needs, and will be used in college classes.
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Figure 16: Bridging Analogies Tutor & Keigo Tutor

The Bridging Analogies Tutor incorporates a Socratic teaching strategy developed and tested by cognitive
scientists to remediate common persistent misconceptions in science [Murray et al. 1990]. This tutor
demonstrates the operationalization of a recursive teaching strategy which was researched in human one-on-
one tutoring and classroom teaching. The student is presented with a sequence of analogous situations in an
attempt to bridge the conceptual distance between their current understanding of the phenomena ("does a
flat surface push back up on something that sits on that surface," in this case) and the correct physics
interpretation. Occasionally students are presented with screens which encourage them to compare and
contrast previous answers, and give them the option of changing a previous answer in light of new
conceptual connections (see Figure 16).

The Keigo Tutor teaches a part of Japanese language called "honorifics," dealing with the complicated rules
used to determine verb conjugation which appropriately honors the listener and topic of a conversation. For
this tutor Eon is interfaced with a rule based expert system encoding rules about how to map from surface
level features of the conversational situation to linguistically relevant properties of the situation. Students
are presented with a variety of situations involving people of varying levels of status and formality, and are
asked what types of verb conjugations are needed. Feedback is given based on which rules are applicable.
This tutor will be tested in a Japanese Language class in Spring 1998.

 

Figure 17: Chemistry Workbench & Statics Tutor

The Chemistry Workbench (see Figure 17) is the tutor which demonstrates the most open ended learning-
by-doing environment of the tutors built thus far. Students can mix chemicals from the shelf by dragging
and dropping them on beakers. Color and precipitates of the resulting solutions are shown, and the
instruments in the tool palette at the bottom right can be used to measure the volume, pH, etc. of the results.
The goal of the first tutorial is to learn about solvency and chemical reactions by interactively mixing
chemicals and measuring the results. The student fills in the table as he accumulates data to answer the
chemistry question posed.
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The Statics Tutor teaches introductory Statics concepts, and includes a "crane boom" simulation widget
(see Figure 7). This tutor has the largest topic network and curriculum knowledge base, comprising 40 topic
and misconception nodes, and hundreds of presentations with multiple-choice questions. Using topic levels
called "Summary," "Teach Easy," "Teach Moderate," and "Teach Difficult," in conjunction with topic link
types "Familiarity Prerequisite," "Easy Level Prerequisite," and "Moderate Level Prerequisite," we were able
to simulate a "spiral teaching" strategy, in which the same set of topics are taught several times, but at a
higher level of difficulty each time.

4. Design Tradeoffs, Usability, and Comparisons with Other
Research
Now that we have described the authoring tools and given some sense for how they have been used, we will
discuss issues of authoring tool design and use in more depth. In this Section we will discuss our design
decisions for authoring tools for all of the major ITS components: interface, domain model, student model,
and teaching strategies. We will illustrate areas where usability was desired over power and complexity, and
compare Eon with other ITS authoring systems. First, however, we will characterize the space of design
decisions available to ITS authoring tool designers, and characterize the intended users of the Eon tools.

4.1 Design Tradeoffs.

A number of ITS authoring systems have been prototyped (see discussion below), and their diversity attests
to the lack of consensus in the field on what mechanisms or interfaces are most appropriate. This is true for
ITSs, so it is no surprise that it is even more pronounced for ITS authoring systems. 

Domain
Model

Teaching
Model

Student
Model

Learning
Environment

Power/ Scope
Flexibility Depth
Usability Learnability

Productivity

Figure 18: ITS Authoring Tool Design Tradeoffs

This wide variation is due in part to the large and under-constrained design space. There is rough consensus
on the nature of the tradeoffs involved, but not on how to balance those tradeoffs to produce useful and
usable systems. Designing for power/flexibility vs. usability are usually at odds with each other.
Power/flexibility has two aspects: scope (breadth) and depth of knowledge. Scope is how general the
framework is for building tutors for diverse subject areas and instructional approaches. Knowledge depth is
the depth to which a system can reason about and teach the knowledge, and the depth to which it can infer a
student's knowledge and respond accordingly. Figure 18 illustrates the factors involved.

Usability also has two aspects: learnability and productivity. Learnability is how easy a system is to learn
how to use. Productivity is how quickly a trained user can enter information and produce a tutoring system.
Learnability and productivity are often at odds, since a system that is designed to be picked up quickly by
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novices may not provide the powerful features that experienced users need to efficiently produce large
systems. Scope and Depth are also often at odds, because one must often limit the generality of a system to
be able to represent deep causal knowledge. HyperCard, for example, is an authoring tool with huge
knowledge scope and minuscule knowledge depth. Note also that power/flexibility in ITS authoring tools is
mostly concerned with the "shell" aspect of the system, while usability is more concerned with the interface
and "tool" aspect. Clearly, shell and tool are highly interdependent, since a bad tool can make an important
aspect of the representational framework practically inaccessible, and a representational framework that is
too ambitious or arcane will lead to tools that are visually and conceptually incomprehensible.

Traditionally, ITSs are described as having four major components or functions [Wenger 1987]. Figure 18
illustrates that the design factors mentioned above come into play for each component separately. The state
of the art is such that no authoring system yet excels in all four of these areas, and those that excel the most
in one or more areas teach a comparatively limited skill or content area. A number of other generic ITS
authoring tools have been developed over the last decade (e.g.: IDE, [Russell et al., 1988], ID Expert
[Merrill, 1989], COCA [Major & Reichgelt 1992], GTE [Van Marcke, 1992], RIDES [Munroe et al. 1994],
[Nkambou et al. 1996]). We compare these systems with Eon in later sections, in reference to particular
issues and design tradeoffs. Below we will discuss some particular design tradeoffs in more detail.

4.2 Defining the User

Many of the design decisions for ITS shells depend critically one the nature of the intended user, i.e. the
author. Authors need some skill in three areas: programming, instructional design, and knowledge
engineering. The degree of skill needed in each of these areas depends on the authoring system. Some
systems [Merrill 1989] walk the user through a pre-defined knowledge acquisition dialog, asking the user a
series of questions. This removes knowledge engineering from the design process, making the system much
more usable, but such systems tend to be inflexible and tedious to use compared with open ended systems
which provide a framework and allow the author to mix top down and bottom up design in an opportunistic
fashion. Other authoring systems [Jones & Wipond 1991] allow free-form design but can also critique the
design for completeness, constancy, and even instructional validity (if you agree with the instructional model
they include).

To build a tutor of any reasonable level of sophistication will usually require the efforts of a design team
rather than an individual, and will require a tool with complexity at least on the order of magnitude of
Photoshop, AutoCAD, or DBASE. Therefore, for the foreseeable future, we do not expect the "average"
classroom teacher or industrial trainer to be able to author an ITS any more than we expect every teacher to
author a textbook in their subject area. The "master" teachers or trainers who become ITS authors will have
to be able to invest significant time building the systems and invest additional startup time on the learning
curve for these sophisticated tools. But whereas now building an ITS is restricted to a few initiates, the right
tools could allow every company and every school to have at least one team capable of ITS authoring.
These teams could work with teachers, subject matter experts, and graphical artists to rapidly produce ITSs.
By providing visualizations of key concepts and components in the ITS, the Eon tools make ITS authoring
more accessible. However, we still envision that the Eon tools will be used by teams of people, with one
person on the team trained in ITS construction and knowledge acquisition methods. In Section 6 we
describe our plans to build special purpose authoring systems to achieve a larger degree of both power and
usability, making the authoring tools available to a wider group of potential authors.

Another class of potential users are educational theorists. ITS authoring tools should allow theorists to
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rapidly prototype ITSs and easily modify their teaching strategies and content to experiment with alternative
curricula and instructional methods [Winne 1991]. This is crucial because there is still little known about the
form or applicability conditions of instructional strategies for ITSs, and whether such strategies are best
acquired from practicing teachers or instructional design theories [Ohlsson 1987, Major 1993].

4.3 Tradeoffs in Interface Design Tools

A large amount of effort was put into Eon's student interface builder, in order to allow authors complete
flexibility in the design of the interface. As well as the template feature, making it easy for authors to create
repetitive content, all widget properties can be manipulated via scripts, allowing the screens to be composed
and modified dynamically during the tutorial. Visual and semantic properties of widgets can be made to
depend on each other, allowing simple simulations to be built.

Still, Eon is not as facile at authoring complex learning environments and simulations as tools built
specifically for this purpose. For example, the RIDES system [Towne & Munro 1988] allows widgets such
as simulated meters, levers, faucets, and motors to be connected by wires or pipes, and represents the
interactions between these components in such a way that students can inspect how the device operates.
RIDES, like other special purpose authoring tools built to date, has only limited abilities to represent
curriculum, content abstractions, or multiple teaching strategies.

4.4 Tradeoffs in Inferencing Power of the Domain and Student Models

As ITSs become more effective and sophisticated, there is danger that the gap between theory and practice
will widen, and there is an ever increasing need to fully involve practicing educators in the design,
construction, and evaluation of these systems [Clancey & Joerger 1988]. Powerful Artificial Intelligence
techniques such as plan recognition, case-based reasoning, natural language understanding, neural networks,
fuzzy logic, and rule-based problem solving must be used sparingly and cautiously if the goal is to produce
tutors efficiently, since the inclusion of these technologies into tutoring systems dramatically increases the
complexity of the necessary authoring tools, the amount of training needed to use them, and the complexity
of knowledge acquisition. AI models of expertise are said to be powerful because of their generality and
modularity, but in practice, building and expert system is still a "black art," prone to scale-up
intractabilities. The amount of complexity and experience needed to build one is at odds with the level of
simplicity needed for a truly usable ITS shell.

Research in ITS with deep representations of domain knowledge is still needed, but our work in ITS
authoring tools favors usability over domain model inferencing power. We do not support expert system
representations of knowledge, i.e. the system does not usually "know," in any deep sense, what it is asking
the student to learn. This means that "why" and "how" student inquiries, hints, explanations, and problem
solving demonstrations can not be generated from first principles, as in more AI-intensive ITSs (e.g.
[Lesgold et al. 1990]).

The lack of a runnable expert model also limits the student model's depth. In general, ITS Student Models
come in two flavors: runnable models and overlay models [VanLehn 1988]. Runnable models, such as those
used in Model Tracing tutors [Anderson & Reiser 1985] represent student knowledge as a subset of the
expert system rules, along with buggy rules, and can compare these rules to the student's behavior in precise
ways. Overlay models assign competency (and sometimes certainty) values to curriculum topics according
to inferences made during the tutorial. Runnable models are used with expert-system based ITSs, and
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overlay models are used with non-runnable or curriculum-based ITSs. The same problems in complexity
apply to authoring runnable student models as apply to authoring expert systems, as described above.
Therefor Eon does not support Model Tracing or similar methods. Authoring tools are being developed for
Model Tracing tutors, which incorporate expert systems for relatively simple skills, and maintain fine
grained models of student knowledge [Anderson & Pelletier 1991].

Though Eon does not directly support the authoring of expert system models with authoring tools, an expert
system can be used with an Eon-built tutor. We have demonstrated this with the Keigo tutor, which has as
expert system for determining Japanese verb conjugation in conversations based on the roles and
relationships of the participants.

4.5 Tradeoffs in Modeling Teaching Strategies

In addition to limitations in domain knowledge sophistication, there are also limits to what we can
reasonably expect in the level of sophistication of tutoring strategies. At the simplest level are CAI systems
which have no explicit representation of pedagogy and no generalizations of instructional actions. We wish
to encode instructional expertise at as general a level as possible, within limits of practicality and the state
of the art. As an illustration of the progression from encoding specific decisions to encoding general rules
and deeper principles, consider the following ("English-ized") hypothetical ITS tutoring rules and
principles, where each item is intended to be an abstraction or reason encompassing the previous one:

1. If button #1 on screen #5 is pushed, then go to screen # 12.

2. If question-12 is answered wrong, then give explanation-5.

3. If the student gets a question wrong twice, then give a canned explanation.

4. If the student is very confused, then give an additional level of feedback.

5. Give students several opportunities to think about each situation so that they may learn from their
mistakes, then scaffold feedback of increasing levels of specificity.

6. Learning happens through an active process of concept formation while trying to account for new
information within in the context of previous knowledge.

This progression of hypothetical ITS tutoring "rules" goes from the trivial to the impossible. The first two
items illustrate the low-level coupling of state testing and action found in (non-intelligent) CAI. The third
item illustrates a type of tutorial reasoning that is typical of today's intelligent tutors. A tutor using this rule
must keep a record of the student's behavior, but the reason why the rule is applicable is not explicit. The
fourth item is well within the state of the art for ITS, and represents our goal for the Eon authoring system
and the tutors built with it. A tutor using this rule must have abstract models of the student's mental state
and the tutoring process. A diagnostic strategy must infer the level of "confusion" from student behavior
(such as number of times asking for help), and the appropriate interpretation of "feedback" must be inferred
based on the current state of the tutorial session. The fifth item states a pedagogical belief or strategy, and
represents the principle behind the previous rule. It could be operationalized in a limited way but is not
precise enough to be part of a robust ITS (with today's technology). The final item is based on a theory---a
psychological assumption. It represents the reason for the previous principle and the purpose for the rule
above it. Representing and using knowledge at this level of abstraction is clearly out of the reach of current
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technology. In the extreme one could ask: "Why go through all the trouble of defining the curriculum and
tutoring strategies at all? Why not use a deep causal representation of domain knowledge and its
pedagogical properties, and let AI rules infer the relationships and ordering of the subject matter?'' The
answer is perhaps obvious: the problem is intractable except in very limited cases.

A variety of representational formalisms have been used for control and strategic knowledge in ITS shells.
Some employ relatively sophisticated AI techniques such goal-based planning [Russell et al. 1988], black
board architectures [W. Murray 1990], agents [Cheikes 1995], task decomposition [Van Marcke 1992], and
production rules [Anderson & Pelletier 1991, Major & Reichgelt 1992]. Similarly to the domain knowledge
expert system discussion above, no framework or visual editor has yet been devised for any of these
formalism which lowers the complexity level sufficiently for our intended user audience. These formalisms
are highly modular, but control information elicited from human experts often has clearly defined structure
[Gruber 1987], and high modularity can hide the structure of strategic knowledge, obfuscate the context of
strategy decisions, and make strategy design unwieldy [Lesser 1984].

Strategy representation in Eon is based on a flowline paradigm for visual authoring, which has proven to be
highly understandable and usable. It is not as powerful as the more AI-intensive methods mentioned above,
because it does not allow a tutor to search a large space of potential instructional actions, or to reason about
what it plans to do (or what it could do) further along in the session. 

Multiple Teaching Strategies.

Ohlsson [1987, pg. 220] points out that "in order to provide adaptive instruction, a tutor must have a wide
range of instructional actions to choose from." Human tutors have more than one teaching method or style
available to them, and likewise, computer tutors should be able to change teaching style depending on
dynamic student characteristics. Spensley et al. [1990] describe a shell which allows meta-strategies to
choose among pre-defined general strategies, including cognitive apprenticeship, successive refinement,
discovery learning, abstraction, practice, and Socratic diagnosis. The strategies themselves are fixed
however, and fine grained decisions can not be modified. Major [1995] describes a highly usable authoring
tool (REDEEM) that allows teachers to set a number of teaching strategy parameters to customize and select
applicability conditions for teaching actions. In this system some flexibility is traded for usability, since the
underlying instructional strategies are pre-defined (though parameterized). Van Marcke's [1992] GTE
system uses multiple alternative rule sets to carry out the actions of a given tutorial goal. This system is
more flexible but difficult to author.

We considered implementing multiple flowlines with the same purpose (e.g. multiple "Give a Hint"
flowlines), as a technique for representing multiple strategies in Eon, but this seemed too confusing for
users. Eon uses a parameterized approach like REDEEM, but is more flexible since the strategies can be
built from scratch. Users define a number of "strategy parameters", for example, "degree of hinting,"
"degree of interruption," "preference for general vs. specific information," and "amount of information."
Using the Meta Strategy Editor authors create meta strategies, which specify combinations of these, e.g.
"moderate hinting; give general information before specific; and skim (don't give much information)."
These global variable are used in the decisions of teaching strategy flow lines to, for example, take one
branch for moderate hinting and another for maximum hinting. The author then specifies conditions for
when each meta strategy is triggered. We believe that this method reaches a good balance between usability
and flexibility, but we have not yet used meta-strategies in teacher-authored tutors to confirm this
hypothesis.
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5. Representing Pedagogical Knowledge
In the last Section we discussed the design of the authoring tools. In this Section we first discuss the design
of Eon's underlying representational framework (which the authoring tools reify), and then we discuss
issues encountered in the use of the authoring tools to represent domain knowledge. Representing domain
information and representing teaching strategies are the two most labor intensive and knowledge intensive
tasks in building an ITS. In our work to date we have not focused yet on representing a variety of
instructional strategies, though that is one direction we plan to investigate in the future. Therefore, in
Section 5 we will limit our discussion to what we have learned about representing domain knowledge, and
since, as mentioned previously, we focus on the representation of pedagogical knowledge rather than
performance knowledge, we will further limit our discussion to the acquisition and representation of
pedagogical domain knowledge in intelligent tutors. 

5.1 The Need for Explicit Representations of Curricular and Pedagogical Knowledge

Although the effectiveness of computer-based instruction can depend heavily upon whether the learning
environment is relevant and meaningful, some instructional systems focus exclusively on providing "learn by
doing" systems that simulate (with whatever degree of fidelity the state of the art can achieve) the contexts
in which the target knowledge will be used, yet neglect to provide adequate structure or guidance to assist
students in their learning. Here we argue for the need to provide structure and guidance and thus the
importance of representing curricular and pedagogical knowledge.

Instructional systems, since they are designed artifacts, will always have instructional goals for the student
(even if the goals are vague, implicit, or open ended), and all but the most motivated, advanced, and
prepared students will require guidance and/or structure in achieving these goals. This guidance and
structure can take several forms:

1) Intelligent selection and sequencing of topics and tasks (a top down approach),

2) Presentation of feedback, hints, explanations, and other informative reactions to student behaviors and
queries, (a reactive or opportunistic approach).

3) Biasing the learning environment to maximize learning (an implicit or covert approach).

Students can not be expected to select learning tasks and topics efficiently in domains they are just
beginning to learn about. They can flounder, get bored, or pursue inappropriate goals if they do not receive
proper guidance and/or structure (for example, they may run a simulation over and over to simulate some
interesting catastrophe, without making the effort to learn about the causal mechanisms involved). In order
for the needed guidance and structure to be given, intelligent tutoring systems must contain expertise in the
subject being taught (domain knowledge), and expertise in how to teach that material (teaching knowledge).
Figure 19 illustrates how what we call "pedagogical knowledge" (sometimes called propeadutic information)
is both teaching knowledge (the declarative part, as distinguished from teaching strategies which are usually
procedural or rule-based) and domain knowledge (the part that is related to teaching a subject, as
distinguished from the knowledge needed to perform in the domain).
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Figure 19. Teaching and Domain Knowledge

Part of pedagogical knowledge is "curriculum knowledge," a term we use to refer to the modular
representation of knowledge and learning goals into knowledge units ("topics" in Eon) and the relationships
between these units. Clearly, the learning or teaching of different things is done best using different
methods [Gagne 1985]. In addition, learning any non-trivial skill involves learning a number of component
pieces of knowledge, some of which are dissimilar in their pedagogical requirements. ITSs need to
explicitly represent these knowledge pieces, and must be able to distinguish and use their pedagogically
relevant characteristics.

To summarize, most students need guidance and structure while using computer based learning
environments in order to efficiently reach the learning goals for which the learning environment was built.
This guidance and structure can be given external to the computer (as in a teacher looking over the student's
shoulder, or a worksheet suggesting what to explore) or from the computer learning environment itself. If an
intelligent tutor is going to provide structure and guidance, it needs to represent and reason about modular
knowledge units and their pedagogically relevant properties (i.e. pedagogical knowledge, which includes
curriculum knowledge, is needed). Some tutoring systems seem to get by without representing pedagogical
knowledge, but this is only because they teach something which does not have numerous and/or diverse
components, i.e. they teach one thing or a few very similar things.

5.2 Previous Work in Representing Pedagogical Knowledge

Below we will summarize some theories and principles from the literature that are relevant to representing
pedagogical knowledge, and use this information as a foundation for a "curriculum object framework." This
forms the underlying representational framework for Eon's Topic and Content objects, so our discussion
constitutes a justification of Eon's representational framework based on instructional theories.

A. Modular knowledge units. In section 5.1 we argued for the need to represent discrete units of
knowledge (or learning objectives) in intelligent tutors, so that the tutor can model and reason about these
units in order to provide guidance and structure for the student. (In Section 5.4 we discuss some problems
inherent in knowledge modularization.) All of the principles and theories below implicitly or explicitly
assume that content can be modularized to organize the learning.

B. Hierarchies and concept learning. Ausubel's "subsumption theory" of learning [Joyce & Weil 1986]
focuses on the hierarchical organization of concepts in disciplines, and thus is amenable to computational
modeling. He proposes that abstract knowledge (further up in the hierarchy) is more meaningful and useful,
and preferred to more specific or rote learning. His Advanced Organizer model prescribes that new
information must relate to previous information, and that effective learning paths through the hierarchy of
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knowledge will differ for each student. He gives strategies for relating new knowledge to existing
knowledge based on whether the new knowledge is sub-ordinate, super-ordinate, or co-ordinate with
respect to existing knowledge. Web teaching [Halff 1988] similarly requires that knowledge networks be
annotated with information about the relatedness of topics (prefer more closely related topics) and generality
(give generalities before specifics).

C. Procedural knowledge. The subsumption relationship is valid for conceptual learning, but pedagogical
knowledge for procedural or skill learning requires a different treatment. Burton and Brown's BUGGY tutor
[1982] uses a skill lattice to represent subtraction subskills. The NEOMYCIN system [Clancey 1982] uses
an and/or lattice to represent medical diagnostic procedures. The BIP-II programming tutor [Westcourt et. al
1977] uses a network of subskills related by four links: analogous, harder than, same difficulty, prerequisite.

D. Lessons and instructional goals. Lesgold [1988] points out that the concept of prerequisite is often
inadequate, since whether one topic is a prerequisite of another may be a function of the learning goal of a
particular session, rather than a static relationship between topics. He proposes a goal lattice structure that
captures the different "viewpoints" of a curriculum structure that result from different instructional goals (or
perspectives).

Leinhardt and Greeno [1986] distinguish lesson structure and subject matter as the two fundamental systems
of knowledge needed for teaching, where subject matter knowledge is used by the lesson structure, the later
being in charge of tailoring a session for an individual student. Van Marcke's [1992] GTE framework makes
a similar distinction between content and instructional goals.

E. Beyond hierarchies and lattices. Domain knowledge is usually messier than can be represented in a
simple hierarchy or lattice. Goldstein's [1982] Genetic Graph includes relationships among procedural rules
which represent the way knowledge evolves while a student learns how to master a maze exploration game.
The relationships include explanation, generalization, analogy, and refinement, and show how learning can
follow knowledge pathways from abstract (simple) to more refined, from deviation to correction, and from
specialization to generalization.

F. Knowledge attributes. Bruner's [1966] theory of learning focuses on how we form new concepts,
categories, and rules by induction from examples or cases along with the analysis of key features. This
indicates that not only knowledge chunks and their relationships, but also their pedagogically relevant
properties, need to be represented for instruction. Case-based tutors, such as some of the Goal-Based
Scenarios described in [Schank et al. 1994], which use knowledge bases of example objects or situations,
search the knowledge base for appropriate cases based on case attributes.

G. Types of Knowledge. All of the work mentioned thus far deals with organizing units of knowledge
which are basically of one type (usually concepts or procedural skills). But, as attested to by the diversity of
the above instructional approaches, there are many types of knowledge. VanLehn [1987, pg.60], speaking
from an AI perspective, says that the popular procedural/declarative distinction is "notorious...as a fuzzy,
seldom useful differentiation." We recommend that the procedural/declarative distinction be abandoned for
classifying knowledge in instructional systems (except in contexts where it has a precise meaning, as in the
ACT* theory of cognition) and that more descriptive and precise schemes be used.

Bloom [1956] and Gagne [1985] were among the first to develop clear classifications of knowledge and
learned behavior, and assert that different types of knowledge require different types of learning or
instructional methods. Other knowledge typing schemes were later developed which are better grounded in
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modern cognitive theory and are more operational and concrete for the purposes of computational
representation. For example, Merrill's Component Display Theory [Merrill 1983] organizes knowledge in a
matrix with content type, e.g. fact, concept, or procedure on one axes and performance level, e.g. remember,
apply, and create, on the other. This matrix scheme is more expressive and intuitive than hierarchical
representations. Kyllonen and Shute [1988] propose a more complex multidimensional model which
distinguishes knowledge types in a hierarchy which illustrates cognitive complexity, and organizes these
types in relation to the level of autonomy of learning and the processing speed needed to perform the task.
Reigeluth's Elaboration Theory of Instruction [1983] is another complex knowledge typing scheme. It builds
upon Merrill's theory for how to teach individual units of knowledge of different types, and goes further to
proposes a theory of how these units can be organized and taught within entire domains, which require
knowledge of many types.

H. Representing buggy knowledge. Many of the theories and instructional systems mentioned above
include some representation of buggy knowledge and a method for remediating it. Buggy knowledge, such
as misconceptions and buggy skills or rules, is usually represented in a form similar to its corresponding
performance knowledge, but with additional properties and relationships that allow the buggy knowledge to
be diagnosed and remedied. 

Implications for ITS frameworks

The above principles lead to a number of recommendations about generic pedagogical knowledge
representation formalisms for ITSs. The use of network formalisms containing knowledge units (see item A
above) with directed links allows for the creation of hierarchies and lattices and less canonical frameworks
(B, C). A number of different types of nodes and links may be needed (B, C), and knowledge units should
have pedagocially relevant properties associated with them (F). Learning goals for a tutorial session should
be represented separately from instructional content (D). ITSs should be able to distinguish among different
types of knowledge (G), and also represent buggy knowledge (H), so that teaching strategies can be
predicated on knowledge classes. There is also an indication that exclusive use of a network formalism does
not provide enough knowledge structuring, and that more complex data structures will often be needed (E,
G).

Based on the above, we conclude that a minimum framework must have the following capabilities: 1. A
method for distinguishing the abstract representations of "knowledge" from the concrete media which the
student will see, read, hear, and manipulate; 2. A method for referring to discrete chunks of abstract
knowledge and the relationships between the chunks; 3. A method for distinguishing the goals and needs of
a particular tutorial session from the general domain pedagogical knowledge; and 4. A method (or methods)
for assigning instructionally relevant attributes, categories, or purposes to chunks or knowledge or media,
e.g. "explanation," "summary," "hint," "difficulty," so that teaching strategies can effectively use the
information.

5.3 A Curriculum Object Framework

To address the minimal requirements enumerated above, the Eon system uses the following objects and
mechanisms, which have been mentioned in our description of the authoring tools, but are reiterated here
with justifications for their use.



12/22/08 6:08 PMAuthoring Knowledge Based Tutors

Page 30 of 42file:///Users/tmurray/Sites/Bluehost_public_html/tommurray/papers/JLSEon/JLS96.html

Figure 20: Five-Layer Control Architecture

Topics. Knowledge elements of any grain size are represented by Topics. Since one can define specific
types of topics (see below) and create hierarchical links between topics, this simple object suffices for many
representational schemes. Topics can have any number of Topic Properties, such as difficulty and
importance. The Ontology defines these properties and their allowed values.

Topic Links. The Ontology also defines the types of links (relationships) allowed between topics.
Customizable link types allows for the representation of a wide variety of topic networks, including
component hierarchies, skill lattices, concept networks, etc.

Presentation Contents. Whereas Topics are abstract objects that refer to modular chunks of the knowledge
to be taught, Presentation Contents (or just "Contents") contain the specific contents that the student will see
and manipulate (text, graphics, etc., or the templates or algorithms for generating this content). Contents are
expository or inquisitory interactions, usually associated with a specific interactive screen templates which
the author designs using the Interaction Editor. For example, a drag-and-match type of interaction screen
can be designed and serve as a template. Specific Content objects are created to fill in the contents of that
template, e.g. each would specify the labels and pictures of the objects to be dragged, what the correct
answer is, and the text to give for an explanation of the correct answer.

Topic Levels. Having only the semantic net to represent all aspects of curriculum structure was found
inadequate. Topic Levels allow for distinguishing multiple levels of performance (e.g. memorizing vs. using
knowledge), mastery (novice to expert ), and pedagogical purpose (summary, motivation, example,
evaluation, etc.) for each topic. The Ontology defines what levels are available. Contents are associated with
Topics via Topic Levels, as specified in the Topic Contents Browser.

Topic Types. As mentioned, there is general agreement that there are different types of knowledge, each
type having its own properties and each type requiring a different instructional method. Rather than have
knowledge type be simply a property of Topics, Topic Types are first class objects which all Topics inherit
from. Since there are numerous theories of knowledge types, we leave knowledge type definition to the
Ontology. Each knowledge type defined in the Ontology has its allowed properties, allowed link types it can
connect to, and allowed topic levels. Buggy Knowledge is represented as topics of type Misconception,
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Procedure Bug, etc., depending on the type of knowledge that is in error.

Lessons. Topic networks, which define pedagogically relevant relationships between topics, do not specify
any ordering or starting point for learning sessions, and are independent of the instructional purpose of
sessions. Lesson objects are used to specify instructional goals and learning/tutoring styles for a particular
group of students. Nominally, the Lesson lists a small number of starting or goal topics, and specifies the
default teaching strategy. The teaching strategy then determines how the topic network will be traversed,
causing other topics to be taught, to satisfy the goal of learning the goal knowledge. 

The basic representational elements described above were included in Eon because some form of all of them
(with the exception of Topic Levels) seem necessary for any pedagogical representation. We call this
framework a "five layer decision architecture," where the five layers are Lesson, Topic, Topic Level,
Content, and Events (see Figure 20). Running a Lesson runs a number of Topics, each of which runs some
of its Topic Levels, each of which contains a number of Contents. At the lowest level are the individual
Events between the student and tutor, such as a student clicking a button, or the tutor giving a hint, several
of which will occur while a Content is running. 

Ontology Objects for Customizing the Curriculum Framework

The five-layer decision architecture is fixed in Eon, but the specifics of each layer are customizable using
ontology objects. An ontology is a particular way of describing the world (or some domain); it is a scheme
for conceptualizing the objects and relationships in a domain [Gruber 1993]. We use the term "ontology
object" for a data object which defines a conceptual vocabulary for a part of the system. In our current
system Topic Ontology objects specify topic types, topic link types, topic properties, and topic levels. For
example, the Topic Ontology for our Statics Tutor defines topic types Fact, Concept, Procedure, and
Misconception, and topic links Prerequisite, Generalization, and SubConcept; while a tutor for
Manufacturing Equipment might have topic types Safety, Maintenance, Operation, Theory, and Common
Failures, and topic links SubPart and SimilarPart. The widget palette and widget properties could be seen as
an ontology for interface design. Also, the allowed values for student model levels comprise an ontology for
representing the student's state. Strategy parameters, defined in meta-strategies and referred to in flowlines,
comprise a vocabulary for describing instructional decisions, are thus are also an ontology. Ontologies tend
to be generic and reusable, for example, an ontology developed for one science tutor should be usable
(perhaps with slight modifications) for other tutors with similar pedagogical characteristics (e.g. instruction
at a predominantly conceptual level).

Most tutoring systems fall into one of a number of loose classes, each addressing specific types of cognitive
skills or knowledge types. Example domain classes include: conceptual information, factual information,
problem solving skills, design skills, procedural skills (such as maintenance), inquiry and experimentation
skills, equipment diagnostic skills, customer contact (and other interpersonal) skills, sensory-motor skills,
association and pattern recognition skills, and argumentation/hypothesis generation skills. Ontology objects
may be reused across tutors within a domain class. Reigeluth [1983] prescribes that each domain be
assigned an "organizing content type:" conceptual, theoretical (principle-like), or procedural, that best fits
the characteristics of the domain and the instructional goals. His "elaboration theory of instruction" specifies
methods for selecting and sequencing content according to the organizing content type. Others have
categorized domains according to whether their structure is predominantly procedural, historical, structural,
causal, teleological, inferential, etc. Domain types have characteristic links between topics, for example
analogy, physical-part, a-kind-of, etc. Classifying domains according to organizing content type, and
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creating ontology objects for each organizing content type, would help bootstrap ITS construction.

As one could guess from the variety of instructional approaches described in Section 5.2, trying to design
the most general or powerful representational framework for an ITS would, at the least, result in a very
complex and obscure system. The design decisions for such a complex system amount to a commitment to a
particular perspective on how to organize the world, and though the designer may be able to wield this
complex machinery deftly, it is unlikely to have much in common with other equally valid representational
frameworks. For example, the Expert CML system [Jones & Wippond 1991] organizes domain knowledge
in a hierarchy of objects including Departments, Programs, Courses, Topics, Subtopics, Modules,
SubModules, Objectives, and Activities. In contrast, we have tried to identify a minimum underlying object-
oriented framework that is neutral regarding domain or instructional theory, and then leave the specification
of the remaining complexity to the Ontology design. For example, since we make no commitment to the
grain size of an Eon "topic," the ontology can define topic types called Departments, Programs, Courses,
etc., and also constrain the types of relationships between them. 

5.4 Problems and Solutions in Representing Pedagogical Knowledge

Now that we have described our underlying representational framework for pedagogical domain knowledge,
and discussed how Ontology objects are used to customize the representational framework for specific
tutorials or domains, we will consider several important issues encountered when we work with instructors
trying to explicitly represent pedagogical knowledge in an intelligent tutor.

Human knowledge does not exist in neatly defined, clearly named packages---it is inherently complex,
densely connected, fuzzy, and ambiguous. Yet to use knowledge in AI systems we try to represent it in
individual units with clear structure. The tension between the organic nature of knowledge and our need to
modularize it leads to a number of unavoidable issues for ITS knowledge representation, which we discuss
below, along with how we deal with these issues in the Eon system.

Knowledge Structure and Complexity

Most modern epistemological theories assert that the external phenomena that knowledge refers to does not
"have" any specific structure, but that we invent knowledge structures to organize and reflect upon our
understanding when we communicate or teach. We must avoid the assumption that by organizing knowledge
carefully enough we can feed it a student in some logical sequence and expect her to assimilate it (this is
sometimes called the "pipeline theory of learning"). Yet it is also true that "the sequence of exercises and
examples should reflect the structure of the [knowledge] being taught and should thereby help the student
induce the target [knowledge]" [Half 1988]. Our overview of past work illustrates that there are many ways
to structure knowledge, and that these can be represented computationally using common data structures
such as hierarchies, lists, networks, arrays, and frames, as well as multi-dimensional, multi-level
combinations of nested data structures. Though, theoretically, a knowledge space of arbitrary complexity
can be represented with just knowledge objects (topics) with their properties and interrelationships (links),
very complex structures are unwieldy, esoteric, and difficult to use and maintain. Knowledge authoring
must be supported with tools that allow clear visualization of the knowledge structures, and ITS authoring
tools must commit to and support (via visualization tools) an underlying structure.

Knowledge is structured in Eon using several mechanisms. First is the layering of basic object classes:
Lessons, Topics, Topic Levels, and Contents, mentioned above. The second method is in allowing arbitrary
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classifications of Topics and Topic Links in the topic network. Given the right Ontology, all of the
hierarchies, lattices, and networks mentioned in Section 5.2 can be represented in topic networks. The third
mechanism is the Topic Levels themselves.

Topic Levels, though a simple construct, are unique to the Eon framework, and allow a significant
improvement in representational sophistication without loss of clarity. For example, we have simulated
Merrill's Performance Content Matrix [Merrill 1983] by assigning content types to Topic Types (fact,
procedure, skill, etc.), and performance levels to Topic Levels within each topic (remember, use, apply,
create, and meta-knowledge). Without Topic Levels, there would be a confusing proliferation of related
Topics, one for each level of each Topic, i.e. we would need topics called Gravity-memorize, Gravity-use,
etc. As mentioned, levels of mastery can also be encoded, as can different pedagogical functions for a topic.
For example, a teaching strategy can tell a topic to "teach" itself, "summarize" itself, "define" itself, and
"test" for its knowledge if the Ontology defines these topic levels [Murray & Woolf 1992a].

If additional complexity is needed, the author must resort to "tricks" which are not explicitly supported by
the visualization tools. For instance, if an author wanted to represent both mastery levels and performance
levels of a topic in an Eon tutor, he would have to create topic levels such as Remember-easy, Remember-
difficult, and Use-easy. It remains to be seen how wide a variety of domains Eon's current framework can
accommodate, without resorting to "hacking" its representational formalism.

Additional analysis of a domain seems to always lead to additional complexity. For example, in our study of
authoring the Statics Tutor we discovered numerous different perspectives on the material [Murray 1991 pg.
218], most of which we did not attempt to implement. For example, Newton's' Third Law can be taught by
presenting questions which progress from existence (does a force exist here?) to direction (what direction is
the force?) to relative magnitude, to quantitative questions. This material can also be taught by showing a
progression of example situations in using different surface features, e.g. with objects hanging, falling,
rolling, colliding, etc. It can also be taught by dealing with first horizontal forces, then vertical, then both,
then rotational forces. Each of these methods has some instructional merit. Yet no system could hope to
account for the representational requirements all of these approaches simultaneously. 

Topic Modularity and Interdependence

When the knowledge in a domain is organized into modular units, which are then sequenced flexibly
according to instructional strategies, a number of unavoidable problems arise. First, it is difficult to encode
the knowledge "between" the topics, which can be about how they are related to each other, or the emergent
knowledge that comes from understanding topics together. Reigeluth [1983] and Lesgold [1988] refer to this
as the "glue" in a curriculum (Lesgold also refers to this as "non-linearities" between topics).

The issue of curricular "glue" is not as much a natural property of the content, as an emergent phenomena
that happens when instructional designers break up the content or domain knowledge into discrete chunks.
In Eon we deal with this glue in several ways. First, Topics can have Topic Levels such as "Introduction"
and "Conclusion," which address how the topic relates to other topics that are likely to precede or follow it
in most curriculum paths. Second, Topic Types called Composites and Synthesizers can be used. A
Composite topic is one that represents the whole which is more than the sum of its parts. For example, our
Static Tutor's Linear Equilibrium (LE) topic had "sub-part" links to LE Intuition, LE Concept, and LE
Principle. Knowing Linear Equilibrium involves knowing each of these parts, and also how the parts fit
together in an understanding of static situations.
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"Synthesizer" is a term used by Reigeluth [1983] for instructional components that interrelate and integrate
instructional units. In Eon we can define a topic type called Synthesizer. One possible strategy using
synthesizers relates two topics the student has learned: after a topic is taught check whether a synthesizer
connects it with another known topic, and if so, teach the synthesis material. Another possible strategy
connects new information with existing information before the new information is presented: before a topic
is taught, check whether a synthesizer connects it with an already known topic and, if so, present the
synthesis material.

Eon has one other mechanism for dealing with curricular "glue:" Lesson objects. Since Lesson objects can
specify a sequence of goal topics, they can also be used to insure that certain information is presented
between topics, to compare and contrast them.

The second modularity problem is that topics are often interdependent. For example, in our Statics tutor, the
student has to know something about Gravity to fully understand Linear Equilibrium, yet some
understanding of Linear Equilibrium is prerequisite to learning about Gravity. Topic Levels organized by
mastery, combined with levels of prerequisites, allow us to deal with this in Eon. We can assign content to
topics at various levels (e.g. easy, moderate, and difficult) and allow prerequisite links such as Familiarity,
Easy Prerequisite, and Moderate Prerequisite. Thus we can specify that the easy level of Linear Equilibrium
should precede learning the difficult level of Gravity, and that the easy level of Gravity should precede the
difficult level of Linear Equilibrium. This method simulates spiral teaching, in which the same topics are
taught from successively more difficult perspectives (see [Murray & Woolf 1992b] for more discussion of
spiral teaching).

The third modularity problem is that there is a tradeoff between the modular integrity of the units and
smooth tutorial transition between the units. It is hard to design a unit whose text makes sense regardless of
what comes before and after. In practice, this is dealt with in Eon by providing tools which allow the
designer to easily step though many potential paths, check for dialogue consistency, and make adjustments
to the knowledge base. Dynamic text generation can ameliorate this problem when it is feasible. In Eon we
can assign an arbitrary function to any chunk of text that appears on the student screen. This mechanism
could in theory be used to employ natural language generation techniques, but in practice we use it for
template-based text generation.

Conceptual Vocabularies

The field needs more in the way of common terminologies (e.g. conceptual vocabularies or ontologies) for
describing domain and teaching knowledge in order to better compare systems and share knowledge bases.
We are in the process of designing a conceptual vocabulary of primitive tutorial actions, pedagogical
parameters, and a knowledge classification scheme that authors can use to organize and codify domain
knowledge and teaching knowledge. The goal is to design a conceptual vocabulary for describing the
objects, actions, and parameters of instruction which will serve as building blocks or conceptual primitives
of representation. We are culling these terms from the literature in instructional design, cognitive
psychology, and intelligent tutoring systems, to build a loose taxonomy which, in its first incarnation, will
serve more as a paper-based knowledge acquisition tool [Murray 1996b]. Others, including [Mizoguchi et a.
1996] and [Van Marcke 1992] have developed conceptual vocabularies for ITS, and we hope to work with
them to develop an integrated set.

The goal is not to build a complete prescriptive model for instruction. It is simply to offer a kitchen-sink
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style loose taxonomy of terms (with definitions) intended for generality and completeness, not coherence
and consistency. A designer can choose from the taxonomy to specify terms which form a coherent model
for a particular domain or class of domains. The taxonomy includes lists of topic types, topic links, and
topic properties, which can be used to develop Ontology objects. For example, the list of topic links is: a-
kind-of, sub-procedure, sub-component; causes, allows, requires, justification, purpose, supports;
concrete/abstract, specialization/generalization; prerequisite, critical-prerequisite, familiarity-required,
mastery-required; critical-misconception-of; deviation/bug; analogy, bridging analogy, anchoring analogy;
synthesizes; comparison.

Also included in our growing conceptual vocabulary are taxonomies for domain types, task types, primitive
tutorial actions (for instruction, coaching, and hinting), tutorial decision parameters, student modeling
parameters, tutoring styles, and explanation and question types. 

6. Meta-Authoring Special Purpose Authoring Systems
We have tried to produce a suite of highly usable tools that have enough similarity to COTS
CAI/multimedia authoring tools to support users of these existing tools in making the transition to authoring
knowledge based tutors. After using the tools for several tutors and several authors, we find in that the
authoring system, though fairly large (the user documentation is several hundred pages long), is composed
of tools which are quite learnable and usable. However, the process of starting from scratch to build an ITS
is still a formidable one. Not surprisingly, we have consistently run up against the classic knowledge
acquisition bottleneck [Hoffman 1987]. Domain experts are usually good at sketching out student
interactions, lessons to teach particular topics, and responses to specific student behaviors, but articulating
knowledge at a more abstract level is difficult. The following ITS knowledge representation tasks are
inherently difficult for most subject matter experts:

1. Ontology design. Defining the types of topics, topic links, and topic levels for the Topic Ontology, and
also defining the ontology of allowable values for the student model.

2. Curriculum representation. Breaking the instructional material and goals up into discrete components
(topics) and providing relationships between these components (topic links);

3. Strategy representation. Representing teaching strategies in a general way (e.g. how do we recognize
that a student is confused, and what is a reasonable general response to student confusion?);

4. Student modeling. Defining rules that express when a student knows a topic, and labeling or
characterizing the student's level of knowledge. 

In our experience, it takes a knowledge engineer, a person skilled in the elicitation and representation of
these types of knowledge, to work with the subject matter expert (the teacher) to build these aspects of the
system. Highly usable tools such as Eon help, since the teacher will be able to visualize the knowledge
represented, and will be able to participate in the knowledge representation once the knowledge engineer
has broken the ice and shown how something is done once or twice. 

Special Purpose Authoring Tools

One proposed solution to the knowledge acquisition problem is creating special purpose authoring tools, for



12/22/08 6:08 PMAuthoring Knowledge Based Tutors

Page 36 of 42file:///Users/tmurray/Sites/Bluehost_public_html/tommurray/papers/JLSEon/JLS96.html

example authoring tools for building ITSs that teach anatomy, foreign policy, or verb conjugation.
Authoring shells which are used to build tutors for specific task types [Jona 1995, Dooley et al. 1995] can,
in principle, build tutors with more fidelity and depth than general purpose tools. The depth vs. breadth
tradeoff seems to imply that you can have one but not the other, that 1) ITS authoring tools that can build
powerful tutors that closely match the pedagogical needs of a domain must have a narrow scope, and that 2)
an all-purpose ITS shell, by necessity, must have a shallow knowledge representation and the learning
environment it creates will have little conceptual fidelity (in comparison to special purpose tools).

Figure 21: Three Tiered Suite of Authoring Tools 

Our approach is to build special purpose authoring systems on top of the generic Eon authoring system, i.e.
using Eon as a "meta-authoring tool." This would involve constructing libraries of pre-built components
such as topic ontologies, student model rules, and interface screens (see Figure 21). Since some teaching
knowledge is general in nature [Van Marcke 1992, Jona 1995], default teaching strategies and meta-
strategies will also be incorporated into special-purpose authoring systems. We could then provide sets of
these components tailored to facilitate building tutors for classes of domains or tasks. The Eon authoring
tools plus these specialized components would comprise a special purpose authoring system. For example,
ITS authoring shells could be produced for science concepts, human service/customer contact skills,
language arts, and equipment maintenance procedures. Instructional designers could immediately start
constructing tutors in an environment that supports and helps structure the knowledge acquisition process.
Though we recognize that a special purpose shell programmed from scratch is likely to be more powerful
than a shell built with a general meta-shell, the meta-shell approach allows for the proliferation of special-
purpose shells with a common underlying structure, so inter-domain commonalties can be exploited in both
content creation and in training authors to use the shells.

By using a meta-authoring approach, we hope to achieve a fair degree of fidelity and depth, while
maintaining usability and generality. Our eventual goal is to create a three-tiered suite of authoring tools
(see Figure 21), at three levels of abstraction [Murray 1996a]. At the first tier is a general purpose ITS
authoring system (plain Eon) that requires moderate knowledge engineering and instructional design
expertise to use. At the second tier are special purpose ITS authoring systems (built on top of the first tier
system) that require minimal knowledge engineering and instructional design expertise. The third tier
involves tools for the average teacher using an ITS in her class. At the third tier we will provide a simplified
subset of the authoring tools, so that once an ITS is built, any teacher can customize it for a particular class
or student. For example, by modifying a hint's text, replacing a picture with a more recent version, making a
teaching strategy more verbose, or by changing a prerequisite relationship between topics. This is important
because some teachers will be reluctant to use instructional systems that they can't understand or adapt. 

7. Conclusions and Lessons Learned
In this paper we have argued for the need for authoring tools for intelligent tutors (ITSs, or knowledge
based tutors). We summarized foundation research including a productivity analysis indicating that
knowledge based tutors can be built with resources comparable to traditional CAI. We described our suite
of authoring tools, called Eon, by showing how they were used to build an intelligent tutor for learning
about refrigeration, and we briefly described four other tutors built with Eon. We then argued for explicit
representations of curricular and pedagogical knowledge, and supported Eon's "curriculum object
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framework" with instructional theories and principles of pedagogical knowledge representation from the
literature. We described a number of ubiquitous knowledge acquisition and representation issues (dealing
with knowledge structure and complexity, knowledge modularity and interdependence, and conceptual
vocabularies) and discussed how the Eon system addresses each of these.

Our concluding remarks will summarize the remaining major points of the paper by addressing these
questions:

What characterizes a knowledge based tutor?

What are the most important features of authoring tools for knowledge based tutors?

Characterizing Knowledge Based Tutors

Our goal has been to provide authoring tools for the creation of intelligent computer tutors, which we also
call knowledge based tutors (for reasons given below). The example ITS we used in describing the
authoring tools was relatively simple (though we briefly mentioned more sophisticated tutors built with Eon
in Section 3.8). Eon does not directly support the authoring of deep causal or expert system representations
of domain knowledge, nor does it support intelligent diagnosis of student behavior. This is because not
enough is known in general about this depth of inferencing to create generic and highly usable authoring
tools for it. Therefore the question "where is the intelligence?" or "what makes a tutor intelligent?" may
reasonably arise in the mind of the reader. Yet tutors built with Eon are more sophisticated and "intelligent"
than traditional CAI tutors. How do we characterize this difference? Using the less common term
"knowledge based tutor" rather than "intelligent tutor" is one way to address the issue, since computational
"intelligence" is difficult or impossible to define in a way that satisfies everyone, and the term "knowledge
based" highlights the major difference between CAI tutors and intelligent tutors: intelligent tutors explicitly
model the processes and knowledge used in instruction (specifically, they model the domain, teaching
strategies, and student state). Any ITS authoring system will have a particular underlying representational
framework, and therefore will include its own assumptions about what an ITS is and it embodies constraints
on the types of ITSs that it can build. We call the types of ITSs that Eon can build "knowledge based
tutors." We will define knowledge based tutors as those having the following capabilities and features (this
is an extension of our description of the knowledge based approach given in Section 2.1):

An abstract representation of the curriculum or knowledge to be taught (as in a topic network);

Instructional content is modular and separate from instructional strategies;

Generic instructional strategies are used, and they refer to entities at a pedagogically relevant level of
abstraction;

A student or user model exists which makes inferences about the student's state;

Instructional decisions can be predicated upon the inferred student state;

Instructional strategies can be predicated upon pedagogically relevant characteristics of the content (e.g.
whether a topic is a fact or a concept; whether a topic is difficult or easy); and

Content can be generated and sequenced dynamically.
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Since our authoring tools utilizes a curriculum network and do not include rule-based representation of
expertise, tutors built Eon will be fairly "curriculum driven," though they can facilitate significant student
control in the selection and style of the material. Also, our tools are not well suited for teaching complex
procedures or problem solving skills, yet should excel in domains where multiple teaching strategies can be
written and predicated on inferred student knowledge. Tools are under development that support other
classes of ITSs. Model tracing tutors and other tutors based on runnable models of domain expertise and
student knowledge are extremely powerful in the situations where they apply (i.e. where the expertise can
be represented at a fine gain size), and authoring tools for these are under development [Anderson &
Pelletier 1991]. Another class of ITSs involves teaching about the functionality of equipment and associated
diagnostic procedures. Authoring shells that allow the designer to build functioning simulations of
equipment and diagnostic strategies have also been built [Towne & Munro 1988]. 

Tools for Authoring Knowledge Based Tutors

Given the above characterization of knowledge based tutors, the next question is: what features are
important in an authoring system for knowledge based tutors?

Authoring tools can have a variety of purposes and intended users, and their design must account for
tradeoffs among four overall goals: scope, depth, learnability, and productivity (see Figure 18). We have
described our intended user audience (in Section 4.2) and discussed how our system addresses these overall
goals for our intended users in terms of each of the four functional components of ITSs. The Eon system has
authoring tools for all four functional components of an ITS: domain, teaching strategies (and meta-
strategies), student model, and interface. Though designing to maximize any of the four overall goals could
compromise the other three, we found certain design principles useful to our goal of maximizing all of them,
and we describe these suggested design principles below.

1) Use appropriate representational formalisms. A long standing aphorism in artificial intelligence is that
once an appropriate knowledge representation is found for a problem the task of solving the problem, or of
programming an intelligent system to solve the problem, is half complete. ITS researchers are still searching
for more powerful representational formalisms. So although designing general ITS shells requires many
tradeoffs and compromises, additional levels of excellence on all fronts will be realized as better formalisms
are developed. The design suggestions below illustrate how an underlying representational structure, along
with authoring tools that reify this structure, can achieve both scope and usability.

2) Provide visual reification for the concepts and structure of the underlying representational
framework. We believe that the conceptual and structural elements of a representational formalism should
be portrayed graphically with high visual fidelity if ITS Authoring systems are to be used by non-
programmers without a high degree of knowledge engineering and programming expertise. Such an
interface relieves working memory load by reifying the underlying structures, and assists long term memory
by providing remindings of this structure. Also, multiple views (visual perspectives) of information are often
needed. However, building highly usable interfaces should be done using an iterative user-participatory
design process [Blomberg & Henderson 1990], and is unfortunately very costly and time consuming.

3) Facilitate design at a pedagogically relevant level of abstraction. Provide tools which allow subject
matter experts to author using primitives that have instructional meaning, for example using objects such as
"hint," "explanation," "topic," "prerequisite," and "mastered" (in addition to providing primitives at the
presentation and media level such as "graphic," "button," and "mouse click").
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4) Design for modularity and re-usability of content. Represent and author instructional content
modularity so that it can be used for multiple instructional purposes. Provide productivity tools that
capitalize on repetitive or template-like content (see Eon's Presentation Content Editor). Provide tools that
make it easy to browse, search for, and reference content objects (as in Eon's Document Browser).

5) Provide features powerful enough to author generative content. Template-based content is important
because for many domains current technology can not generate examples, exercises, explanations, or hints
in a robust way. But in some cases content and student interactions can reasonably be generated on the fly,
and tools facilitating this should be provided. Useful features include scripting languages, the ability to
attach interface components' attributes to scripts or expressions, and the ability to have attribute values
depend on each other.

6) Allow for interface extensibility. Authoring tools should provide a powerful set of interface components
(as in Eon's widgets), but should also allow for complex and special purpose components to be programmed
separately and linked in to the authoring environment. This feature is called "custom widgets" in Eon.

7) Facilitate an opportunistic design process. ITS authoring tools should allow for top down (starting with
the abstract curriculum structure), bottom up (starting with specific screens and content), and opportunistic
(switching between top down and bottom up as needed) design of ITSs. WYSIWYG tools that allow easy
movement between authoring content and test running the tutorial facilitate the build-and-test iterations
needed for rapid production of tutors.

8) Anchor usability on familiar authoring paradigms, and facilitate evolution to more powerful
paradigms. For those used to building traditional computer-based instruction, building knowledge based
tutors requires a conceptual shift from "story board" representations of content to more modular knowledge
based representations. It is useful to have some ITS authoring tools have a look and feel similar to COTS
CAI authoring tools, and to provide features which allow a smooth transition from traditional authoring
paradigms to authoring more powerful intelligent tutors. For example, Eon's interaction editor and flowline
editor have many surface similartities to COTS tools.

9) Include customizable representational formalisms. An authoring system will be based on some
underlying representational formalism, and any such formalism will satisfy the needs of authoring some
types of tutors yet not be appropriate for authoring other tutors. To achieve greater flexibility, include the
ability to customize the representational formalism. In Eon we do this via Topic Ontology objects, and the
capability to customize the conceptual vocabularies used in student modeling and meta-strategies.

10) Create special purpose authoring tools for increased usability and productivity. Generic authoring
tools can be used as "meta-authoring tools" to build special purpose authoring tools for particular classes of
intelligent tutors. Special purpose authoring tools come with pre-built libraries of components tailored to
specific needs. Instructional designers using special purpose authoring tools do not have to start from
scratch, but can immediately start constructing a tutor in an environment that supports the knowledge
acquisition process. In Eon we plan to combine default teaching strategies, default student modeling rules,
default interactive screens, and a topic structure (i.e. an Ontology) which is tailored to a specific type of
domain and/or task. 

Future Plans
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The issues involved in building an ITS from scratch can be subtle (as explained in Section 5), and a trained
person may always be needed on the ITS design team. But with appropriate representational formalisms and
tools that visually reify the conceptual structures involved, learning how to be a good ITS knowledge
engineer can be made accessible to many more people, not just to computer programmers and AI scientists.
Also, once a trained person gets the primary structures set up, an instructional designer with much less
training can continue to fill in the content.

Our future plans include formative evaluation of the authoring tools, building a number of tutoring systems
which demonstrate the breadth of applications possible with the system, generalizing some of these tutors to
build special purpose authoring tools and customized ontologies, modularizing the content of the ITSs so
that they can be deployed on the world wide web, and using the rapid prototyping capabilities of Eon to
facilitate research on alternative instructional strategies.
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