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Abstract. Generalization problems arise in many branches of artificial intelli-
gence: machine learning, analogical and case-based reasoning, cognitive mod-
eling, knowledge discovery, etc. Anti-unification is a technique used often to
solve generalization problems. In this paper we describe an open-source library
of some newly developed anti-unification algorithms in various theories: for first-
and second-order unranked terms, higher-order patterns, and nominal terms.

1 Introduction

Given concrete examples, find an expression which adopts all their common features
and has them as particular instances: This is an informal formulation of the general-
ization problem that arises in many branches of artificial intelligence. For instance, in
inductive logic programming, which combines logic programming with machine learn-
ing, generalization is one of the steps used to fit the theory being learned to example
clauses. In cognitive modeling, analogical reasoning relies on exploring and general-
izing common features of different domains. Proof abstraction and lemma generation,
software code clone detection and procedure invention are some other examples that
involve generalization.

Anti-unification is a technique used often to solve generalization problems. Given
two terms t1 and t2, this technique requires finding a term t such that both t1 and
t2 are instances of t under some substitutions. Interesting generalizations are the least
general ones. Introduced in [21, 22] for the first-order syntactic case, anti-unification
has been extended to more complex theories and is used in various applications. For
some of those developments, one can see [2, 3, 4, 8, 9, 10, 11, 14, 15, 17, 18, 20, 23].
First-order order-sorted equational anti-unification (for combinations of associative and
commutative theories with or without unit element) has been implemented in Maude
and is freely available [1].

The open-source library described in this paper implements anti-unification for un-
ranked terms, higher-order patterns, and nominal terms. Theories over these expressions
have applications in knowledge representation, reasoning, programming, etc. General-
ization problems in these theories may arise, for instance, in proof generalization or ana-
logical reasoning in higher-order or nominal logic, in learning or refactoring λ-Prolog
and α-Prolog programs, in detection of similarities in XML documents or in pieces of
software code, just to name a few. Therefore, the algorithms provided by the library can
be a valuable ingredient for tools that need to solve such generalization problems.

To be more specific, the library contains Java implementation of the following al-
gorithms:

– first-order rigid unranked anti-unification from [16],



– second-order unranked anti-unification from [5],
– higher-order (pattern) anti-unification from [6] and

– its subalgorithm for deciding α-equivalence,
– nominal anti-unification from [7] and

– its subalgorithm for deciding equivariance.

The mentioned subalgorithms are needed to compute least general generalizations.
All these algorithms can be accessed from the Web page of the SToUT project at RISC:
http://www.risc.jku.at/projects/stout/. Each of them has a separate
Web page with a convenient Web interface to try the algorithm online. There are also
the link to the paper where the algorithm is described, a brief explanation of the syntax,
and some examples. Besides using the Web interface, the user may try also a shell
version of each algorithm, or download the sources, or embed the algorithm in her/his
own project. A sample code of the latter option is also available from the Web.

In this paper, for each algorithm mentioned above we define the problem it solves,
give some simple examples, indicate its Web address, and explain the Web interface.
For some of them, we also explain how it can be embedded in users projects.

2 Structure of the Library

We describe the structure of the library in a bit
more detail. It consists of four Java libraries for four
anti-unification algorithms (urau.jar, urauc.jar, hoau.jar
and nau.jar), which have the same structure. There
is one main package which starts with the name
at.jku.risc.stout, followed by a short abbrevia-
tion for the implemented algorithm (e.g. urau, urauc,
hoau or nau). Under this main package there are three
subpackages, namely algo, data and util. The data
package has one subpackage of its own, which is called
data.atom. The main package is irrelevant for using
the library, as it only contains some test cases and the
user interfaces. For instance, the applets which are used
in the web frontend. Nevertheless, the source code might
be interesting as those Java classes serve as reference implementations of the library.

As the name suggests, the package algo contains the algorithmic part of the li-
brary. There is a Java class named AntiUnify which serves as entry point of the
respective anti-unification algorithm. The data package contains some Java classes
which are needed to build the term structure. Furthermore, it includes the equation sys-
tem which consists of some term pairs, and it offers a default implementation of an input
parser, named InputParser. The Java class EquationSystem is implemented in
a generic way, such that it can be used for different types of equation systems. In the
util package there are some utility classes like DataStructureFactory which
is used by the library to instantiate structures (e.g., lists, queues, maps, sets). The user of
the library is free to choose an arbitrary implementation for all of those data structures,
which might have some advantages on the performance of the provided algorithms. The
package data.atom contains the atomic building blocks for constructing the terms.
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3 Unranked First-Order Anti-Unification

The problem of unranked anti-unification is formulated for terms defined over unranked
alphabet. Hedge variables are used to fill in gaps in generalizations, while term variables
abstract single subterms with different top function symbols. Unranked anti-unification
is finitary, but it turned out that a minimal and complete algorithm may compute up
to 3n generalizations, where n is the size of the input. To deal with this problem, the
notion of RT-generalization has been introduced in [16].

Definitions. Given pairwise disjoint countable sets of unranked function symbols F
(symbols without fixed arity), term variables VT, and hedge variables VH, terms t and
hedges s̃ are defined by the following grammar:

t ::� x | fps̃q s ::� t | X s̃ ::� s1, . . . , sn where x P VT, f P F , X P VH, n ¥ 0.

Substitutions map term variables (x, y, . . . ) to terms and hedge variables (X,Y, . . . )
to hedges. For instance, tx ÞÑ fpaq, X ÞÑ pgpy, bq, cq, Y ÞÑ pqu is a substitution,
where pq is the empty hedge and a, b, c, f, g are unranked function symbols. Applying
it to fpx,X, Y q gives fpfpaq, gpy, bq, cq.

The set of positions (typically I, J) of a hedge s̃, denoted posps̃q, is a prefix-closed
set of strings of positive integers. For example, pospa, fpb, gpcqq, dq � t1, 2, 2�1, 2�2,
2�2�1, 3u. The symbol g stands at the position 2�2 and c occurs at the position 2�2�1.

Two symbols s1, s2 P F Y VH Y VC of a hedge are horizontal consecutive if their
positions Is1 �is1 and Is2 �is2 are in the relation Is1 � Is1 and is1 � 1 � is2 . They are
in a vertical chain if their positions Is1 and Is2 are in the relation Is1 �1 � Is2 and
Is1 �2 R posps̃q. For example, in pa, fpgpa, bqqq, the occurrence of a at position 1 and f at
2 are horizontal consecutive. The occurrence of f at 2 and g at 2�1 are in vertical chain.

Given two hedges s̃ and q̃, an alignment is a sequence of the form f1xI1, J1y . . .
fmxIm, Jmy such that I1   � � �   Im, J1   � � �   Jm, and fk is the symbol at position
Ik in s̃ and at position Jk in q̃ for all 1 ¤ k ¤ m. With   we denote the (strict)
lexicographic ordering on positions, e.g., 1�2�1   1�2�2 and 1�2�1   1�2�1�2.

A rigidity function R is a function that returns a set of alignments for two hedges
with all the positions in the alignments being singleton integers (allowing only top sym-
bols). Typical examples of rigidity functions are those which return longest common
subsequences or longest common substrings of the top symbols of the input hedges.

Given two variable-disjoint hedges s̃, q̃ and the rigidity function R, we say that a
hedge g̃ that generalizes both s̃ and q̃ is their RT-generalization, if either Rps̃, q̃q � H
and g̃ is a hedge variable or a sequence of term variables, or there exists an alignment
f1xi1, j1y � � � fnxin, jny P Rps̃, q̃q, such that:

1. If the sequence g̃ contains a pair of horizontal consecutive variables, then both of
them are term variables.

2. If we remove all variables that occur as elements of g̃, we get a sequence of the
form f1pg̃1q, . . . , fnpg̃nq.

3. For every 1 ¤ k ¤ n, there exists a pair of sequences s̃k and q̃k such that s̃|ik �
fkps̃kq, q̃|jk � fkpq̃kq and g̃k is an RT-generalization of s̃k and q̃k.

The implemented anti-unification algorithm solves the following problem:



Given: Two variable-disjoint hedges s̃ and q̃ and the rigidity function R.
Find: A complete set of RT-generalizations for s̃, q̃ and R.

For instance, tpgpa, aq, X, fpgpaq, gpY qqq, pX, gpx, xq, fpgpaq, gpZqqqu is the mini-
mal complete set of RT-generalization of the hedges pgpa, aq, gpb, bq, fpgpaq, gpaqqq
and pgpa, aq, fpgpaq, gqq, where R computes longest common subsequences.

Web page. The implementation of unranked rigid anti-unification is available from
http://www.risc.jku.at/projects/stout/software/urau.php.

Web interface explanation. The input form of the web page of the first-order rigid
unranked anti-unification algorithm consists of five rows:

In the first row, the anti-unification problem should be given. It consists of some
anti-unification equations, separated by semicolons. Each anti-unification equation con-
sists of two hedges, with =ˆ= in between. The second row contains a drop-down menu
to chose a rigidity function. Currently, the only two possibilities are longest common
subsequence and longest common substring.

Furthermore, in the third row, one can specify the minimal alignment length l. We
define Rlps̃, q̃q :� ta : |a| ¥ l, a P Rps̃, q̃qu as the rigidity function which corresponds
to a given rigidity function R satisfying the length restriction. The implementation uses
Rl and for any R holds R0 � R. By unchecking the check-box from the fourth row, the
user can specify to only compute the RT-generalization for the first alignment which is
returned by the rigidity function Rl (nondeterministically).

In the last row, the output format can be specified. One can choose form a drop-
down box between simple, verbose and progress. The first choice only shows some
basic facts and the computed RT-generalizations. The verbose output format shows
some additional information, like the differences at the input hedges. By choosing the
progress output format, all the debug information will be shown to the user.

How to use. We assume that there are two data sources in1 and in2 available in form
of Reader instances, each of them containing one of the hedges to be generalized.
Moreover, the variable eqSys is of appropriate type and there is a Boolean variable
iterateAll which corresponds to the option “Iterate all possibilities” of the web
interface. We explain the usage of the library on a code fragment:

1 RigidityFnc rFnc=new RigidityFncSubsequence().setMinLen(3);
2 eqSys = new EquationSystem<AntiUnifyProblem>() {
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3 public AntiUnifyProblem newEquation() {
4 return new AntiUnifyProblem();
5 } };
6 new InputParser<AntiUnifyProblem>(eqSys)
7 .parseHedgeEquation(in1, in2);
8 new AntiUnify(rFnc, eqSys, DebugLevel.SILENT) {
9 public void callback(AntiUnifySystem res, Variable var) {

10 System.out.println(res.getSigma().get(var));
11 }; }.antiUnify(iterateAll, null);

In the first line a certain rigidity function is instantiated and the minimum alignment size
is set to the value 3. There are two rigidity functions available from the library. The one
which is used in the code fragment computes longest common subsequence alignments.
The other one is called RigidityFncSubstring and computes longest common
substring alignments. It is easy to implement a different rigidity function. One simply
has to extend the base class RigidityFnc which is provided by the library.

The lines 2 to 5 show the instantiation of an equation system which is of type
AntiUnifyProblem. It is used in line 6 to instantiate a parser instance.

In line 7, the mentioned input sources are used to create one equation of two hedges,
which is added to the equation system. One could add more equations to the system by
just calling the method parseHedgeEquation(in3, in4) again.

After specifying the rigidity function and parsing the equation system, the main
algorithm AntiUnify is invoked using this data (line 8). There is one additional argu-
ment, which specifies the debug level. For production use we want to silently compute
all the generalizations and process them by a callback function, which is defined in
the lines 9 to 11. For debugging, one must also specify a print stream at line 11 in-
stead of null. The callback function is invoked for each generalization and it provides
two arguments for the implementation. The first one is of type AntiUnifySystem
and contains all the data which has been collected during the run: The substitution
getSigma, the store getStore and some additional information. The second argu-
ment is the generalization variable. The computed generalization is the value which is
associated with this variable in the substitution. Line 10 prints this generalization.

During the anti-unification process, fresh variables are introduced. They are named
by a sequence number which is put between a prefix and a suffix. The counter for
generating the number sequence is static and can be reset by calling the function Node
Factory.resetCounter. The prefix and the suffix for fresh term variables and
also for fresh hedge variables can be specified by the user. Therefore the class Node
Factory offers four static variables, named PREFIX_FreshTermVar, SUFFIX_
FreshTermVar, PREFIX_FreshHedgeVar and SUFFIX_FreshHedgeVar.

4 Unranked Second-Order Anti-Unification

The language used in section 3 does not permit higher-order variables. This imposes a
natural restriction on solutions: The computed lggs do not reflect similarities between
input hedges, which are located under distinct heads or at different depths. For instance,
fpa, bq and gphpa, bqq are generalized by a single variable, although both terms con-
tain a and b and a more natural generalization could be, e.g., X̊pa, bq, where X̊ is a



higher-order variable. In applications, it is often desirable to detect these similarities.
Therefore, in [5], an anti-unification algorithm has been developed where second-order
power is gained by using context variables to generalize vertical differences at the input
hedges. Hedge variables are used to generalize horizontal differences.

Definitions. Given pairwise disjoint countable sets of unranked function symbols F
(typically a, b, c, f, g, . . . ), hedge variables VH (typically X,Y, . . . ), unranked context
variables VC (typically X̊, Y̊ , . . . ), and a special symbol � (the hole), terms t, hedges s̃,
and contexts c̃ are defined by the following grammar:

t ::� X | fps̃q | X̊ps̃q s̃ ::� t1, . . . , tn c̃ ::� s̃1, �, s̃2 | s̃1, fpc̃q, s̃2 | s̃1, X̊pc̃q, s̃2

where X P VH, f P F , X̊ P VC, and n ¥ 0.
A context c̃ can apply to a hedge s̃, denoted by c̃rs̃s, obtaining a hedge by re-

placing the hole in c̃ with s̃. For example, pX̊pXq, fpfp�q, bqqra, X̊paqs � pX̊pXq,
fpfpa, X̊paqq, bqq. Application of a context to a context is defined similarly.

A substitution is a mapping from hedge variables to hedges and from context vari-
ables to contexts. When substituting a context variable X̊ by a context, the context will
be applied to the argument hedge of X̊ . The definition of positions and all the relations
defined on positions, as well as the definition of an alignment are taken from section 3.

We only give an informal definition of admissible alignments. A necessary and suf-
ficient condition for alignments to be admissible, as well as the exact definitions can be
found in [5]. An alignment a of two hedges s̃ and q̃ is called admissible iff there exists
a generalization g̃ of s̃ and q̃ which contains all the corresponding symbols from a.

We call such a g̃ a supporting generalization of s̃ and q̃ with respect to a.
Least general supporting generalizations might not be unique. For instance, for

pa, b, aq and pb, cq with the admissible alignment bx2, 1y, we have two supporting least
general generalizations pX, b,X, Y q and pX, b, Y,Xq. Therefore, we are interested in a
special class of supporting generalizations, which we call RC-generalizations.

Given two variable-disjoint hedges s̃, q̃ and their admissible alignment a, a hedge g̃
is called an RC-generalization of s̃ and q̃ with respect to a, if g̃ is a supporting general-
ization of s̃ and q̃ with respect to a such that the following conditions are fulfilled:

1. There exist substitutions σ, ϑ with g̃σ � s̃ and g̃ϑ � q̃ such that all the contexts in
σ and ϑ are singleton contexts.

2. No context variable in g̃ applies to the empty hedge.
3. g̃ doesn’t contain horizontal consecutive hedge variables.
4. g̃ doesn’t contain vertical chains of variables.
5. g̃ doesn’t contain context variables with a hedge variable as the first or the last

argument (i.e., no subterms of the form X̊pX, . . . q and X̊p. . . , Xqq.

The implemented anti-unification algorithm hasOpn2q time complexity andOpnq space
complexity, where n is the size of the input. It solves the following problem:

Given: Two variable-disjoint hedges s̃ and q̃ and their admissible alignment a.
Find: A least general RC-generalization of s̃ and q̃ with respect to a.

For instance, X̊pa, bq is an RC-generalization of fpgpa, b, cqq and pa, bq with respect to
ax1�1�1, 1ybx1�1�2, 2y, while X̊pa, b,Xq and X̊pY̊ pa, bqq are not.



Web page. The implementation of the algorithm is available from
http://www.risc.jku.at/projects/stout/software/urauc.php.

Web interface explanation. The input form of the web page of unranked second-
order anti-unification consists of five rows, where the first, the fourth and the last row
are equal to those of the unranked first-order anti-unification web interface.

In the second row, the alignment computation can be chosen. The only two pos-
sibilities are longest admissible alignments and the input of an alignment by hand. If
the user selects the computation of longest admissible alignments, then the program
automatically generates the set of all admissible alignments with maximum length, and
the corresponding supporting generalizations are computed. Otherwise, the user has to
specify an alignment in the input box next to the drop-down menu.

In the third row one can specify, whether or not to justify the computed RC-general-
ization. For justification of a generalization g̃, the recorded differences of the input
hedges s̃, q̃ are used to obtain two substitutions σ, ϑ. Then the program tests whether
g̃σ � s̃ and g̃ϑ � q̃ holds. The justification fails if this is not the case.

How to use. The usage of this algorithm is very similar to the one we explained in sec-
tion 3. Instead of a rigidity function there is an alignment computation function. The li-
brary offers two such functions: The first one, called AlignFncLAA, computes longest
admissible alignments. The other one is AlignFncInput and can be used to specify
a certain admissible alignment. The admissibility test for this alignment has to be done
in advance. Therefore the Alignment-class offers a method isAdmissible which
returns true iff an alignment is admissible. Alignment computation functions have
the common base class AlignFnc. This base class can be used to implement other
alignment computation functions.

5 Higher-Order Pattern Anti-Unification

The higher-order anti-unification algorithm described in [6] works on simply typed λ-
terms: It takes as input two such terms of the same type, in η-long β-normal form,
and returns their least general pattern generalization. Patterns here mean higher-order
patterns à la Miller [19]. (Note that it is not required the input to be patterns.) Such a
generalization always exists, is unique modulo α-equivalence and variable renaming,
and can be computed in cubic time within linear space with respect to the size of the
input, see [6].

http://www.risc.jku.at/projects/stout/software/urauc.php


Definitions. Simple types are constructed from basic types δ with the help of the type
constructor Ñ by the grammar τ :� δ | τ Ñ τ . Variables and constants have an
assigned type. Then λ-terms t are built using the grammar:

t ::� x | c | λx.t | pt1 t2q where x is a typed variable and c is a typed constant.

Terms like p. . . ph t1q . . . tmq, where h is a constant or a variable, are written as hpt1, . . . ,
tmq, and terms of the form λx1. � � � .λxn.t as λx1, . . . , xn.t. Substitutions map vari-
ables to terms of the same type, and can be extended to arbitrary terms as usual. A
higher-order pattern (HOP) is a λ-term, in which, when written in η-long β-normal
form, all free variables apply to pairwise distinct bound variables. For instance, if we use
capital letters for free variables, λx.fpXpxq, Y q, fpc, λx.xq and λx, y.Xpλz.xpzq, yq
are patterns, while λx.fpXpXpxqq, Y q, fpXpcq, cq and λx, y.Xpx, xq are not.

Given two variable-disjoint λ-terms t1 and t2, we say that a λ-term t that generalizes
both t1 and t2 is their higher-order pattern generalization, if t is an HOP. The HOP anti-
unification (HOPAU) algorithm solves the following problem:

Given: Higher-order terms t1 and t2 of the same type in η-long β-normal form.
Find: A least general higher-order pattern generalization of t1 and t2.

For instance, if t1 � λx, y.fphpx, x, yq, hpx, y, yqq and t2 � λx, y.fpgpx, x, yq, gpx, y,
yqq, then t � λx, y.fpXpx, yq, Y px, yqq is a higher-order pattern lgg of t1 and t2.

Web page. The implementation of the HOPAU algorithm is available from
http://www.risc.jku.at/projects/stout/software/hoau.php.

Web interface explanation. The implementation slightly differs from the theoretical
algorithm: In addition to simply-typed terms, it can also take untyped input. It has an
advantage that the user does not necessarily have to supply types, but has a disadvantage
that the terms may not be typeable or normalizable. The input form of the Web interface
to HOPAU algorithm consists of four rows shown below:

In the first row, the anti-unification problem should be given. The problems consist
of one or more anti-unification equations, separated by semicolon. Each such equation
consists of two λ-terms, with =ˆ= in between. The backslash \ is used instead of λ.

In the second row, the maximum recursion depth of the β-reduction can be specified.
This is to avoid infinite chain of reductions for terms like pλx.px xqqpλx.px xqq.

As in Sect. 4, one can choose to justify the computed lgg in the third row.
In the last row, the output format can be specified. One can choose form a drop-

down box between simple, verbose, progress, and progress-origin. The
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first three of them are like those described in Sect. 3. By choosing the output format
progress-origin, all the debug information will be shown to the user, but the
original names of bound variables are used. This is useful for debugging, as all the
bound variables are renamed by the parser, giving them unique names.

5.1 Deciding α-equivalence

The HOPAU algorithm performs a constructive α-equivalence test to see whether dif-
ferent terms can be abstracted by the same variable. It is needed to ensure that the com-
puted generalization is least general. Such a problem arises, e.g., in the course of gener-
alization of the terms t1 � λx, y, z.fpxpy, zq, xpz, yqq and t2 � λx, y, z.fpXpy, λu.uq,
Xpz, λv.vqq. To see if the same variable can be used in the generalization of the argu-
ments of t1 and t2, we have to check whether there exists a bound variable renaming ρ
such that xpy, zqρ � xpz, yq and Xpy, λu.uqρ � Xpz, λv.vq.

The algorithm that performs such a test is integrated in the HOPAU implementa-
tion, but we provide access to it separately as well, due to the fact that the problem is
interesting, may appear in various contexts, and having a tool to solve it is useful. The
algorithm solves the following problem (in linear time and space):

Given: A set of equations of the form tÙ s where t and s are λ-terms, and two sets
of variables, the domain D and the range R.

Find: A variable renaming substitution ρ : D Ñ R, such that tρ is α-equivalent to s
for all equations tÙ s, if it exists. Otherwise report failure.

The generalization problem for t1 and t2 above creates the set of equations txpy, zqÙ
xpz, yq, Xpy, λu.uq Ù Xpz, λv.vqu, the domain D � tx, y, zu and the range R �
tx, y, zu. Then the α-equivalence decision algorithm returns the renaming ρ � tx ÞÑ x,
y ÞÑ z, z ÞÑ yu. Afterwards, this renaming can be used to answer the original ques-
tion of generalization of t1 and t2, obtaining the lgg λx, y, z.fpY px, y, zq, Y px, z, yqq
where, indeed, the variable Y appears twice.

Web page. The α-equivalence decision algorithm is available from
http://www.risc.jku.at/projects/stout/software/hoequiv.php.

Web interface explanation. The input form of the Web interface to the α-equivalence
algorithm consists of four rows shown below:

The first, the third and the fourth row are equivalent, respectively, to the first, the
second and the fourth ones in the HOPAU interface, described above. (The terms of an
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equivariance equation are separated by = instead of =ˆ=.) In the second row, the two
sets of variables which specify the domain and the range should be given.

How to use. We explain the usage on a code fragment and assume that there are two
data sources in1 and in2 available in form of Reader instances, each of them con-
tains one of the λ-terms. There is also an integer variable maxReduce which specifies
the maximum recursion depth of β-reduction.

1 Set<Variable> ran = DataStructureFactory.$.newSet();
2 ran.add(new Variable("x", null));
3 ran.add(new Variable("y", null));
4 Map<Variable,Variable> permutation = new PermEquiv(eqSys,

dom, ran).compute(DebugLevel.SILENT, null);
5 System.out.println(permutation);

The lines 1–3 show how range variables used in the mapping are specified. The second
parameter of the Variable-constructor specifies the type of the variable. (null is
used for untyped variables.) To obtain a new set, DataStructureFactory.$ is
used, which is a singleton instance of type DataStructureFactory. The user can
change the behavior by simply assigning another implementation of this type to $. We
assume that a set dom of domain variables is available and the set of equations eqSys
exists (e.g., it can be created in a similar way as in unranked anti-unification above).
In line 4, after specifying the domain and the range and parsing the equation system,
the main algorithm PermEquiv is invoked using this data. It silently computes the
renaming permutation, which is represented as a mapping from variables to variables.

6 Nominal Anti-Unification

Nominal techniques have been introduced in [12, 13] to formally represent and study
systems with binding. The nominal anti-unification (NAU) algorithm developed in [7]
takes as input two terms-in-contexts (pairs of a freshness constraint and a nominal term)
and tries to compute a generalization term-in-context. Under the assumption that the set
of atoms permitted in generalizations is finite, there is a unique lgg modulo variable
renaming and α-equivalence. The algorithm has Opn4q time complexity and Opn2q
space complexity, where n is the size of the input.

Definitions. Nominal terms contain variables and atoms. Variables can be instantiated
and atoms can be bound. We have sorts of atoms ν and sorts of data δ as disjoint sets.
Atoms (a, b, . . .) have one of the sorts of atoms. Variables (X,Y, . . .) have a sort of atom
or data. Nominal function symbols (f, g, . . .) have an arity of the form τ1�� � ��τn Ñ δ,
where δ is a sort of data and τi are sorts given by the grammar τ ::� ν | δ | xνyτ .
Abstractions have sorts of the form xνyτ. A swapping pa bq is a pair of atoms of the
same sort. A permutation π is a sequence of swappings. It can apply to terms and cause
swapping the names of atoms. Nominal terms t are given by the grammar below, where
a.t is abstraction (it binds a) and π�X is called suspension:

t ::� fpt1, . . . , tnq | a | a.t | π�X



Suspensions suspend application of the permutation π to X until X is instantiated.
Substitutions are defined in the standard way, and their application allows atom capture,
for instance, a.XtX ÞÑ au � a.a.

A freshness context ∇ is a finite set of pairs of the form a#X stating that the
instantiation of X cannot contain free occurrences of a. A term-in-context is a pair
x∇, ty of a freshness context ∇ and a term t. A term-in-context x∇, ty is based on a
set of atoms A, if all the atoms which occur in t and ∇ are elements of A. The NAU
algorithm solves the following problem:

Given: Two nominal terms t1 and t2 of the same sort, a freshness context ∇, and a
finite set of atoms A such that x∇, t1y and x∇, t2y are based on A.

Find: A term-in-context xΓ, ty which is also based on A, such that xΓ, ty is a least
general generalization of x∇, t1y and x∇, t2y.

For instance, for t1 � fpb, aq, t2 � fpX, pa bq�Xq, ∇ � tb#Xu, and A � ta, bu, the
NAU algorithm computes the lgg of x∇, t1y and x∇, t2y, which is xH, fpY, pa bq�Y qy.

Web page. The nominal anti-unification algorithm is available from
http://www.risc.jku.at/projects/stout/software/nau.php.

Web interface explanation. The input form of the Web interface to the NAU algorithm
consists of five rows shown below, where the first, the fourth and the fifth row are similar
to the first, third and fifth explained in section 4.

All the anti-unification equations share the same freshness context ∇, which can be
specified in the second row. The computed term-in-context is a generalization of x∇, ty
and x∇, sy for every anti-unification equation t =ˆ= s.

As all the terms-in-context x∇, ty and x∇, sy obtained by anti-unification equations
t =ˆ= s have to be based on the same set of atoms A, all the atoms which appear in
the anti-unification problem as well as those from ∇ are assumed to be elements of A.
In the third row, the user may specify some additional atoms which are in A.

How to use. To explain the library usage on a code example, we again assume the ex-
istence of two Reader instances in1 and in2 which contain the nominal terms to be
generalized. Furthermore, we assume that there is a Reader instance inA for reading
atoms and inN for the freshness context. Both of them are assumed to be comma sep-
arated sets, e.g., inN = {a#X,b#Y,...} and inA = {c,d,...}, where the braces
are optional. The data source inA only specifies extra atoms, which do nor appear in
in1, in2 and inN.

http://www.risc.jku.at/projects/stout/software/nau.php


1 final NodeFactory factory = new NodeFactory();
2 eqSys = new EquationSystem<AntiUnifyProblem>() {
3 public AntiUnifyProblem newEquation(NominalTerm t,

NominalTerm s) {
4 return new AntiUnifyProblem(t, s, factory);
5 } };
6 FreshnessCtx nablaIn = new InputParser(factory)
7 .parseEquationAndCtx(in1, in2, inA, inN, eqSys);
8 new AntiUnify(eqSys, nablaIn, DebugLevel.SILENT, factory) {
9 public void callback(AntiUnifySystem res, Variable var) {

10 System.out.println(res.getNablaGen());
11 System.out.println(res.getSigma().get(var));
12 }; }.antiUnify(false, null);

In contrast to the other libraries, an instance of NodeFactory is needed, which we
create in line 1. The lines 2 to 5 demonstrate the creation of an equation system.

All the input sources are parsed in line 7. The new equation is added to eqSys and
the parsed freshness context is returned. Moreover, the factory instance remembers all
the parsed atoms regardless of the input source they come from. More equations may be
added eqSys by calling the method parseEquation(in1, in2, eqSys) from
InputParser. Atoms and freshness contexts can also be parsed separately.

Line 10 shows that, additionally to the substitution and store, the generated fresh-
ness context is provided by the instance res of the class AntiUnifySystem.

Again, one can specify how fresh variables and fresh atoms are named. In contrast to
the other three libraries, this functionality is implemented by private instance variables
of NodeFactory and appropriate getter and setter methods.

6.1 Deciding Equivariance

The nominal equivariance algorithm checks whether two terms differ from each other
only by a permutation and bound atom renaming, i.e., if they are equivariant. Equiv-
ariance problem arises, for instance, in the course of generalization of the terms-in-
contexts p1 � xH, fpa, bqy and p2 � xH, fpb, cqy, where the atoms permitted in the
generalization are a, b, and c, then the term-in-context xtc#X, a#Y u, fpX,Y qy gen-
eralizes p1 and p2, but it is not least general. To compute the latter, we need to reflect
the fact that generalizations of the atoms are related to each other: One can be obtained
from the other by the permutation pb cqpc aq. This leads to a least general generalization
xtc#Xu, fpX, pb cqpc aq�Xqy.

The equivariance decision algorithm solves the following problem (in quadratic
time and space):

Given: A set of equations of the form t Ù s, a freshness context ∇, and a finite set
of atoms A such that all x∇, ty and x∇, sy are based on A.

Find: A permutation π of variables from A such that for all equations t Ù s, π�t is
α-equivalent to s with respect to ∇, if such a π exists. Otherwise report failure.

For instance, in the example above, the permutation pb cqpc aq was computed by the
equivariance algorithm for taÙ b, bÙ cu, A � ta, b, cu, and ∇ � H.



Web page. The equivariance decision algorithm is available from
http://www.risc.jku.at/projects/stout/software/nequiv.php.

Web interface explanation. The input form is nearly the same as the one for NAU:

There are two differences: The row to specify extra atoms is missing, because the
computed permutation must only permute atoms which appear in the problem set and
further on, terms of an equivariance equation are separated by = instead of =ˆ=.

How to use. We assume to have data sources for two nominal terms in1 and in2,
and another one for a freshness context, called inN, similarly to the NAU algorithm.
Moreover, we assume that an equation system eqSys has already been instantiated and
that a NodeFactory instance, called factory, exists. We explain the usage of the
library on the following code fragment:

1 InputParser parser = new InputParser(factory);
2 parser.parseEquation(in1, in2, eqSys);
3 FreshnessCtx nablaIn = parser.parseNabla(inN);
4 Collection<? extends Atom> atomSet = factory
5 .getAllByType(factory.classAtom);
6 Permutation pi = new Equivariance(eqSys, atomSet, nablaIn)
7 .compute(factory, false, DebugLevel.SILENT, null);
8 System.out.println(pi);

In line 1 the parser instance is created, which afterwards is used to parse the equation
and the freshness context from the input sources. The lines 4 and 5 demonstrate how
one can obtain the collected set of atoms from the NodeFactory instance.

Later in line 6 this set is needed to instantiate a class named Equivariance,
which encapsulates the computation of a permutation pi. The computation returns
null, if no permutation exists for the input. The class Permutation contains two
mappings from atoms to atoms (Map<Atom, Atom>): The permutation itself can be
obtained by calling getPerm and the inverse permutation, which can be obtained by
getInverse. Furthermore the class Permutation provides some methods to work
with permutations and swappings.
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