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ABSTRACT

In the area of combination of adaptive filters, two main ap-
proaches, namely convex and affine combinations have been
introduced. In this article, the relation between these two ap-
proaches is investigated. First, the problem of obtaining opti-
mal convex combination coefficients is formulated as the pro-
jection of the optimal affine combination weights to the unit
simplex in a weighted inner product space. Based on this for-
mulation the closed form expressions for optimal combina-
tion weights and target MSE levels are obtained for two and
three branch cases.

Index Terms— adaptive filtering, combination of adap-
tive filters, projection to unit simplex

1. INTRODUCTION

The combination of multiple adaptive branches designated for
the same task has been proposed as a robust solution to model
(order, algorithm, parameter) selection problem in adaptive
filtering. Earlier works in this field concentrated on the case
where the convex combination scheme is applied at the out-
puts [1, 2]. Later this approach has been extended by relaxing
the convex combination requirement to the affine combina-
tion requirement [3]. In this article, we provide an analysis to
compare target MSE levels of these two adaptive combination
methods.

2. AFFINE AND CONVEX COMBINATION OF
ADAPTIVE FILTERS

2.1. Data Model

We assume that there are m adaptive filtering branches with
(zero mean) outputs yk(t), k = 1, . . . , m to be combined.
Defining

y(t) =
[

y1(t) y2(t) . . . ym(t)
]T
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as the input vector to the combination block and assuming
that d(t) is the desired signal, with zero mean and variance
σ2

d, we can define the limiting covariances

R
!
= lim

t→∞
E(y(t)yT (t))

p
!
= lim

t→∞
E(y(t)d(t)).

We formulate the optimal combination problem as finding the
combination weight vector ω that will minimize the MSE be-
tween the desired signal and the combined output.

2.2. Affine Combination Problem

We can pose the problem of finding the best weights to obtain
affine combination of multiple adaptive filtering algorithms as
the convex optimization problem (Problem 1)

minimize Ja(ωa) = σ2
d − pT R−1p + (ωa − ωo)T R(ωa − ωo)

subject to 1
T ωa = 1,

where ωo
!
= R−1p and 1 is a vector of all ones.

We can write a closed form solution to this linearly con-
strained quadratic minimization problem, through use of La-
grangian formulation,

ωa
o

!
= ωo +

(1 − 1T ωo)

1T R−11
R−11, (1)

and the corresponding MSE is given by

Ja
o

!
= σ2

d − pT R−1p +
(1 − 1T ωo)2

1T R−11
. (2)

2.3. Convex Combination Problem

The convex combination case can also be posed as the con-
vex quadratic minimization problem with linear constraints
(Problem 2):

minimize Jc(ωc) = σ2
d − pT R−1p + (ωc − ωo)T R(ωc − ωo)

subject to 1
T ωa = 1

ωc ≥ 0.
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The corresponding constraint set ∆ = {ω |1T ω = 1,ω ≥
0} is referred as the unit or standard simplex in the literature.
The optimization problem corresponding to the convex com-
bination doesn’t have a nice closed form solution in general.
However, we can still provide some analytical characteriza-
tion for the solution of the optimization problem correspond-
ing to the selection of the best convex combination vector.

We first note that we can rewrite the cost function as

Jc(ωc) = σ2
d − pT R−1p + (ωc − ωo)

T R(ωc − ωo)(3)

= σ2
d − pT R−1p

+((ωc − ωa
o) − (ωa

o − ωo))
T R((ωc − ωa

o) − (ωa
o − ωo))

= σ2
d − pT R−1p

+ (ωa
o − ωo)

T R(ωa
o − ωo)

+ (ωc − ωa
o)T R(ωc − ωa

o)

− 2(ωc − ωa
o)T R(ωa

o − ωo)

= Ja
o + (ωc − ωa

o)T R(ωc − ωa
o)

− 2
(1 − 1T ωo)

1T R−11
(ωc − ωa

o)T 1 (4)

= Ja
o + (ωc − ωa

o)T R(ωc − ωa
o), (5)

where we used the fact that over the unit simplex the last term
in (4) is equal to zero and use (1). Therefore, ignoring the
constant term in the cost function we can pose the problem of
finding ωc

o as the problem of projecting ωa
o to the unit simplex

∆m with respect to the R-weighted 2-norm (where ∆m is the
m dimensional unit simplex). In other words, the problem of
finding the best ωc can be posed as (Problem 3)

minimize ‖ωa
o − ωc‖2

R
subject to ωc ∈ ∆m.

In the special case where R = I, i.e., when we use the
standard Euclidian distance, the corresponding problem is rel-
atively simpler, which can be solved via an algorithm with fi-
nite steps[4]. However, for a general R matrix, the optimal
point characterization is more involved.

2.4. Two Branches

When we have two adaptive filtering branches to be combined
(i.e. m = 2 case), the unit simplex ∆2 is simply the line

segment between

[

1
0

]

and

[

0
1

]

. In this case, we have

two major cases to consider:

• Case ωa
o ∈ ∆2: In this case, we simply have ωc

o = ωa
o

and Ja
o = Jc

o . This case is illustrated in Figure 1 (a).

• Case ωa
o /∈ ∆2: This case refers to one of the com-

ponents of ωa
o is strictly negative and the other one is

positive. (We consider the first component to be neg-
ative, without the loss of generality). Due to 1T ωa

o =

(b)

ω
a

o

ω
c

o

(a)

ω
a

o
=ω

c

o

Fig. 1. Combination of 2 Adaptive Stages: Affine vs. Convex
Combination

1T ωc = 1 constraint, we can write

ωc = ωa
o + αc

[

1 −1
]T

. (6)

Therefore, the cost function would be equivalent to

‖αc

[

−1
1

]

‖2
R = α2

c

[

−1 1
]

R

[

−1
1

]

,

which implies that the cost increases when the mag-
nitude of αc increases. Therefore, the smallest value

which makes ωc = ωa
o + αc

[

1
−1

]

feasible (i.e.,

in ∆2) would be the optimal choice for αc which is
equivalent to −ωa

o(1). This would be equivalent to the

choice ωc
o =

[

0
1

]

, i.e. a corner point of ∆2. This

case is illustrated in Figure 1 (b), where the level set
of the cost function (i.e. the ellipse segment) corre-
sponding to the minimum cost value is also shown. As
a result the cost increase for the convex combination
relative to the affine combination case can be written as

Jc
o − Ja

o =







ζaωa
0(1)2 ωa

0(1) < 0
ζaωa

0(2)2 ωa
0(2) < 0

0 otherwise
, (7)

where ζa =

»

−1

1

–T
R

»

−1

1

–

= R11 + R22 − 2R12. Here we

can write a closed form expression for the optimal affine
combination weights as

ωa
o =

1

ζa

»

(R22 − R12)(1 − ωo(2)) + (R11 − R12)ωo(1)
(R11 − R12)(1 − ωo(1)) + (R22 − R12)ωo(2)

–

.

2.5. Three Branches

In the Three Branch Case, the constraint set ∆3 is a triangle,
located inside the 2-dimensional plane A = {ω | 1T ω =

!"$"
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1, ω ∈ %3} corresponding to the affine combination con-
straint. We can represent the unit simplex ∆3 as the inter-
section of A with halfspaces

Hi = {ω | eT
i ω ≥ 0} i = 1, 2, 3. (8)

Since the optimal affine combination vector ωa
o is located in

the same plane, the corresponding projection problem can be
analyzed over the same plane. If ωa

o ∈ ∆3 then, clearly, ωc
o =

ωa
o . However, if one or more of the entries are negative then

ωa
o /∈ ∆3 needs to be projected to ∆3. For this purpose, we

introduce a mapping T which maps the affine space A to the
two dimensional vector space %2:

βa = T (ωa) = Qωa, ωa ∈ A (9)

where

Q =

[

1 0 0
0 1 0

]

. (10)

The inverse of this mapping is given by

ωa = V βa + e3, βa ∈ %2, (11)

where

V =





1 0
0 1
−1 −1



 . (12)

If we assume that ωa
o(1) < 0, without loss of generality,

we can start the Dykstra’s Algorithm [5] by projecting ωa
o to

H1

⋂

A. This projection operation is performed in the inner
product space equipped with

< x, y >R= yT Rx, x,y ∈ %3, (13)

as the inner product, which induces the weighted norm ‖.‖R.
By invoking the projection theorem which asserts that the pro-
jection error should be orthogonal to the target space, we ob-
tain the projection rule as

PH1

T

A(ωa
o) = ωa

o −
ωa(1)

eT
1 RV

−1e1

V RV
−1e1, (14)

where RV = V T RV . We can write the expression above
more explicitly, after some algebraic simplifications, in terms
of elements of R as

PH1

T

A(ωa
o) = ωa

o − ωa
o(1)q1 (15)

where

q1 =
h

1 R13+R23−R33−R12

R22+R33−2R23

R12+R23−R22−R13

R22+R33−2R23

iT

. (16)

If the above projection maps ωa
o to a point on ∆3, i.e., the re-

sulting projection point has non-negative elements, then Dyk-
stras algorithm terminates at that point. Therefore, the result-
ing point would also be the projection of the set ∆3. We can

characterize the points ωa ∈ A that would be projected to the
side H1

⋂

∆3 as

e
T
1 ω

a

≤ 0, e
T
2 PH1

T

A(ωa) ≥ 0, e
T
3 PH1

T

A(ωa) ≥ 0.

This set can be more explicitly defined as

Υ1 = {ωa | − eT
1 ωa ≥ 0,hT

12ω
a ≥ 0,hT

13ω
a ≥ 0},

where

h
T
12 =

ˆ

R33 + R12 − R13 − R23 R22 + R33 − 2R23 0
˜

h
T
13 =

ˆ

R22 + R13 − R23 − R12 0 R22 + R33 − 2R23

˜

.

By following a similar procedure, Υ2 and Υ3, which are
polyhedral regions that are projected to the line segments
H2

⋂

∆3 and H3

⋂

∆3, respectively, can be obtained as fol-
lows:

Υi =
{

ωa | − eT
i ωa ≥ 0,hT

ijω
a ≥ 0 1 ≤ j '= i ≤ 3

}

,

i = 2, 3

where

h
T
21 =

ˆ

R11 + R33 − 2R13 R33 + R12 − R13 − R23 0
˜

h
T
23 =

ˆ

0 R11 + R23 − R12 − R13 R11 + R33 − 2R13

˜

h
T
31 =

ˆ

R11 + R22 − 2R12 0 R33 + R13 − R12 − R23

˜

h
T
32 =

ˆ

0 R11 + R22 − 2R12 R11 + R23 − R12 − R13

˜

.

We also define the remaining neighboring regions as

Υ12 = {ωa |
[

h12 h21

]T
ωa < 0}

Υ13 = {ωa |
[

h13 h31

]T
ωa < 0}

Υ23 = {ωa |
[

h23 h32

]T
ωa < 0}.

We’ll now show that if ωa
o is in Υij then ωc

o = ek where
k '= i, j and 1 ≤ k ≤ 3. In order to prove this fact, we will
use KKT optimality conditions for Problem 3. We first write
the corresponding Lagrangian function

L(ωc,λ, µ) = ‖ωa
o − ωc‖2

R − λT ωc + µ(1T ωc − 1).

According to KKT conditions, the primal vector ωc
o and dual

variables λo and µo correspond to the optimal point if and
only the following equations hold:

(i) ωc
o ≥ 0,1T ωc

o = 1

(ii) λo(i)ω
c
o(i) = 0, i = 1, . . . , 3

(iii) λo ≥ 0

(iv) ∇L(ωc
o, λo, µo) = 0.

The last equality implies that

(iv)’ λo = 2R(ωc
o − ωa

o) + µo1.

If we were to derive conditions on R and ωa
o for ωc

o = e3:
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For this case we can write

ωc
o − ωa

o =





0
0
1



 −





ωa
o(1)

ωa
o(2)

(1 − ωa
o(1) − ωa

o(2))





=





−ωa
o(1)

−ωa
o(2)

ωa
o(1) + ωa

o(2)



 .

The fact that ωc
o(3) = 1 > 0 implies λo(3) = 0 due to (ii).

Therefore, using this fact, from the third row of (iv)’ we find

µo = 2((R13 − R33)ω
a
o(1) + (R23 − R33)ω

a
o(2)). (17)

Therefore, from the condition λo(1) ≥ 0 and the first row of
(iv)′, we obtain

−hT
21ω

a
o ≥ 0 (18)

and similarly, from the second row of (iv)′ and the condition
λo(2) ≥ 0 we have

−hT
12ω

a
o ≥ 0. (19)

Therefore, ωc
o = e3 if and only if ωa

o ∈ Υ12. By following a
similar procedure, one can show that ωc

o = e2 for ωa
o ∈ Υ13

and ωc
o = e1 for ωa

o ∈ Υ23.
As a result, we can summarize the formulation of ωc

o in
terms of ωa

o as

ωc
o =























ωa
o ωa

o ≥ 0
ωa

o − ωa
o(i)qi ωa

o ∈ Υi

e1 ωa
o ∈ Υ23

e2 ωa
o ∈ Υ13

e3 ωa
o ∈ Υ12

,

where q1 is as defined in (16) and

q2 =
[

R23+R13−R33−R12

R11+R23−2R13
1 R21+R13−R11−R23

R11+R33−2R13

]T

q3 =
[

R23+R12−R22−R13

R11+R22−2R12

R13+R12−R11−R23

R11+R22−2R12
1

]T

.

The corresponding relative MSE misadjustment is given
by

Jc
o − Ja

o =























0 ωa
o ≥ 0

|ωa
o(i)|2qT

i Rqi ωa
o ∈ Υi

‖ωa
o − e1‖2

R
ωa

o ∈ Υ23

‖ωa
o − e2‖2

R
ωa

o ∈ Υ13

‖ωa
o − e3‖2

R
ωa

o ∈ Υ12

. (20)

Figure 2 illustrates the projection problem corresponding
to obtaining optimal convex combination coefficients from
affine combination coefficients. On the plane corresponding
to the affine combination constraint, the unit simplex corre-
sponding to the convex combination weights and the poly-
hedral partitions that specify whether the affine combination
weights are mapped to the sides or the corners of the unit sim-
plex are shown. A case where ωa

o is in Υ23 and mapped to
e1 is shown, where the level set of the weighted distance cost
function is also drawn to demonstrate the nature of projection.

2.6. General Case

The analysis above converted the quadratic programming with
unit simplex constraint into a simple problem of polyhedral
inclusion. The polyhedral partitioning of the affine constraint
set approach could be extended to the case of higher dimen-
sional spaces, where the expressions get more involved.

wa

o

wc

o

ϒ
3

ϒ
2ϒ

1

ϒ
23

ϒ
12

ϒ
13

Fig. 2. Combination of Three Adaptive Branches: Affine vs.
Convex Combination.
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