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Abstract. A genetic algorithm scheme with a stochastic genotype/phenotype relation is proposed.
The mechanisms responsible for this intermediate level of uncertainty, are inspired by the
biological system of RNA editing found in a variety of organisms. In biological systems, RNA
editing represents a significant and potentially regulatory step in gene expression. The artificial
algorithm here presented, will propose the evolution of such regulatory steps as an aid to the
modeling of differentiated development of artificial organisms according to environmental,
contextual, constraints. This mechanism of genetic string editing will then be utilized in the
definition of a genetic algorithm scheme, with good scaling and evolutionary properties, in which
phenotypes are represented by mathematical structures based on fuzzy set and evidence theories.

1. Introduction
The essence of GA's lies on the separation of the description of a solution (e.g. a

machine) from the solution itself: variation is applied solely to the descriptions, while
the respective solutions are evaluated, and the whole selected according to this
evaluation [14]. A genetic algorithm "is primarily concerned with producing variants
having a high probability of success in the environment" [19, page 35]. Nonetheless, one
important difference between evolutionary computation and biological genetic systems,
lies precisely on the connection between descriptions and solutions, between signifier
and signified. In genetic algorithms the relation between the two is linear and direct: one
description, one solution. While in the biological genetic systems there exists a multitude
of processes, taking place between the transcription of a description and its expression,
responsible for the establishment of an uncertain relation between signifier and signified,
that is, a one-to-many relation.

"The proteins encoded by [DNA] are [...] oxymorphic: their individual shapes are
precisely unpredictable. So long as this is true, the genomic language, like our own
languages, will not have a logical link between signifier and signified. This will not
prevent its being read or understood; rather, it will assure that DNA remains a
language expressing as full a range of meanings through arbitrary signifiers as any
other language." [26, p. 70]
In other words, the same genotype will not always produce the same phenotype;

rather, many phenotypes can be produced by one genotype depending on changes in the
environmental context. If the effects of changing environmental contexts affecting gene
expression within an individual can be harnessed and used to it's selective advantage in



a changing environment, then we can say that such an individual has achieved a degree
of control over its own genetic expression. It is the objective of this paper to propose a
computational scheme which may be able to achieve this degree of control. It will be
further suggested, that the modeling of biological development may be linked precisely
to GA's capable of evolving this extra degree of control.

To establish this one-to-many relationship between descriptions and solutions in
GA's, I will propose an extra mechanism inspired by the edition of RNA in biological
genetic systems. Section 2 will introduce some of the known mechanisms of RNA
Editing. Section 3 will introduce semiotic model offering a theoretical framework for
RNA editing. Section 4 will propose computational counterparts to RNA editing. Section
5 will discuss the utilization of such mechanisms regarding the problem of development.
Finally, Section 6 will present one particular algorithm, which utilizes fuzzy set and
evidence theory to introduce even higher levels of uncertainty to description/solution
relations.

2. RNA Editing
The discovery of messenger RNA (mRNA) molecules containing information not

coded in DNA, first persuaded researchers in molecular biology that some mechanism
in the cell might be responsible for posttranscriptional alteration of genetic information;
this mechanism was called 'RNA Editing' [2, 1986]. "It was coined to illustrate that the
alterations of the RNA sequence (i) occur in the protein-coding region and (ii) are most
likely the result of a posttranscriptional event" [3, page 16]. The term is used to identify
any mechanism which will produce mRNA molecules with information not specifically
encoded in DNA. Usually we will have insertion or deletion of particular bases (e.g.
uridine), or some sort of base conversion (e.g. adenosine ÷  guanisine). 

The most famous RNA editing system is that of the African Trypanosomes [3; 36].
The mitochondrial DNA of this parasite, responsible for sleeping sickness, "consists of
several dozen large loops called maxicircles and thousands of smaller ones called
minicircles." [27, page 132] At first, the minicircles were assumed to contain no genetic
information, while maxicircles were known to encode mitochondrial rRNA. However,
the maxicircles were found to possess strange sequence features such as genes without
translational initiation and termination codons, frame shifted genes, etc. Furthermore,
observation of mRNA's showed that many of them were significantly different than the
maxicircles from which they had been transcribed. These facts suggested that mRNA's
were edited posttranscriptionally.

It was later recognized that this editing was performed by guide RNA's (gRNA's)
coded mostly by the minicircles, the strands of DNA previously assumed to contain no
useful information [37; 4]. In this particular genetic system, gRNA's operate by
inserting, and sometimes deleting, uridines. To appreciate the effect of this edition
consider figure 1. The first example [3, p. 14] shows a massive uridine insertion
(lowercase u's); the aminoacid sequence that would be obtained prior to any edition is
shown on top of the base sequence, and the aminoacid sequence obtained after edition
is shown in the gray box. The second example shows how potentially the insertion of a
single uridine can change dramatically the aminoacid sequence obtained; in this case,
a termination codon is introduced.



Figure 1: U-insertion in Trypanosomes

It is unclear how exactly gRNA's insert uridines into mRNA's; basically, the shorter
gRNA strings base-pair with stretches of mRNA, and at some point will insert a number
of uridines [33]. An interesting aspect of the gRNA/mRNA base-pairing is that it is more
general than the Watson-Crick base-pairing found in DNA and RNA, it is more
ambiguous since “uracils in mRNA can be specified by either guanine or adenine in
gRNA” [36, page 36]

But even if the precise
mechanisms of RNA editing
are not yet know, its
importance is unquestionable,
since it has the power to
dramatically alter gene
expression: "cells with
different mixes of [editing
mechanisms] may edit a
transcript from the same gene
differently, thereby making

different proteins from the same opened gene." [26, page 78] (one-to-many relations).
It is important to retain that a mRNA can be edited in different degrees precisely
according to the concentrations of editing operators it encounters. Thus, at the same
time, several different proteins coded by the same gene may coexist, if all (or some) of
the mRNA's obtained from the same gene, but edited differently, are meaningful to the
translation mechanism.

If the concentrations of editing operators can be linked to environmental contexts,
the concentrations of different proteins obtained may be selected accordingly, and thus
evolve a system which is able to respond to environmental changes without changes in
the major part of its genetic information (genome size optimization). One gene, different
contexts, different proteins. This may be precisely what the trypanosome parasites have
achieved: control over gene expression during different parts of their complex life cycles.

"Space is clearly not a problem for mammalian nuclear DNA, so the [previous]
rationale is not so obvious for the [editing mechanisms of mammals]. Also there,
however, we see one gene encoding two proteins. In mammalian genomes, gene
duplication followed by separate  evolution of the two copies would be a more
obvious way of producing closely related proteins in regulatable amounts. RNA
editing, however, does provide the opportunity to introduce highly specific, local
changes into only some of the molecules. [...] It could be reasoned that somehow
this would be more difficult to achieve via gene duplication, since independently
accumulating mutations would make it harder to keep the remainder of the two
sequences identical" [3, p. 22]
Thus, RNA editing may be more than just a system responsible for the introduction

of uncertainty (one-to-many relations), but also, and paradoxically, a system that may
allow the evolution of different proteins constrained by the same genetic string. In other
words, even though one gene may produce different mRNA's (and thus proteins), the
latter are not allowed heritable variation since they are always constrained by the gene
from which they are edited, and which is ultimately selected and transmitted to the



Figure 2: Co-adaptation of the RNA Editing and Genetic Code Systems

offspring of the organism. We can see RNA Editing, especially in the case of gRNA's,
as a case of co-adaption of two distinct systems: the stored genetic information (e.g.
maxicircles) and the contextual editors (e.g. minicircles), also stored in DNA, but
independent and meaningless to the larger semantic loop of the genetic code.

The dependent evolution of one gene and several contexts, as expressed by Rob
Benne in the previous quote, may allow the introduction of highly specific, local
(contextual) changes, more effectively than the independent evolution of several genes.
If all of the different expressions were allowed different genes, they would evolve
separately not only increasing the size of the genome, but also, possibly, making it
harder to maintain coherent, multicellular, phenotypes as well as coherent developmental
processes. For instance, the editing of several genes of the Trypanosoma Brucei is
developmentally regulated [36] which may be of evolutionary advantage for these
parasites [35]. Though in the course of evolution editing was partially or completely
eliminated in many lineages of eukaryotic organisms containing mithocondria, by
reverse transcription of partially edited mRNA’s, it may be useful for the development
of parasitic adaptations as is the case of the developmental regulation of editing in T.
Brucei [35]. 

The role of RNA editing in the development of multicellular organisms has also
been shown to be important, Lomeli at al [21] have discovered that the extent of RNA
editing affecting a type of receptor channels responsible for the mediation of excitatory
postsynaptic currents in the central nervous system, increases in rat brain development.
As a consequence, the kinetic aspects of these channels will differ according to the time
of their creation in the brain’s developmental process.

3. A Theoretical Model: Evolving Semiotics
Semiotics concerns the study of signs/symbols in three basic dimensions: syntactics

(rule-based operations between signs within the sign system), semantics (relationship



Figure 3: DNA Semiotics with two symbol types

between signs and the world external to the sign system), and pragmatics (evaluation of
the sign system regarding the goals of their users) [23].  The importance of this triadic
relationship in any sign system has been repeatedly stressed by many in the context of
biology and genetics [39; 24, 25; 26]; in particular, Peter Cariani [6] has presented an
excellent discussion of the subject. We can understand the semiotics of the genetic
system if we consider all processes taking place before translation (from transcription
to RNA editing) as the set of syntactic operations; the relation between mRNA (signifier)
and folded amino acid chains (signified), through the genetic code, as the
implementation of a semantic relation; and finally, the selective pressures on the
obtained proteins as the pragmatic evaluation of the genetic sign system. Jon Umerez
[38] has discussed the importance of the code in the establishment of  this genetic
semiotics by  developing, in the context of Artificial Life, Howard Pattee’s notion of
semantic closure [24,25]: the idea that only organisms capable of controlling their own
syntactic operations and semantic relations are capable of open-ended functional
creativity or evolution. Natural selection defines the pragmatic evaluations imposed on
evolving semantically closed organisms.

Until now, the semiotics of DNA has been considered strictly unidirectional: DNA
stands for proteins to be constructed. In other words, the symbolic DNA encodes
(through the genetic code) actions to be performed on some environment. Naturally,

through variation and natural
selection (pragmatic evaluations)
new semantic relations are created
which are better adapted to a
particular environment, however,
r e a l - t i m e  c o n t e x t u a l
measurements are not allowed by
this unidirectional semiotics. If in
addition to symbols standing for
actions to be performed, the
genetic sign system is also
allowed a second type of symbols
standing for environmental,
contextual, measurements, then a
richer semiotics can be created
which may have selective

advantage in rapidly changing environments, or in complicated, context dependent,
developmental processes.

Figure 3 depicts such a sign system. The top plane contains two different types of
symbols which are combined in different ways (symbolic operations). Type 1 symbols
stand for actions through a code f  (e.g. the genetic code) and type 2 symbols stand for
measurements through a different code ? which is being hypothesized here. The evidence
presented in section 2 refers to genetic systems in which RNA Editing is used in
different amounts according to different contexts (namely, different stages of a
developmental process). We can think of DNA as a set of symbolic descriptions based
on two types of symbols: type 1 symbols will be expressed in mRNA molecules and will



stand for actions to be performed; type 2 symbols will be expressed in gRNA molecules
(or other editing mechanisms) and will stand for contextual observables. RNA editing
can be seen as a set of symbolic operations performed with symbols of both types,
resulting in symbols of type 1 to be translated into actions by the genetic code.

Notice that code ? is proposed here as an abstraction referring to the set of
mechanisms which will vary the concentration of editing agents (type 2 symbols)
according to environmental context. It is not expected to function as a proper genetic
code. This issue has been dealt with in [29, 30] in the context of evolutionary systems
and second order cybernetics.

4. Artificial Genetic Editing
In GA's, genes are substituted by strings of symbols taken from a binary vocabulary

V = {0, 1} and called V-strings. The genotype of an individual, referred to as its symbolic
description, is the set of V-strings necessary to produce a phenotype or solution
alternative [12]. The translation of symbolic descriptions into the space of solutions is
performed by invariant formal rules which define a code for a particular application. In
the following, a symbolic description is comprised of only one V-string.

Definition 1. V is a vocabulary with two symbols: V = {0,1}.
Definition 2. S is a V-string of dimension n : S = s1s2s3 . . . sn, si 0 V, I = 1, 2, ..., n.

Let Sn denote the power set of V-strings of dimension n.
Definition 3. P(g) ={Si * I = 1, ...,np}, is a population of np V-strings at generation

g.
Definition 4. X = X1×X2×...×Xd is a space of solutions, of dimension d, for a

particular problem. Xi is the universal set of a relevant variable xi, I = 1, 2, ..., d.  f  maps
V-Strings S into solution alternatives  x. f  : Sn 6X * f  (S) =  x 0 X. This mapping
establishes the translation rules between symbolic descriptions and solution alternatives:
the code.

An individual is composed of a symbolic description, S 0 Sn, and a solution
alternative, x 0 X. But the relation between S and x is not a result of direct application
of the mapping f  . Before S is translated into the space of solutions, it will possibly be
altered through interaction with a different sort of string.

Definition 5. U is a vocabulary with three symbols: U = {0,1,( }.
Definition 6. E is a string of length m over the vocabulary U, or a U-string of

dimension m:E = e1e2e3 . . . em, ei0 U, I = 1, 2, ..., m. Let Em denote the power set of
U-strings of dimension m.

These U-strings will function as the editing agents of the population of V-strings.
The length of U-strings is supposed much smaller than that of the V-strings: m << n,
usually an order of magnitude. Maintaining the analogy with the RNA editing system
of the Trypanosomes, V-strings can be referred to as maxistrings, and U-strings as
ministrings. Here I will assume that the editing agents are constant, that is, the structure
of the ministrings will be maintained through the successive generations of P. 

Definition 7. Let õ  denote a finite family (ordered set) of l U-strings: õ  = {E1, ...,
El}. 

Definition 8. For each family of U-strings, õ , there exists an associated family of
mappings ö  = {f1, f2, ..., fl}. Each mapping fi associates its respective U-string in õ  with



a V-string, and produces another V-string: fi: Em × Sn6 Sn. The associated pair (õ , ö ) =
{(E1, f1), (E2, f2), ..., (El, fl)} is called a family of editors.

In other words, each editing ministring will have a function which is also dependent
on the maxistring to be edited. This function will result in an edited maxistring, and thus
specifies how a particular ministring edits maxistrings: when the ministrings match a
portion of a maxistring, a number of symbols from the V vocabulary is inserted into or
deleted from the (V-)maxistring. To introduce the sort of ambiguity the guanine-uracil
base pairing allows the gRNA/mRNA duplex, the U includes an extra symbol '( ' ,
matching both '1' or '0' in V. Ministrings match more than one subsequence of
maxistrings. 

Definition 9. A U-string E 0 Em,  matches a substring, of size m, of a V-string, S 0
Sn, at position k if: 

õ k*1#k#n:
sk%i=1 and ei =(1 º *)
sk%i=0 and ei =(0 º *) ú i = 1,2, ...,m

Example of a family of mappings f: Em × Sn6 Sn. ö  = {Add_1(E, S), Del_1(E, S}}.
Add_1 will add the symbol '1' at position k+m+1 if E matches S at position k; all string
symbols in S from position k+m+1 to n-1 are shifted one position to the right (the symbol
at position n is lost). Del_1 will instead delete the symbol '1', if it is present at position
k+m+1 when E matches S at position k; the string symbols are shifted in the inverse
direction (the symbol at position n is randomly selected from V).

Definition 10. Let the concentration of a family of editors (õ , ö ) be defined by ÷
= {v1, v2, ..., vl}, where vi represents the average number of editors (Ei, fi) per V-string
of a population P. If np is the number of V-strings in P, then there will be vi@np editors
(Ei, fi) randomly distributed by the np V-strings of P( g).



Figure 4: String Editing in a Genetic Algorithm

Figure 4 shows the operational layout of this genetic algorithm with string editing.
Generally, we have a population P of np maxistrings, and a family of l editors with
different concentrations. Before the maxistrings can be translated into the space of
solutions X, by the mapping f , they must "pass" through successive layers of editors,
present in different concentrations. At each generation, the same number of editors
(given by the concentrations) is randomly distributed over these layers. Thus, in the
example of figure 4, editor 1 (E1, Add_1) with a concentration of 0.5, will have np/2
copies of itself randomly distributed by the np positions of its layer; there will be on
average 0.5 of such editors 'meeting' each maxistring. When an editor meets a

maxistring, and its ministring matches some subsequence of the maxistring, the editor's
function is applied and the maxistring is altered. 

5. Context and Development
5.1 Context

In biological genetic systems, RNA editing regulates gene expression; somehow,
organisms have used the edition of mRNA molecules to their advantage, perhaps by
linking it to environmental context. If a particular external event has the effect of
changing the concentrations of editing agents in some genetic system, then those genes
which are able to produce fit phenotypes in the different contexts will be selected. Notice
that changing environmental context will not merely affect the concentration of editing
agents, but also, potentially, the fitness landscape of the genetic system. Thus, the ability



Figure 5: GA with editing parameters linked to context

to link changes in the environment with internal parameters such as concentrations of
editing agents, gives organisms an adaptive advantage as gene expression can become
contextually regulated. The idea is the introduction of the second kind of semantic
relation leading to a second type of symbol described in section 3. The editing strings are
now more than symbolic constraints, but are also semantically related to context
variation through a (postulated) code ?.

Figure 5 shows precisely this kind of coupling between environmental context and
the regulating effects of editor concentrations. Notice, at the bottom of the figure, the
dependence of the fitness landscape of the solution alternative space X, on environmental
context. When the context changes, not only are the symbolic descriptions edited
differently, but the solution alternatives are also evaluated differently. The inclusion of
this extra level of semantic relations and pragmatic evaluations establishes the kind of
genetic semiotics described in section 3.

Consider now two sets of concentrations C1 and C2 of our family of editors (õ , ö )
linked respectively to two evaluation functions, fitness1 and fitness2. When the first
context is at play, we obtain a population of solution alternatives X1 which will be
evaluated by fitness1; alternatively, when the second context is at play, X2 is evaluated

by fitness2. Notice that
both X1 and X2 are
produced from the same
population of symbolic
descriptions P. Those
symbolic descriptions in
P which tend to produce
fit solution alternatives
in X1 and X2 (evaluated
by fitness1 and fitness2
respectively) will have a
higher probability of
being selected. This
result will of course be
dependent on the timing
and sequence  o f
application of contexts:
if contexts are alternated
rapidly, then it will be
poss ib le  to  have

symbolic descriptions, with a high probability of selection in the population, which
produce fit solutions in only one of the contexts; if contexts are maintained a bit longer
before alternating, those symbolic descriptions that tend to produce fit solutions in both
contexts will have a higher probability of selection; if the contexts are maintained too
long, however, it will be more difficult to evolve symbolic descriptions able to survive
in both contexts. These results follow Richard Levins [20, chapter 2] strategies of
adaptation.



Figure 6: GA search (1); GA with edition search (2);
Search in GA with edition linked to context (3)

Figure 6 shows the
different searches of traditional
GA's, GA's with edition, and
GA's with edition linked to
environmental context. In the
first case, one solution
alternative, directly obtained
from a symbolic description, is
evaluated in a fitness
landscape. In the second case,
a set of possible solution
alternatives, where the dark
spot represents the solution
obtained from a symbolic
description with no edition,

and the lighter spots, connected to the center one by links with varying thickness,
portraying the relative probabilities of certain edited solutions in a particular
concentration of editing agents, represent all the possible solutions obtained by edition
of the primitive symbolic description, is evaluated in a fitness landscape. In the third
case there are two fitness landscapes evaluating the different clouds of edited solutions.

5.2 Development
Development refers to those processes taking over an organism once it is reproduced

and which are responsible for the transformation of its form. Generally, artificial life
models of development are based on Stewart Wilson's [40] ideas: a GA will encode "a
production system program (PSP) consisting of a finite number of production (condition-
action) rules [...] of the form: X + Ki Y KjKk. The K's stand for cell phenotypes and X
represents the local context". [40, page 159]. Basically, the symbolic descriptions of the
GA code for a population of "mother cells", or "eggs". These "eggs" code for a specific
PSP (a set of production rules) dictating how the "cell" develops into some multicellular
aggregate, which is then evaluated for its fitness. The more fit aggregates will have the
symbolic description of its "egg" reproducing with a larger probability in the population.
These ideas have been used mostly to generate neural networks [16; 1; 13] or more
generally sensorimotor control systems [for a good overview see 15]. Recently, the idea
of encoding metabolic cycles in a genetic algorithm [17], represented by boolean
networks for instance [11], which will then in certain conditions effect developmental
steps has also been proposed. This approach aims at an increasing self-organization of
the developmental PSP’s. 

Developmental cycles have been argued to offer an expanded universe of solution
alternatives, that is, rather than precisely encoding a fixed number of parameters, more
general rules are encoded which will themselves organize, and search a larger universe
of alternatives. Thus development cycles come as a necessary solution for design
problems affected by scaling constraints (such as neural networks). By the same token,
we can expect developmental cycles in artificial life models to come up with more
complicated morphologies arising through the interaction of several developmental rules



(PSP’s) rather than direct encoding. Basically, the evolutionary advantage of these PSP’s
is the definition of a smaller search space which is then amplified through development
into more complicated morphologies. We can also think  that this reduced search space
is more amenable for evolution since lower dimensionality spaces will have more valleys;
if more morphology details have to be encoded then dimensionality is increased and the
search becomes more difficult (see [9] for a discussion of these topis). Related to this is
Conrad’s tradeoff principle between structural programmability and evolvability [7, 10].

The several approaches vary in many ways, for instance, on the degree of context
allowed in production rules of the various PSP's (e.g. how rules are applied depending
on a cell's neighbors). Nevertheless, in all of them, the symbolic description-solution
space relation is always certain. The production rules are primitives of the
representational system and encoded in a one-to-one manner in the symbolic descriptions
of the genetic algorithm. The more self-organizing approaches of Kitano [17] and
Dellaert and Beer [11], seem to offer a way out for this one-to-one correspondence, but
the wiring of the boolean networks (or metabolic cycles) is still encoded in the genetic
algorithm in a one-to-one manner. The metabolic networks will then reach some state
corresponding to a particular developmental rule; however, this correspondence,
established by a second set of semantic relations, a simulation code (see section 6), is
also completely certain. These systems are very powerful, and offer very interesting and
sound approaches to modeling developmental cycles in artificial organisms, however,
they do not aim at the understanding of how and why developmental stages arise in the
first place through internal regulation of genetic expression.

If the editing system above is able to evolve developmental stages triggered by the
internal control of the expression of symbolic descriptions, then we are moving towards
utilizing the principle of natural selection not only at the level of the individual, but also
at levels internal to the individual, namely through the evolution of semantic referents,
for contextual information, in the genetic system.

"More specific to GA's is the central question of representation. [...] The choice of
system primitives (in the case of GA's, the features that comprise the genotype) is
a decision that cannot be automated." [22, page 281]
The direct engineering of a relationship between descriptions and solutions allows

only what Peter Cariani [5] has referred to as syntactic emergence, that is, the inability
of a formal system to change its primitives and create new observables, and therefore
respond with open-ended evolution. The kind of automation that Mitchell and Forrest
refer above, would amount to the evolution of the semantic relationship between
symbolic descriptions and solution alternatives itself, the representation issues above,
and would therefore shed some light on the problem of the origin of symbols.

This is not what is pursued here, the direct semantic relationship of the GA will be
given by the mapping f  which is predefined from the beginning. The choice of
primitives for this mapping, the code, is permanent. What can be utilized as a source of
contextual input, is the editing system of the GA's presented above. Remember once
again that this system is independent of code f , and is therefore only taking place at the
syntactic level (symbolic descriptions) of the GA. However, the symbolic descriptions
can be made to evolve with the editing constraints, tied up to environmental context,
which become referents for this context. In other words, the aim is to evolve the



contextual semantic relations  for type 2 symbols described in section 3. Thus, it is
possible to evolve context referents for the rules of a PSP, rather than predefine them
from the start, provided different sets of concentrations of editors are linked to different
fitness functions. Also, since the solutions of the same symbolic descriptions in the
various contexts are not allowed independent evolution, as only the "mother
descriptions" are reproduced, the evolved rules will be more related than if evolved
independently (with distinct descriptions), and have therefore the potential to evolve
more coherent PSP's with shorter symbolic descriptions.

6. Physical Simulations and Fuzzy Developmental Rules
In artificial life, it is important to distinguish between the code of the GA (the

mapping between symbolic descriptions and solution alternatives, f , or genetic code) and
the code of a simulation. The latter refers to all the physical characteristics the modeler
attributes to the solution alternatives of his or hers simulation. It is important to realize
that this code is external  to the GA and does not affect its search. Often, these
distinctions are blurred in artificial life and evolutionary computation precisely because
traditional GA’s, due to their one-to-one mapping between symbolic descriptions and
solution alternatives, do not distinguish between the two, or metaphorically, do not
distinguish genotype from phenotype.

Naturally, in a computational realm all material aspects must be simulated and
therefore a semantic relation is imposed which refers the simulation’s symbols to the
physical characteristics we desire to model. It is important to keep this in mind especially
in the simulation of developmental cycles since these are defined on two stages: first the
GA searches for a particular developmental program, and then this program is executed.
The first stage depends on the GA’s code (f ), independently from the physical attributes
of the simulation, while the second stage executes the program according to some
simulated physics defined by the simulation code, from now on referred to as code ß.

If we are to utilize contextual GA's to tackle the problem of development, the
primitives of the solution alternatives obtained should naturally code for all the
characteristics needed to form the rules of a PSP, namely, phenotypic characteristics
such as "cell thickness" as well as orders such as "divide in two", etc. However, there
will be no coding of rules themselves, in particular, the context in which a rule should
be applied, will not be a semantic primitive, but allowed to evolve from the coupling of
the editing system of the GA to the external contexts. This is by no means achieved, or
easy to achieve, it indicates a proposed research direction necessary to attain true
evolution of development cycles in artificial life models.

6.1 Fuzzy Sets as Uncertain Physical States
Fuzzy sets may be ideal mathematical structures to characterize some simulated

physical dynamics. For instance, the stable states of metabolic networks used for the
definition of developmental cycles referred above [17, 11]  can be represented by a fuzzy
set in which the nodes of the network and their activation states are the elements of the
set and their membership degrees respectively.  More generally, the elements of a fuzzy
set can refer to some desired physical attributes (through the simulation code ß) while
their membership degrees can describe the degree to which such physical attributes are



present in a certain situation. In the context of developmental cycles, certain actions will
be taken when certain elements have membership degree beyond a specified value. 

To allow for a better representation of uncertainty, that is, if we desire the physical
characteristics to observe in addition to fuzziness the two other recognized forms of
uncertainty —  nonspecificity and conflict [18] —  then a more complicated set structure
can be used. This structure is referred to as an Evidence Set [28, 31,32] and is based on
the extension of fuzzy sets by utilizing Evidence Theory [34]. Basically, this structure
formalizes the membership degree of an element in a set, with a finite number of
weighted subintervals of [0,1]. A degree of membership in [0, 1] captures uncertainty in
the form of fuzziness, an interval of membership introduces nonspecificity, and finally
several competing intervals introduce conflict. The measurement of uncertainty in set
structures is discussed in [31].

Evidence sets can be obtained through the operation of simpler fuzzy sets. Several
operations for evidence sets have been defined in [28, 32]. Consider now a string of
fuzzy sets, defined on some universal set K,  and operations amongst them together with
parenthesis which group the operations in the string in different ways: 
S = F1q  ((F2 u F3 )þ  Fn-2 ) s Fn-1 r  Fn. Consider further that these  fuzzy sets, Fi, are
picked from a finite, small, family of possible fuzzy set shapes, and the operations are
likewise picked from a small family of operations. Finally, a number of parenthesis is
somehow randomly distributed over the string. Once a string is generated, it must be
parsed in order to obtain an evidence set: parenthesis will have to be matched and
operations performed. If a right (left) parenthesis is not matched all the fuzzy sets and
operations to its left (right) are discarded. Thus, from an original string with n fuzzy
sets, after parsing, we will obtain strings with 0 to n fuzzy sets.

Returning to our GA’s, consider now that the edited strings obtained will code
(through f ) to such a string of fuzzy sets and operations. In other words, the solution
alternatives of the GA will be fuzzy set strings which will be parsed and operated into
evidence sets whose elements (of K) refer to some simulated physics through code ß.
Since fuzzy sets capture only one form of uncertainty (fuzziness) and evidence sets
capture three (fuzziness, nonspecificity, and conflict), we can metaphorically say that the
fuzzy set strings “fold” from a one dimensional into a three dimensional uncertainty
state. Figure 7 presents a scheme of this process.

To make things more general, the fuzzy sets, Fi , define only shapes of membership
as seen in figure 7. These shapes are then positioned and stretched over some pre-defined
portions of the universal set K. This is a very important point since it eliminates any
scaling problem of whatever physical attributes we wish to simulate. To explain this
better, I must be a bit more formal. Consider that the universal set K of our fuzzy sets is
divided into octants (eight portions of K). A fuzzy set shape can now be associated with
a particular octant as well as with some width stretching over a number of octants. If we
have eight possible fuzzy set shapes we only need 3 bits of information to express the
shape, plus 3 bits to position it in an octant, and finally 2 extra bits can specify 4 possible
widths for stretching the shape over K. This way, a fuzzy set can be specified by only 8
bits: 1 byte. Likewise for the fuzzy operations and parenthesis. 8 different operations are
possible (3 bits). If we specify that an operation will carry with it a left or a right
parenthesis one fourth of the time, we need 2 bits for each parenthesis (4 bits). With an



Figure 7: Two stage contextual GA coding for 3-D uncertainty fuzzy rules

unused bit, an
operation with
parenthesis can
be specified by
one byte. A string
with 8 fuzzy sets
and 8 operations
can be described
by 16 bytes (128
bit long string),
for any finite cardinality
universal set K.

Hence, the
definition of the
s o l u t i o n
alternatives of
the contextual
GA in terms of
fuzzy set strings
is independent of the size of a particular physical simulation, that is, of the number of
physical characteristics of our artificial organisms. Whatever the number of these
characteristics, whatever the cardinality of K, the search space  of the GA will be the
same, namely, the one defined by the 128 bit long strings coding (through f ) into fuzzy
set strings. Nevertheless, and naturally, the size of K is relevant for other aspects of the
simulation external to the GA. A larger K, will mean that the definition of an organism
(by an evidence set) will require a finer tuning of the composing fuzzy set string, which
may take longer for the GA to reach. In any case, the search space will remain constant,
only more elaborate searches will be required.

So far the fuzzy set strings have been shown to increase the uncertainty description
of a simulation, as well as to allow for a good scaling management. But they possess yet
another important evolutionary advantage: a buffering mechanism for genetic mutation.
Michael Conrad [1990] has developed the notion of genetic buffering as an important
requirement for evolvability. Though mutation is required for evolution, it is also
important that certain shapes may be resilient to changes which may potentially destroy
an important physical functionality. As discussed above, the fuzzy set strings will be
parsed according to its parenthesis. Consider the following parsing situation:

F1¿ F2½ (F3 Á ... F7Ù F8 µ F1¿ F2

all the fuzzy sets and operations to the right of the unmatched left parenthesis are
discarded. This means that any bit to the left of the second fuzzy set is free to mutate
without any effect on the final organism, except those few bits which may cause a
matching parenthesis to occur to the left of F2.

As a final note, crossover was not considered in this model precisely to not disrupt
this kind of genetic buffering. Also, since eventually this kind of buffering is



transcended, usually with a dramatic change of form (a string with two functional fuzzy
sets can suddenly become a string with, say, eight functional fuzzy sets),  crossover
seems to be unnecessary as a source of more variety.

 7. Final Remarks
The most important characteristic of all the mechanisms here introduced is related

to a conflict between introducing more variety and constraining, or buffering, this
variety. Contextual editing allows for a variety, a cloud, of solution alternatives to effect
the genetic search, however, this variety of alternatives is not allowed independent
evolution and is constrained to an original symbolic description (which can be edited in
different ways) ultimately reproduced. On another level, the uncertain fuzzy set strings,
though introducing a large amount of variety in their parsing and uncertainty folding,
also observe the kind of genetic buffering described earlier. It is believed that the right
amounts of variety and constraint lie at the core of evolvability [8,9]. Only the
implementation and testing of the proposed model will tell if it has the right amount of
both. In addition, the inclusion of context in the genetic algorithm, or the limited
evolution of a semantic relationship between editing mechanisms and contexts (the type
2 symbols in a semiotic relation), opens the way for the study of the emergence of
developmental cycles triggered by contextual constraints.
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