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Abstract. A genetic algorithm schemewith a stochasti c genotype/phenotypereation is proposed.
The mechanisms responsible for this intermediate level of uncertainty, are inspired by the
biological system of RNA editing found in a variety of organisms. In biological systems, RNA
editing represents a significant and potentially regulatory step in gene expression. The artificial
algorithm here presented, will propose the evolution of such regulatory steps as an aid to the
modeling of differentiated development of artificial organisms according to environmental,
contextual, constraints. This mechanism of genetic string editing will then be utilized in the
definition of agenetic algorithm scheme, with good scaling and evolutionary properties, in which
phenotypes are represented by mathematical structures based on fuzzy set and evidence theories.

1. Introduction

The essence of GA's lies on the separation of the description of a solution (e.g. a
machine) from the solution itself: variation is applied solely to the descriptions, while
the respective solutions are evaluated, and the whole selected according to this
evaluation [14]. A genetic algorithm "is primarily concerned with producing variants
having ahigh probability of successin theenvironment™ [19, page 35]. Nonethel ess, one
important difference between evol utionary computation and biological genetic systems,
lies precisdy on the connection between descriptions and solutions, between signifier
and signified. In genetic algorithmstherel ation between thetwoislinear and direct: one
description, onesolution. Whilein thebiol ogical genetic systemsthereexistsamultitude
of processes, taking place between the transcription of a description and its expression,
responsiblefor theestablishment of an uncertain rel ation between signifier and signified,
that is, a one-to-many relation.

"The proteins encoded by [DNA] are[...] oxymorphic: their individual shapes are

precisaly unpredictable. Solong asthisistrue, the genomic language, like our own

languages, will not havealogical link between signifier and signified. Thiswill not

prevent its being read or understood; rather, it will assure that DNA remains a

language expressing asfull arange of meaningsthrough arbitrary signifiersasany

other language.” [26, p. 70]

In other words, the same genotype will not always produce the same phenotype;
rather, many phenaotypes can be produced by one genotype depending on changesin the
environmental context. If the effects of changing environmental contexts affecting gene
expression within an individual can be harnessed and used to it's sel ective advantagein



achanging environment, then we can say that such an individual has achieved a degree
of control over its own genetic expression. It is the objective of this paper to propose a
computational scheme which may be able to achieve this degree of control. It will be
further suggested, that the modeling of biological development may be linked precisely
to GA's capable of evolving this extra degree of control.

To establish this one-to-many relationship between descriptions and solutions in
GA's, | will propose an extra mechanism inspired by the edition of RNA in biological
genetic systems. Section 2 will introduce some of the known mechanisms of RNA
Editing. Section 3 will introduce semiotic modd offering a theoretical framework for
RNA editing. Section 4 will proposecomputational counterpartsto RNA editing. Section
5will discussthe utilization of such mechanismsregarding the problem of devel opment.
Finally, Section 6 will present one particular algorithm, which utilizes fuzzy set and
evidence theory to introduce even higher levels of uncertainty to description/solution
relations.

2. RNA Editing

The discovery of messenger RNA (mRNA) molecules containing information not
coded in DNA, first persuaded researchersin molecular biology that some mechanism
in the cell might beresponsiblefor posttranscriptional alteration of geneticinformation;
this mechanism was called 'RNA Editing' [2, 1986]. "It was coined to illustrate that the
alterations of the RNA sequence (i) occur in the protein-coding region and (ii) are most
likely the result of aposttranscriptional event” [3, page 16]. Theterm isused to identify
any mechanism which will produce mRNA molecul eswith information not specifically
encoded in DNA. Usually we will have insertion or deletion of particular bases (e.g.
uridine), or some sort of base conversion (e.g. adenosine + guanisine).

The most famous RNA editing system isthat of the African Trypanosomes|[3; 36].
The mitochondrial DNA of this parasite, responsible for deeping sickness, "consists of
several dozen large loops called maxicircles and thousands of smaller ones called
minicircles." [27, page 132] At first, theminicircleswere assumed to contain no genetic
information, while maxicircles were known to encode mitochondrial rRNA. However,
the maxicircles were found to possess strange sequence features such as genes without
trandational initiation and termination codons, frame shifted genes, etc. Furthermore,
observation of MRNA's showed that many of them were significantly different than the
maxicircles from which they had been transcribed. These facts suggested that mMRNA's
were edited posttranscriptionally.

It was later recognized that this editing was performed by guide RNA's (QRNA'S)
coded mostly by the minicircles, the strands of DNA previously assumed to contain no
useful information [37; 4]. In this particular genetic system, gRNA's operate by
inserting, and sometimes deleting, uridines. To appreciate the effect of this edition
consider figure 1. The first example [3, p. 14] shows a massive uridine insertion
(lowercase u's); the aminoacid sequence that would be obtained prior to any edition is
shown on top of the base sequence, and the aminoacid sequence obtained after edition
is shown in the gray box. The second example shows how potentially theinsertion of a
single uridine can change dramatically the aminoacid sequence obtained; in this case,
atermination codon is introduced.



Itisunclear how exactly gRNA'sinsert uridinesinto mRNA's; basically, the shorter
gRNA strings base-pair with stretches of mMRNA, and at some point will insert anumber
of uridines[33]. Aninteresting aspect of thegRNA/mMRNA base-pairingisthat itismore
general than the Watson-Crick base-pairing found in DNA and RNA, it is more
ambiguous since “uracils in mMRNA can be specified by either guanine or adeninein
gRNA" [36, page 36]

But even if the precise

—Ser Gy _ Gu Lys | mechanisms of RNA editing
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Figure 1: U-insertion in Trypanosomes mechanisms| may edit a

transcript from the same gene

differently, thereby making
different proteins from the same opened gene.” [26, page 78] (one-to-many relations).
It is important to retain that a mRNA can be edited in different degrees precisaly
according to the concentrations of editing operators it encounters. Thus, at the same
time, several different proteins coded by the same gene may coexist, if al (or some) of
the mRNA's obtained from the same gene, but edited differently, are meaningful to the
translation mechanism.

If the concentrations of editing operators can be linked to environmental contexts,
the concentrations of different proteins obtained may be selected accordingly, and thus
evolve a system which is able to respond to environmental changes without changesin
themajor part of itsgeneticinformation (genome size optimization). Onegene, different
contexts, different proteins. Thismay be precisdly what the trypanosome parasites have
achieved: control over geneexpression during different partsof their complex lifecycles.

"Space is clearly not a problem for mammalian nuclear DNA, so the [previous]|

rationale is not so obvious for the [editing mechanisms of mammals]. Also there,

however, we see one gene encoding two proteins. In mammalian genomes, gene
duplication followed by separate evolution of the two copies would be a more
obvious way of producing closely related proteins in regulatable amounts. RNA
editing, however, does provide the opportunity to introduce highly specific, local
changes into only some of the molecules. [...] It could be reasoned that somehow
this would be more difficult to achieve via gene duplication, since independently
accumulating mutations would make it harder to keep the remainder of the two

sequencesidentical” [3, p. 22]

Thus, RNA editing may be more than just a system responsible for theintroduction
of uncertainty (one-to-many relations), but also, and paradoxically, a system that may
allow the evol ution of different proteins constrained by the same genetic string. In other
words, even though one gene may produce different mRNA's (and thus proteins), the
latter are not allowed heritable variation since they are always constrained by the gene
from which they are edited, and which is ultimately selected and transmitted to the



offspring of the organism. We can see RNA Editing, especially in the case of gRNA'S,
as a case of co-adaption of two distinct systems: the stored genetic information (e.g.
maxicircles) and the contextual editors (e.g. minicircles), also stored in DNA, but
independent and meaningless to the larger semantic loop of the genetic code.

Genetic Code System

%b‘? Proteins m Proteins g’@&%ﬁ

7 aa-chains aa-chains

RNA Edltmg System  pn A ™~ RNA Editing System

Figure 2: Co-adaptation of the RNA Editing and Genetic Code Systems

The dependent evolution of one gene and several contexts, as expressed by Rob
Benne in the previous quote, may allow the introduction of highly specific, local
(contextual) changes, more effectively than the independent evol ution of several genes.
If all of the different expressions were allowed different genes, they would evolve
separately not only increasing the size of the genome, but also, possibly, making it
harder tomaintain coherent, multicellular, phenotypesaswell ascoherent devel opmental
processes. For instance, the editing of several genes of the Trypanosoma Brucei is
developmentally regulated [36] which may be of evolutionary advantage for these
parasites [35]. Though in the course of evolution editing was partially or completely
eliminated in many lineages of eukaryotic organisms containing mithocondria, by
reverse transcription of partially edited mRNA’s, it may be useful for the development
of parasitic adaptations as is the case of the developmental regulation of editing in T.
Brucei [35].

Therole of RNA editing in the development of multicellular organisms has also
been shown to be important, Lomeli at al [21] have discovered that the extent of RNA
editing affecting a type of receptor channels responsible for the mediation of excitatory
postsynaptic currentsin the central nervous system, increasesin rat brain devel opment.
Asaconsequence, the kinetic aspects of these channelswill differ according to thetime
of their creation in the brain’s developmental process.

3. A Theoretical Model: Evolving Semiotics
Semiotics concernsthe study of signs/symbolsin three basic dimensions: syntactics
(rule-based operations between signs within the sign system), semantics (relationship



between signs and theworld external to the sign system), and pragmatics (eval uation of
the sign system regarding the goals of their users) [23]. Theimportance of thistriadic
relationship in any sign system has been repeatedly stressed by many in the context of
biology and genetics [39; 24, 25; 26]; in particular, Peter Cariani [6] has presented an
excdlent discussion of the subject. We can understand the semiotics of the genetic
system if we consider all processes taking place before trandation (from transcription
toRNA editing) asthe set of syntactic operations; therelation between mRNA (signifier)
and folded amino acid chains (signified), through the genetic code, as the
implementation of a semantic relation; and finally, the selective pressures on the
obtained proteins as the pragmatic evaluation of the genetic sign system. Jon Umerez
[38] has discussed the importance of the code in the establishment of this genetic
semiotics by developing, in the context of Artificial Life, Howard Pattee’ s notion of
semantic closure[24,25]: the idea that only organisms capable of controlling their own
syntactic operations and semantic relations are capable of open-ended functional
creativity or evolution. Natural selection defines the pragmatic eval uations imposed on
evolving semantically closed organisms.

Until now, the semiotics of DNA has been considered strictly unidirectional: DNA
stands for proteins to be constructed. In other words, the symbolic DNA encodes
(through the genetic code) actions to be performed on some environment. Naturally,

through variation and natural

selection (pragmatic eval uations)
new semanticrelationsarecreated

which are better adapted to a

particular environment, however,

real-time contextual

measurements are not allowed by

thisunidirectional semiatics. If in

p addition to symbols standing for

¥ actions to be performed, the

genetic sign system is aso

allowed a second type of symbols

. standing for environmental,

Environment contextual, measurements, then a

Figure 3: DNA Semiotics with two symbol types richer semiotics can be created

which may have selective

advantage in rapidly changing environments, or in complicated, context dependent,
developmental processes.

Figure 3 depicts such a sign system. The top plane contains two different types of
symbols which are combined in different ways (symbolic operations). Type 1 symbols
stand for actions through acodef (e.g. the genetic code) and type 2 symbols stand for
measurementsthrough a differentcode ?whichisbeing hypothesized here. Theevidence
presented in section 2 refers to genetic systems in which RNA Editing is used in
different amounts according to different contexts (namely, different stages of a
developmental process). We can think of DNA as a set of symbolic descriptions based
on two types of symboals: type 1 symbolswill be expressed in mRNA molecules and will

Symbolic

Semantic
Relations



stand for actionsto be performed; type 2 symbolswill be expressed in gRNA molecules
(or other editing mechanisms) and will stand for contextual observables. RNA editing
can be seen as a set of symbolic operations performed with symbols of both types,
resulting in symbols of type 1 to be trand ated into actions by the genetic code.

Notice that code ? is proposed here as an abstraction referring to the set of
mechanisms which will vary the concentration of editing agents (type 2 symbols)
according to environmental context. It is not expected to function as a proper genetic
code. Thisissue has been dealt with in [29, 30] in the context of evolutionary systems
and second order cybernetics.

4. Artificial Genetic Editing

In GA's, genes are substituted by strings of symbolstaken from abinary vocabulary
V ={0, 1} and calledV-strings. Thegenotype of an individual, referred to asitssymbolic
description, is the set of V-strings necessary to produce a phenotype or solution
alternative [12]. The trandation of symbolic descriptions into the space of solutionsis
performed by invariant formal rules which define a code for a particular application. In
the following, a symbolic description is comprised of only one V-string.

Definition 1. Vis avocabulary with two symbols; V = {0,1}.

Definition 2. SisaV-gring of dimensonn: S=sss;...5,50V,1=1,2, ..., n.
Let S" denote the power set of V-strings of dimension n.

Definition 3. P(g) ={S* | = 1, ...,n,}, isapopulation of n, V-strings at generation
g.

Definition 4. X = X;xX,x...xX; is a space of solutions, of dimension d, for a
particular problem. X; istheuniversal set of arelevant variablex;, 1 =1, 2, ...,d. f maps
V-Strings Sinto solution alternatives x. f : S'6X * f (§ = x 0 X. This mapping
establishesthetrand ation rules between symbolic descriptionsand sol ution alternatives:
the code.

An individual is composed of a symbolic description, S 0 S, and a solution
alternative, x 0 X. But the relation between Sand x is not aresult of direct application
of themapping f . Before Sistrandated into the space of solutions, it will possibly be
altered through interaction with a different sort of string.

Definition 5. U isavocabulary with three symbols: U ={0,1,( }.

Definition 6. E is a string of length m over the vocabulary U, or a U-string of
dmensonmE=eee;...e,e0U, 1 =1,2, ..., m Let E" denote the power set of
U-strings of dimension m.

These U-strings will function as the editing agents of the population of V-strings.
The length of U-strings is supposed much smaller than that of the V-strings: m<< n,
usually an order of magnitude. Maintaining the analogy with the RNA editing system
of the Trypanosomes, V-strings can be referred to as maxistrings, and U-strings as
ministrings. Herel will assumethat the editing agents are constant, that is, the structure
of the ministrings will be maintained through the successive generations of P.

Definition 7. Let 6 denote afinite family (ordered set) of | U-strings. 6 = {E,, ...,
E}.

Definition 8. For each family of U-strings, 6, there exists an associated family of
mappingsd ={f,f,, ..., f}. Each mappingf; associatesitsrespectiveU-stringind with



aV-string, and produces another V-string: f;: E™"x S'6 S". The associated pair (6,0 ) =
{(Ey, f), (Ex 1), ..., (B, f)} iscalled afamily of editors.

In other words, each editing ministring will have afunction which isal so dependent
on themaxistring to beedited. Thisfunction will result in an edited maxistring, and thus
specifies how a particular ministring edits maxistrings: when the ministrings match a
portion of a maxistring, a number of symbols from the V vocabulary is inserted into or
deleted from the (V-)maxistring. To introduce the sort of ambiguity the guanine-uracil
base pairing allows the gRNA/mRNA duplex, the U includes an extra symbol ‘(" ,
matching both '1' or '0" in V. Ministrings match more than one subsequence of
maxistrings.

Definition 9. A U-string E O E™, matches a substring, of sizem, of aV-string, SO
S, at position kif:

4 ~Jsg=land e=(1° ¥) "
k* 1#kdn® Sk%i:O and ei:(o [} *) i=12..,m

Exampleof afamily of mappingsf: E"xS'6 S. 6 ={Add_1(E, S), Del_1(E, §}}.
Add_1 will add the symbol '1" at position k+m+1 if E matches Sat position k; al string
symbolsin Sfrom position k+m+1 ton-1 are shifted one position to theright (the symbol
at position nislost). Del_1 will instead delete the symbol '1', if it is present at position
k+m+1 when E matches Sat position k; the string symbols are shifted in the inverse
direction (the symbal at position n is randomly selected from V).

Definition 10. Let the concentration of afamily of editors (6, 6 ) be defined by +
={vy, V,, ..., i}, where v; represents the average number of editors (E;, f,) per V-string
of a population P. If n, isthe number of V-stringsin P, then there will be viin, editors
(E;, f;) randomly distributed by the n, V-strings of P( g).



Figure 4 showsthe operational layout of this genetic algorithm with string editing.
Generally, we have a population P of n, maxistrings, and a family of | editors with
different concentrations. Before the maxistrings can be trandated into the space of
solutions X, by the mapping f , they must "pass’ through successive layers of editors,
present in different concentrations. At each generation, the same number of editors
(given by the concentrations) is randomly distributed over these layers. Thus, in the
example of figure 4, editor 1 (E;, Add_1) with a concentration of 0.5, will have n,/2
copies of itself randomly distributed by the n, positions of its layer; there will be on
average 0.5 of such editors 'meeting’ each maxistring. When an editor meets a
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Figure 4: String Editing in a Genetic Algorithm

maxistring, and its ministring matches some subsequence of the maxistring, the editor's
function is applied and the maxistring is altered.

5. Context and Development
5.1 Context

In biological genetic systems, RNA editing regulates gene expression; somehow,
organisms have used the edition of mRNA molecules to their advantage, perhaps by
linking it to environmental context. If a particular external event has the effect of
changing the concentrations of editing agentsin some genetic system, then those genes
which areableto producefit phenotypesin thedifferent contextswill be selected. Notice
that changing environmental context will not merdly affect the concentration of editing
agents, but also, potentially, thefitnesslandscape of the genetic system. Thus, theahility



to link changesin the environment with internal parameters such as concentrations of
editing agents, gives organisms an adaptive advantage as gene expression can become
contextually regulated. The idea is the introduction of the second kind of semantic
relation leading to a second type of symbol described in section 3. Theediting stringsare
now more than symbolic constraints, but are also semantically related to context
variation through a (postul ated) code 2.

Figure5 shows precisaly thiskind of coupling between environmental context and
the regulating effects of editor concentrations. Notice, at the bottom of the figure, the
dependenceof thefitnesslandscape of the sol ution alternative space X, on environmental
context. When the context changes, not only are the symbolic descriptions edited
differently, but the solution alternatives are also evaluated differently. The inclusion of
this extraleve of semantic relations and pragmatic eval uations establishes the kind of
genetic semiotics described in section 3.

Consider now two sets of concentrations C, and C, of our family of editors (6, 0 )
linked respectively to two evaluation functions, fitnessl and fitness2. When the first
context is at play, we obtain a population of solution alternatives X; which will be
evaluated by fitnessl; alternatively, when the second context is at play, X, is evaluated

by fitness2. Notice that
both X; and X, are
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fit solution alternatives
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Relations higher probability of
% Xn, being selected. This
result will of course be
dependent on thetiming
and sequence of
X application of contexts:
if contextsarealternated
rapidly, then it will be
possible to have
symboalic descriptions, with a high probability of selection in the population, which
producefit solutionsin only one of the contexts; if contexts are maintained a bit longer
before alternating, those symbolic descriptionsthat tend to producefit solutionsin both
contexts will have a higher probability of selection; if the contexts are maintained too
long, however, it will be more difficult to evolve symbolic descriptions able to survive
in both contexts. These results follow Richard Levins [20, chapter 2] strategies of
adaptation.

Pragmatic Evaluations

Fitness

Figure 5: GA with editing parameters linked to context



Figure 6 shows the
1 2 different searchesof traditional
. GA's, GA's with edition, and
GA's with edition linked to
environmental context. In the
first case, one solution
alternative, directly obtained
from asymbolic description, is
evaluated in a fitness
landscape. In the second casg,
a st of posshle solution
Figure 6: GA search (1); GA with edition search (2);  aternatives, where the dark
Search in GA with edition linked to context (3) spot represents the solution

obtained from a symboalic

description with no edition,
and the lighter spots, connected to the center one by links with varying thickness,
portraying the relative probabilities of certain edited solutions in a particular
concentration of editing agents, represent all the possible solutions obtained by edition
of the primitive symbolic description, is evaluated in a fitness landscape. In the third
casethere aretwo fitness landscapes eval uating thediffer ent clouds of edited solutions.

5.2 Development

Devel opment refersto those processestaking over an organismonceit isreproduced
and which are responsible for the transformation of its form. Generally, artificial life
models of development are based on Stewart Wilson's [40] ideas: a GA will encode "a
production systemprogram (PSP) consisting of afinitenumber of production (condition-
action) rules[...] of the form: X + K; Y KK,. The K's stand for cell phenotypes and X
representsthelocal context”. [40, page 159]. Basically, the symbolic descriptions of the
GA codefor a population of "mother cells’, or "eggs’. These "eggs' code for a specific
PSP (a set of production rules) dictating how the"cell" developsinto somemulticellular
aggregate, which isthen evaluated for itsfitness. The more fit aggregates will have the
symbolic description of its"egg" reproducing with alarger probability in the popul ation.
These ideas have been used mostly to generate neural networks [16; 1; 13] or more
generally sensorimotor control systems [for agood overview see 15]. Recently, theidea
of encoding metabolic cycles in a genetic algorithm [17], represented by boolean
networks for instance [11], which will then in certain conditions effect developmental
steps has al so been proposed. This approach aims at an increasing self-organization of
the developmental PSP's.

Developmental cycles have been argued to offer an expanded universe of solution
alternatives, that is, rather than precisely encoding afixed number of parameters, more
general rules are encoded which will themselves organize, and search alarger universe
of alternatives. Thus development cycles come as a necessary solution for design
problems affected by scaling constraints (such as neural networks). By the same token,
we can expect developmental cycles in artificial life models to come up with more
complicated morphol ogiesarising through theinteraction of several developmental rules



(PSP s) rather than direct encoding. Basically, theevol utionary advantage of these PSP’ s
isthe definition of asmaller search space which isthen amplified through devel opment
into more complicated morphol ogies. We can also think that this reduced search space
ismoreamenabl efor evol ution sincelower dimensionality spaceswill havemorevalleys;
if more morphol ogy details have to be encoded then dimensionality isincreased and the
search becomes more difficult (see[9] for adiscussion of these topis). Related to thisis
Conrad’ stradeoff principlebetween structural programmeability and evolvability [7, 10].

The several approaches vary in many ways, for instance, on the degree of context
allowed in production rules of the various PSP's (e.g. how rules are applied depending
on a cdl's neighbors). Nevertheless, in all of them, the symbolic description-solution
space relation is aways certain. The production rules are primitives of the
representational system and encoded in aone-to-onemanner inthesymbolic descriptions
of the genetic algorithm. The more sdlf-organizing approaches of Kitano [17] and
Dellaert and Beer [11], seem to offer away out for this one-to-one correspondence, but
the wiring of the boolean networks (or metabalic cycles) is still encoded in the genetic
algorithm in a one-to-one manner. The metabolic networks will then reach some state
corresponding to a particular developmental rule; however, this correspondence,
established by a second set of semantic relations, a simulation code (see section 6), is
also completely certain. These systemsare very powerful, and offer very interesting and
sound approaches to modeling developmental cyclesin artificial organisms, however,
they do not aim at the understanding of how and why devel opmental stagesarisein the
first place through internal regulation of genetic expression.

If the editing system aboveis able to evolve devel opmental stagestriggered by the
internal control of the expression of symbolic descriptions, then we are moving towards
utilizing the principle of natural selection not only at thelevel of theindividual, but also
at levelsinternal to theindividual, namely through the evolution of semantic referents,
for contextual information, in the genetic system.

"More specific to GA'sisthe central question of representation. [...] The choice of

system primitives (in the case of GA's, the features that comprise the genotype) is

adecision that cannot be automated.” [22, page 281]

Thedirect engineering of arelationship between descriptions and sol utions allows
only what Peter Cariani [5] hasreferred to as syntactic emergence, that is, the inability
of aformal system to change its primitives and create new observables, and therefore
respond with open-ended evolution. The kind of automation that Mitchell and Forrest
refer above, would amount to the evolution of the semantic relationship between
symbolic descriptions and solution alternatives itself, the representation issues above,
and would therefore shed some light on the problem of the origin of symbols.

Thisisnot what is pursued here, the direct semantic relationship of the GA will be
given by the mapping f which is predefined from the beginning. The choice of
primitives for this mapping, the code, is permanent. What can be utilized as a source of
contextual input, is the editing system of the GA's presented above. Remember once
again that this system isindependent of codef , and istherefore only taking place at the
syntactic level (symbolic descriptions) of the GA. However, the symbolic descriptions
can be made to evolve with the editing constraints, tied up to environmental context,
which become referents for this context. In other words, the aim is to evolve the



contextual semantic relations for type 2 symbols described in section 3. Thus, it is
possible to evolve context referents for the rules of a PSP, rather than predefine them
from the start, provided different sets of concentrations of editors arelinked to different
fitness functions. Also, since the solutions of the same symbolic descriptions in the
various contexts are not allowed independent evolution, as only the "mother
descriptions' are reproduced, the evolved rules will be more related than if evolved
independently (with distinct descriptions), and have therefore the potential to evolve
more coherent PSP's with shorter symbolic descriptions.

6. Physical Simulations and Fuzzy Developmental Rules

In artificia life, it is important to distinguish between the code of the GA (the
mapping between symbolicdescriptionsand sol ution alternatives,  , or genetic code) and
the code of asimulation. Thelatter refersto all the physical characteristics the model er
attributesto the solution alternatives of hisor herssimulation. It isimportant to realize
that this code is external to the GA and does not affect its search. Often, these
digtinctionsareblurredin artificial life and evol utionary computation precisely because
traditional GA’s, due to their one-to-one mapping between symbolic descriptions and
solution alternatives, do not distinguish between the two, or metaphorically, do not
distinguish genotype from phenotype.

Naturally, in a computational realm all material aspects must be ssmulated and
therefore a semantic relation is imposed which refers the smulation’ s symbols to the
physical characteristicswedesiretomodd. It isimportant to keep thisin mind especially
in thesimulation of devel opmental cycles sincethese are defined on two stages: first the
GA searchesfor aparticular developmental program, and then thisprogram isexecuted.
Thefirst stage dependson the GA’ scode (f ), independently from the physical attributes
of the simulation, while the second stage executes the program according to some
simulated physics defined by the simulation code, from now on referred to as code [3.

If we are to utilize contextual GA's to tackle the problem of development, the
primitives of the solution alternatives obtained should naturally code for al the
characteristics needed to form the rules of a PSP, namely, phenotypic characteristics
such as "cell thickness' as well as orders such as "divide in two", etc. However, there
will be no coding of rulesthemsealves, in particular, the context in which arule should
be applied, will not be a semantic primitive, but allowed to evolve from the coupling of
the editing system of the GA to the external contexts. Thisis by no means achieved, or
easy to achieve, it indicates a proposed research direction necessary to attain true
evolution of development cyclesin artificial life models.

6.1 Fuzzy Sets as Uncertain Physical States

Fuzzy sets may be ideal mathematical structures to characterize some simulated
physical dynamics. For instance, the stable states of metabolic networks used for the
definition of devel opmental cyclesreferred above[17, 11] can berepresented by afuzzy
set in which the nodes of the network and their activation states are the el ements of the
set and their membership degrees respectively. More generally, the dements of afuzzy
set can refer to some desired physical attributes (through the simulation code 13) while
their membership degrees can describe the degree to which such physical attributesare



present in acertain situation. In the context of developmental cycles, certain actionswill
be taken when certain elements have membership degree beyond a specified value.

To alow for abetter representation of uncertainty, that is, if we desire the physical
characteristics to observe in addition to fuzziness the two other recognized forms of
uncertainty — nonspecificity and conflict [ 18] — then amore complicated set structure
can be used. Thisstructureisreferred to as an Evidence Set [28, 31,32] and is based on
the extension of fuzzy sets by utilizing Evidence Theory [34]. Basically, this structure
formalizes the membership degree of an element in a set, with a finite number of
weighted subintervalsof [0,1]. A degree of membershipin [0, 1] capturesuncertaintyin
the form of fuzziness, an interval of membership introduces nonspecificity, and finally
several competing intervals introduce conflict. The measurement of uncertainty in set
structuresis discussed in [31].

Evidence sets can be obtained through the operation of simpler fuzzy sets. Several

operations for evidence sets have been defined in [28, 32]. Consider now a string of
fuzzy sets, defined on some universal set K, and operationsamongst them together with
parenthesis which group the operationsin the string in different ways:
S=Fq (F,uFR)p F.,) sF,, r F.. Consider further that these fuzzy sets, F;, are
picked from afinite, small, family of possible fuzzy set shapes, and the operations are
likewise picked from a small family of operations. Finally, a number of parenthesisis
somehow randomly distributed over the string. Once a string is generated, it must be
parsed in order to obtain an evidence set: parenthesis will have to be matched and
operations performed. If aright (left) parenthesisis not matched all the fuzzy sets and
operations to its left (right) are discarded. Thus, from an original string with n fuzzy
sets, after parsing, we will obtain strings with O to n fuzzy sets.

Returning to our GA’s, consider now that the edited strings obtained will code
(through f) to such a string of fuzzy sets and operations. In other words, the solution
alternatives of the GA will be fuzzy set strings which will be parsed and operated into
evidence sets whose eements (of K) refer to some simulated physics through code 3.
Since fuzzy sets capture only one form of uncertainty (fuzziness) and evidence sets
capturethree (fuzziness, nonspecificity, and conflict), wecan metaphorically say that the
fuzzy set strings “fold” from a one dimensional into a three dimensional uncertainty
state. Figure 7 presents a scheme of this process.

To makethings moregeneral, thefuzzy sets, F; , define only shapes of membership
asseeninfigure 7. Theseshapesarethen positioned and stretched over some pre-defined
portions of the universal set K. Thisis a very important point since it eliminates any
scaling problem of whatever physical attributes we wish to simulate. To explain this
better, | must be abit moreformal. Consider that the universal set K of our fuzzy setsis
divided into octants (eight portions of K). A fuzzy set shape can now be associated with
aparticular octant aswell aswith somewidth stretching over anumber of octants. If we
have eight possible fuzzy set shapes we only need 3 bits of information to express the
shape, plus3 bitstoposition it in an octant, and finally 2 extrabits can specify 4 possible
widths for stretching the shape over K. Thisway, afuzzy set can be specified by only 8
bits: 1 byte. Likewisefor thefuzzy operationsand parenthesis. 8 different operationsare
possible (3 hits). If we specify that an operation will carry with it a left or a right
parenthesis one fourth of the time, we need 2 bits for each parenthesis (4 bits). With an
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isindependent of the size of a particular physical simulation, that is, of the number of
physical characteristics of our artificial organisms. Whatever the number of these
characteristics, whatever the cardinality of K, the search space of the GA will be the
same, namely, the one defined by the 128 bit long strings coding (through f ) into fuzzy
set strings. Nevertheless, and naturally, the size of K isrelevant for other aspects of the
simulation external tothe GA. A larger K, will mean that the definition of an organism
(by an evidence set) will require afiner tuning of the composing fuzzy set string, which
may takelonger for the GA to reach. In any case, the search spacewill remain constant,
only more el aborate searches will be required.

Sofar thefuzzy set strings have been shown to increase the uncertainty description
of asimulation, aswell asto allow for agood scaling management. But they possess yet
another important evolutionary advantage: abuffering mechanism for genetic mutation.
Michael Conrad [1990] has devel oped the nation of genetic buffering as an important
requirement for evolvability. Though mutation is required for evolution, it is also
important that certain shapes may beresilient to changeswhich may potentially destroy
an important physical functionality. As discussed above, the fuzzy set strings will be
parsed according to its parenthesis. Consider the following parsing situation:

Fie Faw (R . FQ FBIJ' Fie B

all the fuzzy sets and operations to the right of the unmatched left parenthesis are
discarded. This means that any bit to the left of the second fuzzy set is free to mutate
without any effect on the final organism, except those few bits which may cause a
matching parenthesisto occur to the left of F,

Asafinal note, crossover was not considered in thismodel precisely to not disrupt
this kind of genetic buffering. Also, since eventualy this kind of buffering is




transcended, usually with adramatic change of form (a string with two functional fuzzy
sets can suddenly become a string with, say, eight functional fuzzy sets), crossover
seems to be unnecessary as a source of more variety.

7. Final Remarks

The most important characteristic of all the mechanisms hereintroduced isrelated
to a conflict between introducing more variety and constraining, or buffering, this
variety. Contextual editing allowsfor avariety, acloud, of solution alternativesto effect
the genetic search, however, this variety of alternatives is not allowed independent
evolution and is constrained to an original symbolic description (which can be editedin
different ways) ultimately reproduced. On ancther level, the uncertain fuzzy set strings,
though introducing a large amount of variety in their parsing and uncertainty folding,
also observe the kind of genetic buffering described earlier. 1t is believed that the right
amounts of variety and constraint lie at the core of evolvability [8,9]. Only the
implementation and testing of the proposed model will tell if it hasthe right amount of
both. In addition, the inclusion of context in the genetic algorithm, or the limited
evolution of asemantic rel ationship between editing mechanismsand contexts (thetype
2 symbols in a semiotic relation), opens the way for the study of the emergence of
developmental cycles triggered by contextual constraints.
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