
An Empirical Study on Detecting and Fixing Buffer
Overflow Bugs

Tao Ye∗, Lingming Zhang†, Linzhang Wang∗, Xuandong Li∗
∗State Key Laboratory of Novel Software Technology, Nanjing University, 210023, China

∗Jiangsu Novel Software Technology and Industrialization, Nanjing 210023, China

yt@seg.nju.edu.cn, lzwang@nju.edu.cn, lxd@nju.edu.cn
†Department of Computer Science, University of Texas at Dallas, 75080, USA

lingming.zhang@utdallas.edu

Abstract—Buffer overflow is one of the most common types of
software security vulnerabilities. Although researchers have pro-
posed various static and dynamic techniques for buffer overflow
detection, buffer overflow attacks against both legacy and newly-
deployed software systems are still quite prevalent. Compared
with dynamic detection techniques, static techniques are more
systematic and scalable. However, there are few studies on the
effectiveness of state-of-the-art static buffer overflow detection
techniques. In this paper, we perform an in-depth quantitative
and qualitative study on static buffer overflow detection. More
specifically, we obtain both the buggy and fixed versions of
100 buffer overflow bugs from 63 real-world projects totalling
28 MLoC (Millions of Lines of Code) based on the reports in
Common Vulnerabilities and Exposures (CVE). Then, quanti-
tatively, we apply Fortify, Checkmarx, and Splint to all
the buggy versions to investigate their false negatives, and also
apply them to all the fixed versions to investigate their false
positives. We also qualitatively investigate the causes for the false-
negatives and false-positives of studied techniques to guide the
design and implementation of more advanced buffer overflow
detection techniques. Finally, we also categorized the patterns of
manual buffer overflow repair actions to guide automated repair
techniques for buffer overflow. The experiment data is available
at http://bo-study.github.io/Buffer-Overflow-Cases/.

I. INTRODUCTION

In an unmanaged language such as C/C++, programmers
need to explicitly and manually deal with memory manipula-
tions. Inappropriate memory manipulation, mistaken assump-
tions about the size or makeup of a piece of data, and misuse of
API may result in violation of a programmer’s assumption dur-
ing the runtime, and can easily lead to security vulnerabilities.
Buffer overflow is one of the security vulnerabilities that are
caused by missing input validation or bounds checking before
memory manipulation or API calling, and can easily overwrite
the allocated bounds of the buffers they operate upon.

Buffer overflow has become one of the best known
types of software security vulnerabilities. Although researchers
have proposed various techniques for buffer overflow detec-
tion, buffer overflow attacks against both legacy and newly-
deployed software systems are still quite prevalent. According
to the statistics by Common Vulnerabilities and Exposures
(CVE) [6], buffer overflow accounts for 14.6% of all software
vulnerabilities since 1999. With Code Execution for 31.4%
and Denial of Service for 21.5%, buffer overflow is now the
third most popular type of vulnerabilities. Software containing
buffer overflow bugs can cause system crash, denial of service,
or loss of control to external attackers, leading to disastrous
consequences.

Currently, there are two general approaches to identifying
buffer overflow vulnerabilities: static program analysis [1], [2],
[8], [18], [20], [21], [23]–[27], [29], [31], [32] and dynamic
testing [5], [12], [14], [19], [30]. The dynamic testing approach
inserts special code into software so that buffer overflow
occurrences can be detected and properly processed such as
terminating software execution. The key advantage of such
schemes is that they rarely have false positives because they
have software execution information. The key limitation of
such schemes is that they usually incur an excessive amount
of performance overhead because the inserted code needs to
be executed for each buffer operation and function call.

The static program analysis approach scans software source
code to discover the code segments that are possibly vulnerable
to buffer overflow attacks. Each vulnerability warning needs
to be manually inspected to check whether each warning is
indeed a true vulnerability. The key advantage of such schemes
is that buffer overflow vulnerabilities can be discovered and
fixed before software deployment. The key limitation of such
existing schemes is that the reported buffer overflow vulner-
abilities contain too many false positives fundamentally due
to the lack of software execution information and each false
positive wastes a huge amount of human effort on manual
source code inspection.

Although, several studies have been conducted on appli-
cation security tools [7], [11], [16]. To date, there are few
studies on the effectiveness and efficiency of state-of-the-art
static buffer overflow detection techniques. In this paper, we
perform an in-depth quantitative and qualitative study on static
buffer overflow detection. More specifically, we obtain both the
buggy and fixed versions of 100 buffer overflow bugs from 63
real-world projects according to the buffer overflow reports
in CVE. Then, quantitatively, we apply Checkmarx [3],
Fortify [10], and Splint [22] to all the buggy versions
to investigate their false negatives, and also apply them to
all the fixed versions to investigate their false positives. We
selected those three tools because of the following reasons.
First, according to Gartner Group report [11], Fortify and
Checkmarx are leading commercial products in application
security market. Second, Splint is one of the first open-
source tools that concern safety issues in C and is easy to
get started with. Therefore, it is also widely used for detecting
buffer overflow bugs. We also qualitatively investigate the root
reasons for the false-negatives and false-positives of studied
techniques to guide the design and implementation of more
advanced buffer overflow detection techniques. Finally, we

2016 IEEE International Conference on Software Testing, Verification and Validation

978-1-5090-1827-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ICST.2016.21

91

also categorized the manual repair patterns of buffer overflow
repairs to guide both the manual and automated repair for
buffer overflow.

In summary, this paper makes the following contributions:

• A quantitative study of the state-of-art static tech-
niques for buffer overflow detection on 100 real-world
bugs from 63 real-world projects totalling 28 Million
LoC.

• A qualitative analysis of the false-positives and false-
negatives of state-of-the-art static buffer overflow de-
tection techniques, which can guide the design and
implementation of more advanced buffer overflow
detection techniques.

• A categorization on the fix patterns of buffer overflow
bugs to guide both manual and automated buffer
overflow repair techniques.

II. STUDIED TECHNIQUES

In this section, we explain the technical details about the
techniques that we are going to study. In our study, we intend
to study the static analysis tools’ capability for detecting buffer
overflow vulnerabilities. Our criteria of selecting tools are
working on source code, claimed effective in detecting buffer
overflow vulnerabilities, and static analysis techniques.

In industry, static analysis technique for buffer overflow
vulnerabilities is widely exploited. Commercial static analysis
tools that can detect buffer overflow include, for example, HP
Fortify [10], Checkmarx [3], Klocwork [15], and Coverity [4].
Also, there are some open source tools for buffer overflow
detection, i.e., Splint [22]. These tools have been widely used
to help real-world developers and security engineers.

We choose HP Fortify and Checkmarx as our studied
commercial tools. Splint is selected as a studied open source
tool since it is specifically designed to detect buffer overflow
bugs and open-source. In the following subsections, we briefly
introduce the techniques employed in these tools.

A. Fortify
HP Fortify [10] offers an extensive application secu-

rity solution. It combines comprehensive static analysis and
secure rule management across a multitude of languages and
frameworks that allow customers to deploy and get started with
quickly. It could be used to find and fix security vulnerabilities
and quality problems. It sorts, filters, prioritizes and categorizes
the issues found in various forms for the ease of review and
analysis.

Fortify maintains Fortify Secure Coding Rulepacks
which could be extended by user customization. It includes
more that 600 secure programming rules and vulnerabilities. It
supports more that 20 programming languages, such as ABAP,
ASP.NET, C, C++, C# , Classic ASP, COBOL, ColdFusion,
Flex/ActionScript, Java, JavaScript/AJAX, JSP, Objective C,
PL/SQL, PHP, Python, T-SQL, VB.NET, VBScript, VB6, and
XML/HTML. It supports almost all mainstream platforms, e.g.,
Windows, Linux, Unix, HP-Unix, AIX, Mac OS, and Sun
Solaris.

For detecting a buffer overflow, Fortify static analysis
engine works as follows. First, source code under study
is compiled. It is prerequisite for further analysis. Second,
Fortify conducts data flow analysis by using global, inter-
procedural taint propagation analysis to detect the flow of data
between a source (site of user input) and a sink (dangerous

function call or memory manipulation operation). For example,
the data flow analyzer identifies whether a user-controlled input
string of unbounded length is being copied into a statically
sized buffer. It reports potential vulnerabilities that involve
tainted data (user-controlled input) put to potentially dangerous
use. Third, Fortify conducts control flow analysis and
detects potentially dangerous sequences of operations. By
analyzing possible execution paths in a program, the control
flow analyzer determines whether a set of operations are
executed in a certain order. For example, buffer creation, buffer
manipulation, and possible buffer overflow. Forth, Fortify
conducts semantic analysis to detect potentially dangerous
uses of functions and APIs at the intra-procedural level. In
summary, Fortify reports buffer overflow vulnerabilities
that involve writing or reading more data than a buffer can
hold by conducting data flow analysis, control flow analysis,
and semantic analysis.

B. Checkmarx
Checkmarx [3] is also a static analysis tool working on

source code. Checkmarx has strong static analysis features
around source code scanning, supports various languages and
frameworks, and enables static analysis rule customization.
It identifies hundreds of security vulnerabilities in the most
prevalent programming languages. Checkmarx static code
analysis engine offers comprehensive insight into vulnerable
patterns and coding flaws. Thus, it can report violations by
exposing the applications code properties and code flaws.

For detecting a buffer overflow, Checkmarx static code
analysis engine scans un-compiled code, un-built code, incom-
plete code, or even code fragments as well as the entire code
base. It creates a meticulous model of how the application
interacts with users and other data. It assesses requests and
tracks the data and logic flows within the application. It
identifies buffer overflow vulnerabilities quickly regarding to
the static analysis rules.

C. Splint
Splint [8], [17] extends the LCLint to identify the

likely buffer overflow vulnerabilities via a static analysis
of C program source code. Splint employs annotations
to specify the programmer assumptions and intents about
functions, variables, parameters and types in the source code
and standard libraries. The annotations are stylized comments,
which are treated as regular C comments by the compiler while
recognized as semantic comments by Splint. Splint can
exploit the semantic comments so as to enable local checking
of inter-procedural properties during the static analysis. The
approach is neither sound nor complete. However, it focuses on
lightweight static checking strategies which can achieve good
performance and scalability. It can also handle loops with a
heuristic manner.

For buffer overflow vulnerability, Splint models buffer
and annotates buffer sizes in the standard library, such as
strcpy. During the static analysis, it checks the buffer access to
generate precondition and postcondition constraints regarding
to buffer bounds. It uses postconditions from previous state-
ments to resolve preconditions. A constraint solver is used
to solve the bounds constraints. When the constraints are
unsolvable, which means it cannot resolve the preconditions
at the beginning of a function, or satisfy the postconditions at
the end, a warning is reported.

92

TABLE I. SUBJECT SYSTEMS

Subjects Description Size (LoC) Language # BO Bugs(# Versions)

maraDNS DNS server 81K C 1(1)
libhx C library providing data structures 8K C 1(1)
curl tool and library for transferring date 170K C 1(1)
sgminer GPU miner 51K C 1(1)
libpng PNG reference library 54K C 1(1)
ettercap comprehensive suite for man in the middle attacks 77K C 2(2)
ffmpeg program handling multimedia data 560K C 6(3)
quagga network routing software suite 240K C 1(1)
ntp network time protocol 266K C 2(1)
libupnp UPnP Development Kit 62K C 3(1)
gnustep-base software package implementing the API of OpenStep Foundation Kit 1020K C 1(1)
libwpd library to help process WordPerfect documents 34K C++ 1(1)
libcgroup library abstracting the control group file system 18K C 1(1)
psi instant messaging application 245K C++ 1(1)
cgminer miner for bitcoin 91K C 1(1)
clamav antivirus engine 878K C 1(1)
php general-purpose scripting language 1100K C 1(1)
Amaya Web Browser web editor 580K C 2(1)
inspircd IRC server 74K C++ 1(1)
bc numeric processing language 14K C 1(1)
tiff support for Tag Image File Format 111K C 1(1)
sendmail internetwork email routing facility 134K C 5(4)
gzip data compression program 9K C 1(1)
wireshark packet analyzer 2748K C 3(3)
xmp portable command-line module player 62K C 2(1)
exim message transfer agent 142K C 1(1)
git version control system 146K C 1(1)
libxfont framework providing the core of X11 font system 26K C 2(2)
csound sound and music computing system 296K C 1(1)
freeradius RADIUS server 147K C 1(1)
libmms library for downloading media files 5K C 1(1)
poppler PDF rendering library 236K C++ 2(2)
latd LAT terminal daemon 12K C++ 1(1)
pidgin chat client 465K C 1(1)
freetype library to render fonts 199K C 6(2)
xvid video codec library 51K C 1(1)
binutils collection of binary tools 1021K C 2(1)
libproxy automatic proxy configuration management 5K C++ 1(1)
gimp GNU Image Manipulation Program 1091K C 2(2)
icu library providing unicode and globalization support 754K C 1(1)
ghostscript interpreter for the PostScript language and for PDF 1063K C 3(2)
opensc tools and libraries for smart cards 116K C 1(1)
libflac reference encoder and decoder for FLAC 92K C 1(1)
openssl toolkit implementing TLS and SSL protocols 536K C 1(1)
perl programming language 773K C 1(1)
spamdyke filter for monitoring and intercepting SMTP connections 34K C 1(1)
dhcp protocol providing addresses to IP devices 123K C 1(1)
mapserver platform for publishing data and applications to the web 276K C 4(2)
libzip library for handling zip archives 10K C 1(1)
man command used to display user manual 10K C 3(2)
libthai Thai language support routines 6K C 1(1)
graphicsMagick image processing 414K C 1(1)
nbd Network Block Device 3K C 1(1)
vlc media player multimedia player 616K C 1(1)
wu-ftpd ftp daemon 20K C 1(1)
squid caching and forwarding web proxy 287K C++ 2(2)
udisks D-Bus interfaces to manipulate storage devices 92K C 1(1)
miniupnpd software supporting UPnP IGD specifications 9K C 1(1)
libmodplug cross-platform MOD decoding library 30K C++ 1(1)
openconnect SSL VPN client 7K C 1(1)
bind program implementing DNS protocols 142K C 2(2)
sblim-sfcb project enhancing the manageability of GNU/Linux systems 128K C 1(1)
openjpeg JPEG 2000 codec 175K C 3(2)

Total 28M 100(81)

III. EMPIRICAL STUDY

A. Research Questions
This study aims to investigate the following research ques-

tions:

• RQ1: How do state-of-the-art static buffer over-
flow detection techniques perform in terms of false-
negatives and false-positives?

• RQ2: How do state-of-the-art static buffer overflow
detection techniques perform in terms of efficiency?

• RQ3: Which types of API or code constructs are
closely related to real-world buffer overflow bugs?

• RQ4: How do developers manually fix real-world
buffer overflow bugs?

In RQ1 and RQ2, we investigate the effectiveness and
efficiency of various buffer overflow detection techniques. In
RQ3, we study the distribution of APIs or code constructs
related to buffer overflow. In RQ4, we study how developers
fix buffer overflow bugs to guide automated buffer overflow
repair in the future.

93

B. Subject Systems
To enable objective selection of the buffer overflow bugs,

we randomly selected bugs within the buffer overflow category
from the CVE website. For each selected bug, we discard it
if the corresponding project is not open-source. We continue
this process until we find 100 qualified bugs. For each bug, we
obtain both the buggy version and repaired version for analysis
and inspection. Table I shows the detailed information for
the selected subject systems and buffer overflow bugs. In the
table, Column “Subjects” lists all the projects that we selected
for inspecting buffer overflow bugs; Column “# BO Bugs(#
Versions)” list the number of buffer overflow bugs selected
from each project and the number of buggy versions. In total,
we inspected 100 buffer overflow bugs from the version history
of 63 real-world projects, totalling 28 MLoC, ranging from
CVE-1999 to CVE-2014.

C. Experimental Design
We show our experimental design as follows.
1) Independent Variables: We used the following indepen-

dent variables (IVs):
IV1: Different Buffer Overflow Detection Techniques. We
consider the following 3 widely used buffer overflow detection
tools: (1) Checkmarx, (2) Fortify, and (3) Splint.
IV2: Different Buffer Overflow Bugs from Various
Projects. We consider 100 different real-world buffer over-
flow bugs to evaluate the performance of different detection
techniques.

2) Dependent Variable: We considered the following de-
pendent variables (DVs):
DV1: False Negatives. We apply all the studied techniques to
the buggy versions with buffer overflow bugs to check the set
of bugs that are missed by each technique.
DV2: False Positives. We apply all the studied techniques to
the fixed versions of buffer overflow bugs to check the set of
fixed locations that are mistakenly identified as bugs by each
technique.
DV3: Time. We also trace the analysis time for all the studied
techniques to evaluate their efficiency.

D. Experimental Setup
For each buffer overflow bug, the following steps are

performed:
First, we apply all the studied techniques to analyze the

corresponding faulty version to find the bugs that cannot be
detected for each technique, i.e., false-negatives. In addition,
we record the analysis time for each tool.

Second, we apply all the studied techniques to analyze the
corresponding fixed version to find the fixed bugs that are still
identified as bugs, i.e., false-positives. In addition, we record
the analysis time for each tool.

Finally, we perform qualitative analysis on each bug: (1) we
record the detailed bug information (e.g., the API involved);
(2) we manually analyze the reason for the false-positives
and false-negatives of the studied tools; (3) we categorize the
manual fix pattern for the bug.

We repeat the steps for all the 100 studied bugs. All our
Fortify and Splint experiments were performed on a
server with Intel Xeon CPU E5-2603 (1.80GHz) and 128GB
RAM on Ubuntu Linux 12.04 and Checkmarx on a server
with Intel Xeon CPU E5-2650 (2.30GHz) and 384GB RAM
on Windows Server 2008. We use the second server because
our Checkmarx’s license is tied to it.

E. Result Analysis
In this section, we present the detailed results for our

empirical study.
1) RQ1: Effectiveness for Buffer Overflow Detection: We

applied Checkmarx, Fortify and Splint to all buggy
and fixed versions to investigate their false negatives and false
positives. Note that not all the 100 bugs can be success-
fully analyzed by the three studied techniques. For example,
Fortify needs to compile the source code in order to do
the analysis. Also, we set a 3-hour time limit because when
the source code is too large, it may take hours to do the
analysis. We treat this as not being able to reveal any bug.
Both Fortify and Checkmarx face this problem. For any
technique, if the analysis time reaches the 3-hour timeout
limit, we treat the tool as successfully applied to the case,
but failing to report any bug. Checkmarx doesn’t require
the code compilation. Instead, it scans the source code and
directly applies static analysis rules on the code files (it works
for incomplete code). Therefore, it can be applied to all cases.
When using Fortify, it can’t be applied if the program
can’t be compiled. When using Splint, we met various
preprocessing and parsing errors, and also cannot successfully
apply it for all cases. Finally, Fortify, Checkmarx, and
Splint were successfully applied to 60, 100 and 23 cases,
respectively.

Table II shows the overall repair results. In the table,
Column “Techs” list all the applied techniques; Column “#
Identified Bugs” lists the number of bugs found by each tech-
nique for the buggy version before repair; Column “FN Rate”
presents the false negative rates for the studied techniques,
i.e., the ratio of the number of bugs which cannot be found
by the studied techniques to the number of cases to which the
technique can be applied successfully; Column “# Identified
Fixes” presents the number of buffer overflow bugs identified
as fixed by the studied techniques on the repaired version; Col-
umn “FP Rate” presents the false positive rates for the studied
techniques, i.e., the ratio of the number of the fixed bugs that
are still identified as bugs to the number of all the correspond-
ing buggy versions detected by the studied techniques. Note
that the first three rows represent Fortify, Checkmarx,
and Splint, respectively. In addition, in practice, the user
can use any combination of the existing techniques together to
detect potential buffer overflow bugs. Therefore, we further
investigate the effectiveness of applying two or all of the
three studied techniques together, which is shown in the last
four rows of the table. For example, Fortify+Checkmarx
denotes that we treat Fortify and Checkmarx as a whole
– the combined technique reports a bug when any of the two
techniques reports a bug, while treating the project under test
as bug free if none of the two techniques can detect a bug.
From the table, we have the following observations:

First, the Checkmarx technique is able to find the most
buffer overflow bugs, followed by the Fortify technique.
In total, the Checkmarx technique is able to find 32 bugs,
while the Fortify and Splint techniques are only able
to find 19 and 10 bugs, respectively. We think the reason
why Checkmarx performs the best is that (1) Checkmarx
does not require compiled code, and thus can work for more
case; and (2) its powerful static analysis engine includes
comprehensive buffer overflow detection rules. The reason why
Splint performs the worst is that it can only be applied to a
small ratio of cases which do not have preprocessing errors or

94

TABLE II. OVERALL REPAIR RESULTS

Techs # Identified Bugs FN Rate # Identified Fixes FP Rate

Fortify 19 68.3% (41/60) 13 31.6% (6/19)
Checkmarx 32 68.0% (68/100) 8 75.0% (24/32)
Splint 10 56.5% (13/23) 0 100.0% (10/10)
Fortify+Checkmarx 42 58.0% (58/100) 14 66.7% (28/42)
Checkmarx+Splint 39 61.0% (61/100) 7 82.1% (32/39)
Fortify+Splint 26 59.4% (38/64) 13 50.0% (13/26)
All 47 53.0% (53/100) 13 72.3% (34/47)

parse errors. Furthermore, the false negative rates for all the
studied techniques are close, e.g., Checkmarx and Fortify
share similar false negative rates, while Splint has a slightly
lower false negative rate. The reason is that Splint is a
lightweight technique that simply report almost all the possible
bugs and may be imprecise.

Second, in terms of false positive rates, Fortify tends
to perform the best, while Splint performs the worst. For
example, for all the 19 bugs identified by Fortify for the
buggy versions, it successfully reported 13 as repaired. That is,
only 31.6% (i.e., 6 out of the 19) of the bug-free cases are mis-
takenly reported as buggy (false positives). On the contrary, for
all the 10 bugs identified by Splint for the buggy versions,
it was not able to identify any fix, i.e., the false positive rate is
100% for Splint. We think the reason is that Splint trades
off precision for scalability. According to [16], when Splint
deals with complex situation (increased complexity of index,
address or length, more complex containers and flow control
constructs), the loss of precision leads to increased false alarms
(false positive rate). On the other hand, the compilation gives
Fortify much information to identify the fix.

Third, the combination of different techniques can bring
non-trivial benefits in terms of false negative rates. For ex-
ample, a single tool can at most identify 32 bugs (i.e.,
Checkmarx); when additionally using Fortify, we can
identify 10 more bugs; when further using Splint, we
can identify 47 bugs, which is nearly half of all studied
bug! Of course, lower false negative rates may incur higher
false positive rates. For example, the false positive rate is
31.6% when using Fortify alone, while it becomes 72.3%
when using all the three techniques together. However, when
finding more bugs (low false negative rate) has higher priority,
combining tools will meet users’ requirements.

In summary, we find Checkmarx to be the tool that can
detect the most overflow bugs among the three tools. Also,
we find that Splint performs the best in terms of false
negative rate, while Fortify performs the best in terms of
the false positive rate. In practice, we encourage the users to
use all the three tools together to achieve ideal performance
in terms of false negative rates, and use the Fortify tool
alone to achieve ideal performance in terms of false positive
rates.

2) RQ2: Efficiency for Buffer Overflow Detection: We
further record the analysis time of the studied techniques to
compare their efficiency. As we showed in Section III-E1, each
technique has some limitation and can only be successfully
applied to a subset of the studied bugs. To enable a fair
comparison, we used all the 15 bugs where all the three
techniques can successfully apply. To further compare the
analysis time of Fortify and Checkmarx, we listed the
remaining 32 bugs where both Fortify and Checkmarx
can apply. The detailed results are shown in Table III. In the

table, Column “Subjects” lists the corresponding subject and
version information for the 47(15+32) bugs; Columns CVE ID
shows the CVE ID of this bug; Columns 3 and 4 present the
analysis time by Fortify on the buggy and fixed versions for
each bug, respectively. Similarly, Columns 5 and 6 present the
corresponding analysis time for Checkmarx, while Columns
7 and 8 present the corresponding analysis time for Splint.
From the table, we have the following observations:

First, Fortify needs to compile the source code and
it gets much more information than Checkmarx. So it is
reasonable to predict that Fortify needs longer time than
Checkmarx to analyze the program. However, from the
table, we can see that this hypothesis does not always hold.
Actually, Checkmarx consumes more time than Fortify
for 32 of the 47 bugs when applied to the buggy versions.
The total analysis time for buggy versions is 46344 seconds
for Checkmarx, while only 31591 seconds for Fortify.
Furthermore, in some cases, Checkmarx’s analysis time is
about 7 times longer than Fortify. The reason behind this
finding is also the compilation process. Not all the C files
in the source code are compiled. Sometimes the source code
contains some C files for other platform or testing. When
we configure and compile the source code, these C files are
omitted. Therefore, Fortify does not analyze those files.
However, Checkmarx doesn’t compile the source code, and
it scans all files in it. So Checkmarx scans much more files
than Fortify in some cases. This is the main reason that
why in these cases Checkmarx’s analysis time is 7X longer
than Fortify.

Second, Splint runs much faster than Fortify and
Checkmarx on all these 15 bugs. While it takes minutes to
hours to analyze a bug using Fortify and Checkmarx, it
only takes seconds using Splint. There are several potential
reasons: (1) Splint uses lightweight static checking strate-
gies which is neither sound nor complete, and it trades off
precision for scalability; (2) When applied to a whole project,
Splint skips a large number of files when it cannot process
them due to the preprocessing and parsing errors.

In summary, the Checkmarx technique tends to be the
most costly technique to apply, followed by the Fortify
technique.

3) RQ3: Buffer Overflow Bug Distribution: Each buffer
overflow bug is related to some specific APIs or code con-
structs. For example, it can be an array crossing its boundary,
or the memcpy API with a target buffer of insufficient size.
Understanding those APIs or code constructs is essential for
detection and understanding of buffer overflow bugs. There-
fore, we manually inspected each of the 100 studied bugs
to identify their related APIs or code constructs. The first
two columns in Table IV presents the distribution of APIs or
code constructs related to buffer overflow bugs. In the table,
Column ”API” lists all the APIs or code constructs related

95

TABLE III. ANALYSIS TIME STATISTICS

Subjects CVE ID Fortify Checkmarx Splint
Buggy Repaired Buggy Repaired Buggy Repaired

bc-1.06 N/A 134s 89s 91s 91s 2s 2s
gzip-1.2.4 CVE-2001-1228 79s 82s 60s 92s 3s 4s
squid-2.4.STABLE6 CVE-2002-0713 462s 460s 740s 741s 38s 39s
openjpeg-1.5.0 CVE-2012-3535 220s 221s 1417s 1289s 26s 25s
openjpeg-1.5.0 CVE-2012-3358 220s 221s 1417s 1289s 26s 25s
openjpeg-1.4.1 CVE-2012-1499 236s 220s 745s 1417s 16s 17s
openssl-1.0.1 CVE-2012-2110 4060s 3900s 5726s 6000s 371s 380s
libpng-1.5.9 CVE-2011-3048 111s 109s 273s 273s 9s 9s
xmp-2.5.1 CVE-2007-6731 963s 950s 630s 595s 19s 17s
xmp-2.5.1 CVE-2007-6732 963s 950s 630s 595s 19s 17s
maraDNS-1.4.05 CVE-2011-0520 371s 372s 532s 532s 17s 17s
libthai-0.1.12 CVE-2009-4012 52s 50s 91s 91s 1s 1s
libhx-3.5 CVE-2010-2947 80s 80s 91s 91s 3s 3s
udisks-2.1.2 CVE-2014-0004 298s 300s 1412s 1533s 50s 55s
libcgroup-0.37 CVE-2011-1006 132s 151s 157s 212s 3s 3s
sendmail-8.12.7 CVE-2002-1337 795s 787s 615s 584s – –
sendmail-8.11.5 CVE-2001-0653 787s 779s 405s 406s – –
sendmail-8.12.4 CVE-2002-0906 707s 714s 585s 584s – –
sendmail-8.12.7 N/A 795s 787s 615s 584s – –
man-1.5h1 CVE-2001-0641 230s 230s 144s 145s – –
man-1.5i2 CVE-2001-1028(1) 230s 238s 145s 144s – –
man-1.5i2 CVE-2001-1028(2) 230s 238s 145s 144s – –
freetype-2.4.8 CVE-2012-1126 708s 748s 1270s 1270s – –
freetype-2.4.8 CVE-2012-1132 708s 748s 1270s 1270s – –
freetype-2.4.8 CVE-2012-1134 708s 748s 1270s 1270s – –
freetype-2.4.8 CVE-2012-1135 708s 748s 1270s 1270s – –
freetype-2.4.8 CVE-2012-1140 708s 748s 1270s 1270s – –
inspircd-2.0.5 CVE-2012-1836 501s 508s 610s 612s – –
freetype-2.3.12 CVE-2010-3311 954s 716s 1241s 1241s – –
sblim-sfcb-1.3.7 CVE-2010-1937 945s 964s 1161s 1191s – –
git-1.7.1 CVE-2010-2542 956s 975s 1177s 1273s – –
nbd-2.9.19 CVE-2011-0530 67s 63s 60s 60s – –
libupnp-1.6.17 CVE-2012-5958 298s 295s 310s 310s – –
libupnp-1.6.17 CVE-2012-5959 298s 295s 310s 310s – –
libupnp-1.6.17 CVE-2012-5960 298s 295s 310s 310s – –
latd-1.30 CVE-2013-0251 111s 115s 123s 123s – –
cgminer-4.3.4 CVE-2014-4501 790s 790s 1127s 1188s – –
sgminer-4.2.1 CVE-2014-4501 502s 522s 860s 765s – –
libxfont-1.4.6 CVE-2013-6462 312s 313s 249s 218s – –
freeradius-3.0.1 CVE-2014-2015 804s 1171s 1167s 1362s – –
libmms-0.6.3 CVE-2014-2892 74s 75s 60s 60s – –
libflac-1.3.0 CVE-2014-8962 1281s 1303s 1533s 1098s – –
tiff-4.0.3 CVE-2013-1961 612s 609s 920s 805s – –
squid-3.3.6 CVE-2013-4115 1777s 1735s 3289s 2996s – –
poppler-0.24.1 CVE-2013-4473 1726s 1711s 4755s 5678s – –
poppler-0.22.0 CVE-2013-1788 1718s 1695s 3630s 3501s – –
libmodplug-0.8.8.1 CVE-2011-1574 2468s 2470s 436s 369s – –

Average 672.15s 681.23s 986.04s 976.00s 40.20s 40.93s

TABLE IV. API RELATED DETECTING RESULTS

API # Instances Fortify Checkmarx Splint
array 31 4/21 2/31 8/12
memcpy 15 0/5 9/15 0/1
sprintf 13 6/7 7/13 1/2
pointer 7 0/4 0/7 0/1
strcpy 6 4/4 3/6 0/1
strncpy 5 1/4 1/5 0/0
malloc 4 1/2 2/4 0/1
sscanf 4 1/3 3/4 0/2
memset 3 1/2 1/3 1/1
strcat 2 0/1 2/2 0/0
memmove 1 0/1 0/1 0/0
strncmp 1 0/1 0/1 0/0
others 8 1/5 2/8 0/2

Total 100 19/60 32/100 10/23

to buffer overflow bugs; Column ”# Instance” presents the
number of bugs related to a specified API. From these two
columns, we observe that array, memcpy, and sprintf account
for 31%, 15%, and 13% of buffer overflow bugs, and are the
top three APIs or code constructs related to buffer overflow
bugs. On the contrary, strcat, memmove, and strncmp are the
three APIs with least number of buffer overflow bugs. Array is
almost used in every C program, so it comes the first. Memory

manipulation and string operation are also very common in C
program. Memcpy is widely used in memory manipulation and
sprintf is the first choice when it comes to string operation. So
memcpy and sprintf comes the second and third.

This distribution provides valuable practical guidance in
various aspects: (1) it reminds programmers to be careful when
using those error-prone APIs or code constructs; (2) the static
analysis techniques can take advantage of such distribution
and prioritize the checking points by mainly focusing on the
error-prone APIs or code constructs when the analysis time is
limited or the tools are too costly.

We also found out the relation between APIs and identified
bugs for each tool, which is shown in the last three columns of
Table IV. These three columns show the number of identified
bugs for each tool on some specified API and the number of
bugs the tool can apply to. For example, 4/21 in the table
means when the API is array, Fortify can be applied to 21
bugs and identify 4 of them.

We notice that although Splint can only be applied to 12
bugs when the API is array, it identifies most buffer overflow
bugs, 8 out of 12. For Fortify and Checkmarx, it is only
4/21 and 2/31, respectively. We think the reason behind this

96

 0

 10

 20

 30

 40

 50

Add boundary check

Use larger buffer

API substitution

Fix boundary check

Add integer check

Add string end

Malloc check

String reformat

Use unsigned value

Limit index range

Use concrete length

Others

��

�� ��
�

� � � � � � �
�

Fig. 1. Fix strategies for buffer overflow bugs

is that in real-world projects, the index of an array tends
to be complex and array is almost used in every function.
For commercial tools like Fortify and Checkmarx, they
need stronger evidence to report an array as a buffer overflow,
because otherwise there will be too many false alarms. On
the other hand, Splint uses a constrain solver to solve the
bounds constrain. If the constrain is unsolvable, which is a
common scene in real-world programs, it reports a warning.

For Fortify and Checkmarx, although they do not
work well on array, it is a different story when it comes
to APIs like sprintf and strcpy. For Fortify, it is 6/7 on
sprintf and 4/4 on strcpy. Fortify almost finds all of them.
For Checkmarx it is 7/13 and 3/6, which is also acceptable.
We think the reason is that sprintf and strcpy are both unsafe
API. The safer versions are snprintf and strncpy, which use a
parameter n to control how many bits should be copied. When
Fortify and Checkmarx find these unsafe APIs, they tend
to report a warning, because these APIs are not widely used
as array across the project and they are error-prone. The row
for strncpy in the table, which is the safer version of strcpy,
is 1/4 for Fortify and 1/5 for Checkmarx. This supports
our finding because they find fewer bugs on safe API.

In summary, array, memcpy and sprintf are the top three
APIs related to buffer overflow bugs. Splint works well
on array, where Fortify and Checkmarx need to improve
their performance. However, Fortify and Checkmarx
can find most bugs on unsafe APIs like sprintf and strcpy.

4) RQ4: Repair Strategy Categorization: In Section III-E3,
we studied the distribution of studied buffer overflow bugs,
which may help with the automated detection and understand-
ing of buffer overflow bugs. In this section, we further study
how the buffer overflow bugs are fixed by the developers. The
manual fix strategies can help with the automated or manual
fixing of buffer overflow bugs. The overall results are show
in Fig 1. In the figure, the horizonal axis presents the manual
strategies for fixing the buffer overflow bugs, the vertical axis
present the number of fixed bugs, and the gray bars presents the
number of buffer overflow bugs fixed by each strategy. From
the figure, we can find that almost a half of all the buffer
overflow bugs can be fixed by adding boundary checks. In
addition, using larger buffers and API substitution both account
for 10% of all bugs. We next present a detailed explanation
for all those common strategies used by the developers.

Add boundary check. Adding a boundary check before
a strcpy or other API can avoid the buffer overflow (e.g.,
Listing 1). This is the most widely used strategy for fixing the
studied buffer overflow bugs, indicating that missing boundary
checks can be the main reason for buffer overflow bugs.

Listing 1. Add boundary check

/*buggy version: gzip-1.2.4
file: gzip.c*/
1009 strcpy(ifname, iname);

/*fixed version: gzip-1.3.9
file: gzip.c*/
1055 if (sizeof ifname - 1 <= strlen(iname))
1056 goto name_too_long;
1057
1058 strcpy(ifname, iname);

Use larger buffer. Copying too many bytes to a buffer
leads to a buffer overflow, and using a larger buffer can fix
this to some degree. For example, as shown in Listing 2,
increasing the size of the overflowed buffer can potentially
fix the corresponding bug.

Listing 2. Use larger buffer
/*buggy version: ffmpeg-0.7.11
file: libavcodec/kgv1dec.c*/
42 int offsets[7];

...
87 int odix = (code >> 10) & 7;

...
92 if (offsets[odix] < 0){

...
97 }

/*fixed version: ffmpeg-0.7.12
file: libavcodec/kgv1dec.c*/

49 int offsets[8];
...
98 int odix = (code >> 10) & 7;
...

103 if (offsets[odix] < 0){
...

108 }

API substitution. Substituting another safer API for the buggy
one is also widely used to fix buffer overflow bugs. For
example, as shown in Listing 3, sprintf can be substituted by
snprintf because snprintf has one more parameter ’MaxMs-
gLength’ which will limit the bytes written into msgBuffer.

Listing 3. API substitution
/*buggy version: Amaya Web Browser-11.0.1
file: amaya/Xml2thot.c*/
3297 if (val <= 0)
3298 {
3299 sprintf ((char *)msgBuffer, "Unknown attribute value

\"%s\"", (char *) attrValue);
...

3302 }

/*fixed version: Amaya Web Browser-11.2
file: amaya/Xml2thot.c*/
3312 if (val <= 0)
3313 {
3314 snprintf ((char *)msgBuffer, MaxMsgLength, "Unknown

attribute value \"%s\"", (char *) attrValue);
...

3317 }

Fix boundary check. Sometimes the programmer was aware
of the potential buffer overflow and added boundary check to
prevent this. However, the boundary check can be incorrect
or imprecise, e.g., off-by-one error. In this case, fixing the

97

boundary check can fix the corresponding bug as shown in
Listing 4.

Listing 4. Fix boundary check
/*buggy version: freetype-2.4.8
file: src/truetype/ttinterp.c*/
7522 if(...)
7523 {
7524 if (CUR.IP + 1 > CUR.codeSize)
7525 goto LErrorCodeOverflow;
7526
7527 CUR.length = 2 - CUR.length * CUR.code[CUR.IP + 1];
7528 }

/*fixed version: freetype-2.4.9
file: src/truetype/ttinterp.c*/
7545 if(...)
7546 {
7547 if (CUR.IP + 1 >= CUR.codeSize)
7548 goto LErrorCodeOverflow;
7549
7550 CUR.length = 2 - CUR.length * CUR.code[CUR.IP + 1];
7551 }

Add integer check. Integer overflow is a common cause of
buffer overflow, checking the involved integer can prevent this
issue. For example, as shown in Listing 5, the bug fix adds an
integer check to force the execution to terminate if the integer
can overflow.

Listing 5. Add integer check
/*buggy version: openssl-1.0.1
file: crypto/asn1/a_d2i_fp.c*/
172 if(!BUF_MEM_grow_clean(b,len+want)
173 {
174 ASN1err(ASN1_F_ASN1_D2I_READ_BIO,ERR_R_MALLOC_FAILURE

);
175 goto err;
176 }

/*fixed version: openssl-1.0.1a
file: crypto/asn1/a_d2i_fp.c*/
167 if(len + want < len || !BUF_MEM_grow_clean(b,len+want))
168 {
169 ASN1err(ASN1_F_ASN1_D2I_READ_BIO,ERR_R_MALLOC_FAILURE

);
170 goto err;
171 }

Add string end. All string should end with string end ’\0’.
Otherwise copying it may lead to a buffer overflow. Adding
string end to the end of the string can solve the problem (shown
in Listing 6).

Listing 6. Add string end
/*buggy version: latd-1.30
file: llogincircuit.cc*/
94 char error[1024];

...
96 sprintf(error, "llogin version %s does not match latd

version " VERSION, cmdbuf);

/*fixed version: latd-1.31
file: llogincircuit.cc*/

94 char error[1024];
...

97 if (len > 900)
98 len = 900;
99 cmdbuf[len] = ’\0’;
...

101 sprintf(error, "llogin version %s does not match latd
version " VERSION, cmdbuf);

Malloc check. The use of failed malloc may cause the
buffer overflow problem. Therefore, checking the correspond-
ing malloc parameter and return value can be used to avoid
buffer overflow bugs, as shown in Listing 7.

Listing 7. Malloc check
/*buggy version: ffmpeg-0.7.11
file: libavformat/nsvdec.c*/
311 p = strings = av_mallocz(strings_size + 1);
312 endp = strings + strings_size;
313 avio_read(pb, strings, strings_size);
314 while (p < endp) {

...
}

/*fixed version: ffmpeg-0.7.12
file: libavformat/nsvdec.c*/
311 p = strings = av_mallocz(strings_size + 1);
312 if (!p)
313 return AVERROR(ENOMEM);
314 endp = strings + strings_size;
315 avio_read(pb, strings, strings_size);
316 while (p < endp) {

...
}

String reformat. Formatting string can control how many
bytes are written to a buffer, e.g. changing from sscanf(a,”%s”,
buf) to sscanf(a,”%10s”, buf) can ensure that 10 bytes are
written to buf at most. Listing 8 presents an example bug fix.
In this example, the formatting string of sscanf is changed
from ”%d%d%s” to ”%d%d%ns”. Here, n is the value of
”sizeof(endbuf)-1”.

Listing 8. String reformat
/*buggy version: gimp-2.6.11
file: plug-ins/common/sphere-designer.c*/
1992 gchar endbuf[21*(G_ASCII_DTOSTR_BUF_SIZE + 1)];
1993 gchar *end = endbuf;

...
2029 if (sscanf (line, "%d %d %s", &t->majtype, &t->type,

end) != 3)
{
...

}

/*fixed version: gimp-2.6.12
file: plug-ins/common/sphere-designer.c*/
1992 gchar endbuf[21*(G_ASCII_DTOSTR_BUF_SIZE + 1)];
1993 gchar *end = endbuf;

...
1995 gchar fmt_str[16];

...
2020 snprintf (fmt_str, sizeof (fmt_str), "%%d %%d %%%lds",

sizeof (endbuf)-1);
...

2032 if (sscanf (line, fmt_str, &t->majtype, &t->type,
end) != 3)

{
...

}

Listing 9. Use unsigned value
/*buggy version: xmp-2.5.1
file: src/misc/oxm.c*/
52 int ilen;

...
79 for (i = 0; i < nins; i++){
80 ilen = read32l(f);
81 if (ilen > 263)
82 return -1;

...
}

/*fixed version: xmp-2.6.2
file: src/misc/oxm.c*/
51 uint32 ilen;

...
78 for (i = 0; i < nins; i++){
79 ilen = read32l(f);
80 if (ilen > 263)
81 return -1;

...
}

98

Use unsigned value. As shown in Listing 9, if a boundary
check is something like if(len > 256), and variable len is
an integer, then assigning -1 to len will bypass the boundary
check and cause a buffer overflow when len is used as a
parameter of a function call like memcpy. The reason is that
memcpy needs an unsigned parameter and will take value -
1 as a large positive integer. This leads to a potential buffer
overflow.

Limit index range. Limit the buffer index range can also
fix buffer overflow bugs. For example, as shown in Listing 10,
the MIN function is defined as MIN(a, b) = a < b?a : b,
and index = min(index,MAXIMUM) can be used limit
the value of index to be no greater than MAXIMUM so as to
avoid buffer overflow bugs.

Listing 10. Limit index range
/*buggy version: opensc-0.11.13
file: src/libopensc/card-acos5.c*/
143 memcpy(card->serialnr.value, apdu.resp, apdu.resplen);

/*fixed version: opensc-0.12.0
file: src/libopensc/card-acos5.c*/
141 memcpy(card->serialnr.value, apdu.resp,

MIN(apdu.resplen, SC_MAX_SERIALNR));

Use concrete length. In a function call like mem-
cpy(buf,data,len), the parameter len could lead to a buffer
overflow. If we know that only first 4 octets of buf is used,
and substituting ’4’ for ’data.len’ can solve the problem. See
Listing 11.

Listing 11. Use concrete length
/*buggy version: dhcp-4.1.0
file: client/dhclient.c*/
3057 memcpy (netmask.iabuf, data.data, data.len);

/*fixed version: dhcp-4.2.0
file: client/dhclient.c*/
3088 memcpy (netmask.iabuf, data.data, 4);

We further investigated the repair strategies for each type
of buffer overflow bugs. The detailed results are shown in Ta-
ble V. In the table, Column “Strategies” present all the manual
repair strategies for the studied bugs; the other columns list
all the types of buffer overflow bugs according to their related
code APIs or constructs. Then, each cell presents the number of
corresponding type of bugs fixed by the corresponding repair
strategy. Note that sometimes the developers use more than
one strategies to fix one bug. According to the table, we have
the following observations.

First, the “Add boundary check” strategy is able to fix the
majority types of buffer overflow bugs. The only exceptions
are for malloc, sscanf, and memmove. We only explain the
reason for malloc and sscanf because there is only one instance
of memmove and may not be representative. For malloc,
the “Malloc check” strategy is used. A buffer overflow may
occur if the parameter and return value of malloc is not
checked. “Malloc check” checks them and ensures that no
buffer overflow will happen. For sscanf, “String reformat”
strategy is the easiest way to fix it.

Second, although “Add boundary check” can fix the most
bugs overall, it is not always the case for specific types of
bugs. For example, sprintf bugs are more likely to be fixed by
the “API substitution” strategy rather than the “Add boundary
check” strategy; sscanf bugs are more likely to be fixed by
“String reformat”; memset bugs are more likely to be fixed
by “Add integer check”. Substituting snprintf for sprintf is

a convention, because snprintf is a safer version of sprintf.
For sscanf, the reason is explained before, which is “String
reformat” being the easiest way to fix it.

In summary, the results show that adding boundary check can
fix nearly half of the studied bugs. However, for each specific
type of bugs, there may be more suitable way to fix those
bugs. This provide practical guidelines for both manual and
automated repair of buffer overflow bugs. For example, an
effective manual/automated repair strategy would first try if
adding boundary checks can resolve the bug. If the first step
fails, the strategy can then try different actions according
to the APIs involved in the buffer overflow, e.g., a buffer
overflow bug involving the malloc API can usually be fixed
using malloc check.

F. Threats to Validity
The threat to internal validity lies in the intensive manual

inspection and data analysis performed in the empirical study.
To reduce this threat, the first author together with other two
graduate students reviewed all the manual inspection results to
guarantee the precision. In addition, we also reviewed all the
data analysis scripts to ensure the correctness.

The threats to external validity mainly lie in the subjects
and bugs used in the study. All the 63 subjects used in the
empirical study are real-world projects, and come from various
application domains. However, due to the intensive manual
inspection, we were only able to study 100 buffer overflow
bugs, which may not be sufficiently representative. Moreover,
for investigating the false positives of the studied techniques,
we only considered the fixed locations of the 100 bugs. The
reason is that there is no ground truth for other instances
reported by the studied techniques. This threat can be further
reduced by using more buffer overflow bugs from more real-
world projects in the future.

The threats to construction validity lie in the metric used
to assess the effectiveness and efficiency of the studied tech-
niques. To reduce this threat, we used the widely used metrics,
such as false positive rate and false negative rate, to evaluate
the studied techniques.

IV. RELATED WORK

Research on buffer overflow detection mainly focus on
proposing new techniques for buffer overflow detection. In
addition, researchers also performed various studies on buffer
overflow detection. In this section, we discuss about related
work in both directions.

A. Buffer Overflow Detection Techniques
The dynamic approaches [5], [12], [14], [19], [30] require

program execution to identify potential buffer overflow bugs. A
vast majority of dynamic buffer overflow detection techniques
insert special code into software so that buffer overflow
occurrences can be detected and properly processed such as
terminating software execution. For example, some dynamic
analysis tools [8], [25] check whether the return addresses
of function invocations have been modified to detect buffer
overflow attacks. Some other techniques [14], [19], [28]
assume the boundary of variables should not be exceeded by
all accesses, and use this heuristic to identify potential buffer
overflow bugs. Although those dynamic techniques do not
suffer from the false positive problem, it is hard to generate
test inputs to expose the buffer overflow bugs. Actually, the

99

TABLE V. DETAILED FIX STRAGEGIES

Strategies array memcpy sprintf pointer strcpy strncpy malloc sscanf memset strcat memmove strncmp others

Add boundary check 18 9 2 4 5 5 – – 1 1 – 1 4
Use larger buffer 3 1 4 1 – – – – – – – – 1
API substitution – 1 6 – 2 – – – – 1 – – –
Fix boundary check 5 – – 1 – – – – – – – – –
Add integer check 2 – – – – – – – 2 – 1 – –
Add string end – – 3 – – – – 1 – – – – –
Malloc check – – – – – – 4 – – – – – –
String reformat – – – – – – – 3 – – – – 1
Use unsigned value 1 1 – – – – – – – – – – 1
Limit index range 1 1 – – – – – – – – – – –
Use concrete length – 1 – – – – – – – – – – 1
Others 2 2 – 1 – – – – – – – – 1

users mainly use random or manual testing to identify buffer-
overflow-triggering test inputs. To systematically generate test
inputs to expose buffer overflow bugs, Splat [30] is proposed
to automatically generate test cases for detecting buffer over-
flow bugs. Splat performs directed random testing guided by
symbolic execution. As symbolic execution can be extremely
expensive, Splat also proposes the symbolic length abstraction
technique to prune the search space of symbolic execution
without losing the buffer overflow detection ability. In spite
of the optimizations embodied by Splat, it is still an expensive
technique and not widely used in practice. It is hard to
compare dynamic techniques for buffer overflow detection
since they either require manual/random test generation, or
can be extremely expensive to apply.

The static program analysis approaches [1], [2], [8], [18],
[20], [21], [23]–[27], [29], [31], [32] scan software source
code under test to discover potential code segments that are
vulnerable to buffer overflow attacks. As the static approaches
does not execute the program under analysis, there can be
many false alarms. Therefore, each reported vulnerability
warning requires further manual checking. A number of tools
(e.g., ITS4 [26] and FlawFinder [31]) scans C or C++ source
code, breaks the codes into lexical tokens, and then matches
patterns in the token stream to find possible buffer overflow
bugs. Although simple and scalable to large scale programs,
these techniques only consider the lexical information and may
not be effective. Some other tools further perform sematic
analysis. Fortify [10] reports buffer overflow vulnerabilities
that involve writing or reading more data than the buffer ca-
pacity by conducting data flow analysis, control flow analysis,
and semantic analysis all together. Checkmarx [3] creates
a meticulous model of how the application interacts with
users and other data. Then, Checkmarx assesses requests and
tracks the data and logic flows within the application to identify
buffer overflow vulnerabilities based on various static analysis
rule. Splint [17] uses several lightweight static analysis
techniques. It requires users to write source annotations to
apply inter-procedural analysis. For buffer overflow, Splint
models and annotates buffer sizes in standard libraries, such
as strcpy, to report potential warnings for all library functions
susceptible to buffer overflow vulnerabilities. In this work, we
focus on studying the effectiveness and efficiency of state-
of-the-art static techniques for buffer overflow detection.We
choose Fortify and Checkmarx as the studied commercial
tools and Splint as the studied open source tool.

B. Studies on Buffer Overflow Detection
Wilander and Kamkar [28] performed an empirical study

on dynamic buffer overflow detection techniques using 20
different buffer overflow bugs. The study shows that even the

best dynamic tool can only detect 50% bugs, and there are
6 bugs cannot be detected by any studied tool. In contrast,
our study is on static analysis techniques for buffer overflow
detection, and is conducted using much more real-world buffer
overflow bugs. Recently, Fang and Hafiz [9] performed an
empirical study on reporters of buffer overflow vulnerabilities
to understand the detection tools and methods. They found
that most reporters mainly use fuzzing, and static analysis
tools are rarely used. Our study shows that nearly half of real-
world buffer overflow bugs can be detected by state-of-the-art
static analysis tools, demonstrating the effectiveness of static
analysis tools in practice. Johnson et al. [13] studied the static
analysis techniques in general, and found that false positives
are the barriers to use static analysis techniques in practice. In
this paper, we studied the static analysis techniques for buffer
overflow detection, and the results of our controlled experi-
ments show that static analysis techniques (e.g., Fortify)
can achieve acceptable false positive rate for detecting buffer
overflow bugs.

V. CONCLUSION

Although various buffer overflow detection techniques have
been proposed, there are few studies on comparing the ef-
fectiveness and efficiency of state-of-the-art static analysis
techniques. In this paper, we present an empirical study on
both the detection and fixing of buffer overflow bugs. More
specifically, we compared the efficiency and effectiveness
of the Fortify, Checkmarx, and Splint tools on 100
buffer overflow bugs from 63 real-world projects totalling
28 MLoC. In addition, we also investigated the distribution
of buffer overflow bugs, as well as the fixing strategies for
different buffer overflow bugs. The results provide practical
guidelines on detecting, understanding, as well as fixing the
buffer overflow bugs. In the future, we will extend our study
in the following directions: more static analysis techniques or
dynamic testing techniques, other critical vulnerabilities in the
area of application security, more real world projects.

ACKNOWLEDGMENTS
The paper was partially supported by the National

Grand Fundamental Research 973 Program of China
(No.2014CB340703) and the National Natural Science Foun-
dation of China (No. 91318301, 61472179, 61561146394). We
would like to express our gratitude to CHECKMARX China
team for providing an evaluation version of Checkmarx to
support our comparison study. We thank all the students who
helped us in the experiment.

100

REFERENCES

[1] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “Aeg:
Automatic exploit generation.” in Network and Distributed System
Security Symposium (NDSS), vol. 11, 2011, pp. 59–66.

[2] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in Proceedings of the 36th In-
ternational Conference on Software Engineering (ICSE 2014). ACM,
2014, pp. 1083–1094.

[3] “Checkmarx homepage,” https://www.checkmarx.com (accessed Jan-
uary, 2016).

[4] “Coverity homepage,” http://www.coverity.com/ (accessed January,
2016).

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks.” in USENIX Secu-
rity, vol. 98, 1998, pp. 63–78.

[6] “CVE homepage,” http://www.cvedetails.com/ (accessed January,
2016).

[7] G. Dı́az and J. R. Bermejo, “Static analysis of source code security:
Assessment of tools against samate tests,” Information and Software
Technology, vol. 55, no. 8, pp. 1462–1476, 2013.

[8] D. Evans and D. Larochelle, “Improving security using extensible
lightweight static analysis,” IEEE software, vol. 19, no. 1, pp. 42–51,
2002.

[9] M. Fang and M. Hafiz, “Discovering buffer overflow vulnerabilities in
the wild: an empirical study,” in Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM 2014), 2014, p. 23.

[10] “Fortify homepage,” http://www8.hp.com/us/en/software-solutions/
application-security/index.html (accessed January, 2016).

[11] “Gartner Group, Gartner Magic Quadrant for Static Application
Security Testing,” https://ssl.www8.hp.com/cn/zh/ssl/leadgen/secure
content.html?asset=2053656&module=1823975&siebelid=22908&
sectionid=gel (accessed January, 2016).

[12] E. Haugh and M. Bishop, “Testing c programs for buffer overflow
vulnerabilities.” in Network and Distributed System Security Symposium
(NDSS), 2003.

[13] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Pro-
ceedings of the 35th International Conference on Software Engineering
(ICSE 2013), 2013, pp. 672–681.

[14] R. W. Jones and P. H. Kelly, “Backwards-compatible bounds checking
for arrays and pointers in c programs.” in Automated Analysis-Driven
Debugging (AADEBUG), vol. 97, 1997, pp. 13–26.

[15] “Klocwork homepage,” http://www.klocwork.com/ (accessed January,
2016).

[16] K. J. Kratkiewicz, “Evaluating static analysis tools for detecting buffer
overflows in c code,” Master’s thesis, Harvard University, 2005.

[17] D. Larochelle and D. Evans, “Statically detecting likely buffer over-
flow vulnerabilities.” in Proceedings of USENIX Security Symposium,
vol. 32, 2001.

[18] W. Le and M. L. Soffa, “Marple: a demand-driven path-sensitive
buffer overflow detector,” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE
2008), 2008, pp. 272–282.

[19] G. C. Necula, S. McPeak, and W. Weimer, “Ccured: Type-safe
retrofitting of legacy code,” in ACM SIGPLAN Notices, vol. 37, no. 1,
2002, pp. 128–139.

[20] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A symbolic execution framework for javascript,” in 2010 IEEE Sym-
posium on Security and Privacy (S&P), 2010, pp. 513–528.

[21] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A
new approach to computer security via binary analysis,” in Information
systems security, 2008, pp. 1–25.

[22] “Splint homepage,” http://www.splint.org (accessed January, 2016).

[23] J. Viega, J. Bloch, Y. Kohno et al., “A static vulnerability scanner for c
and c++ code [c],” in Proceedings of the 16th Annual Computer Security
Applications Conference (ACSAC 2000), 2000, pp. 257–269.

[24] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in
2001 IEEE Symposium on Security and Privacy (S&P), 2001, pp. 156–
168.

[25] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step
towards automated detection of buffer overrun vulnerabilities.” in Net-
work and Distributed System Security Symposium (NDSS), 2000, pp.
2000–02.

[26] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,”
in 2010 IEEE Symposium on Security and Privacy (S&P), 2010, pp.
497–512.

[27] T. Wang, T. Wei, Z. Lin, and W. Zou, “Intscope: Automatically
detecting integer overflow vulnerability in x86 binary using symbolic
execution.” in Network and Distributed System Security Symposium
(NDSS). Citeseer, 2009.

[28] J. Wilander and M. Kamkar, “A comparison of publicly available tools
for dynamic buffer overflow prevention.” in Network and Distributed
System Security Symposium (NDSS), vol. 3, 2003, pp. 149–162.

[29] Y. Xie, A. Chou, and D. Engler, “Archer: using symbolic, path-sensitive
analysis to detect memory access errors,” in ACM SIGSOFT Software
Engineering Notes (SEN), vol. 28, no. 5, 2003, pp. 327–336.

[30] R.-G. Xu, P. Godefroid, and R. Majumdar, “Testing for buffer overflows
with length abstraction,” in Proceedings of the 2008 International
Symposium on Software Testing and Analysis (ISSTA), 2008, pp. 27–38.

[31] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in 2014 IEEE
Symposium on Security and Privacy (S&P), 2014, pp. 590–604.

[32] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
exposing missing checks in source code for vulnerability discovery,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer and
Communications Security (CCS), 2013, pp. 499–510.

101

