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Abstract—�e next-generation mobile devices include smart
watches, wristbands, wearables (e.g., Google Glass), etc. In the fu-
ture such devices will constitute a large fraction of the total devices
available in the market [1]. Latest studies con�rm that location-
based services are the most requested feature by developers with
a market share of $13B in 2013 and have expected exponential
growth [2]. Future location-based applications/services will use
the data generated by the new mobile devices for providing
enhanced user experience. �is paper presents a vision of such
next-generation location-based services, which we call LBS 2.0.
We present the challenges and opportunities that LBS 2.0 will
pose for mobile data management.

I. Introduction
Mobile devices have virtually exploded in the recent years.

Surveys have predicted that this trend will continue in the
future [1]. In addition to the smartphones, the newer mobile
devices include smart watches1, wristbands2, and wearables
like Google Glass. �ese devices not only have the ability to
record location (using GPS) but also have the ability to sense
and communicate various other attributes (e.g., video, images,
orientation, linear/angular acceleration, ambient temperature,
luminosity, and many more) about their surrounding [3], [4].
We refer to such data as multivariate spatio-temporal data3.
�e LBS 2.0 applications will use all such sensed infor-

mation for providing new features and services to the users.
�ese applications will consume the data generated by the
mobile devices for providing users an enhanced experience
and awareness about their behavior or surrounding. Below
we present a broad categorization of several sample LBS 2.0
applications:
● Activity recognition: detecting user activities like running,
walking, standing, sitting, etc. [5].

● Healthcare: sleep pattern change detection,
EEG/ECG/EMG measurements using smart shirts
[6], breathing measurements, posture tracking, etc.

● Smart spaces: switching on appliances when a user enters
his/her home or car, smart smoke alarms and ther-
mostats4, indoor atmosphere sensing5.

● Fitness/outdoor: monitoring heart rate, pedometer, pace,
calories burnt, etc.

1 Pebble Smartwatch, https://getpebble.com/ 2 Wearable Technolo-
gies, http://bit.ly/waveWBT 3 For brevity, we o�en drop the ad-
jective multivariate. 4 Nest Labs, https://nest.com/ 5 Cubesensors,
http://cubesensors.com/

● Crowdsensing: monitoring tra�c density6, road condition,
ambient pollution levels [7], weather conditions, etc.

�us, it is clear that LBS 2.0 have huge, unexplored potential
and companies/organizations that will leverage from it will
have a greater chance of emerging as key players in the future.
An important aspect of such services is the data these new
devices will generate using a combination of GPS data and
associated sensors. Furthermore, from a purely data manage-
ment perspective there are two fundamental questions that
should be addressed: (Q1) How much data will be generated
by the millions of new gadgets that will be used for providing
LBS 2.0? and (Q2) What are the important challenges that will
be posed for handling such a volume of data? Below we provide
arguments that will help us motivate these questions or at least
give us intuitions of the scale of these problems.

Q1: �e data volume (and velocity) can be approximated by
the following back-of-the-envelope calculation. Lets consider a
modern smartphone like the Samsung Galaxy S3. We installed
an Android application called Androsensor7 to estimate the
volume of data collected in 1 hour from all the sensors
on board the Galaxy S3. �is phone has about 10 sensors
[4] including the GPS. Our estimate shows that in 1 hour
approximately 1.6 MB of data (0.5 MB when GZip compressed)
is generated.

Next, consider a large social networking website like Face-
book. In Q3 2013 Facebook reported that it has 507 million
daily active users [8]. Furthermore, it is natural that if LBS 2.0
are introduced, then users will adopt them at a slower pace
in the �rst few years [9]. Let us assume a reasonable adoption
rate of 4 %/year. �is rate is typical for the adoption of new
technologies. It indicates that when LBS 2.0 are introduced
only 4% of the current daily active users will initially (i.e.,
in the �rst few years) use them. In addition, we assume that
these users will use these services for an average 1 hour/day.

With these assumptions, LBS 2.0 will generate about 32
TB/day of uncompressed data or 10 TB/day of compressed
data. In 2009, Facebook had reported that its Haystack photo
storage system adds 25 TB/week of storage [10]. Comparing
32 TB/day to 25 TB/week (or 10 TB/day GZip compressed),
we can obtain a clear idea of the signi�cantly large volume

6 Waze, https://www.waze.com/ 7 Androsensor, http://bit.ly/AndroSensor



(and velocity) of data that will be generated.
Q2: We believe this large volume of data will pose several sub-
stantial challenges in the future. Here we succinctly describe
these challenges and in the rest of the paper we will deep dive
into them individually and discuss each of them in su�cient
detail. Following are the challenges that we believe are key for
enabling LBS 2.0:
Data Acquisition: In many circumstances it is unnecessary
to transmit all the sensed data to the backend (e.g., cloud or
data center). For reducing bandwidth consumption, we can
only send the required data. Designing intelligent algorithms
that decide which data should be transmitted is a challenging
task. We further elaborate on this topic in Section II.
Data Storage: We have already discussed that data volume
and velocity are the main roadblocks in supporting LBS 2.0.
Fast and reliable storage of such data is another challenging
task. In Section III we provide a detailed discussion on the
latest technological developments in this domain.
Data Management: �e applications created in the context of
LBS 2.0 services will generate novel query types that should
be addressed by the underlying data management system.
Processing these queries fast and in real-time is a di�cult
task. In Section IV, we discuss the issues and the required
innovations in query processing.
Data Visualization: Considering the range of di�erent at-
tributes that the mobile sensors can sense, it is natural to
think of methods of seamlessly visualizing the data in inter-
esting dimensions. Challenges related to data visualization are
disused in Section V.

In the remaining sections we provide an in-depth discussion
on each of these challenges. We begin with the topic of
acquiring data generated in the context of LBS 2.0.

II. Data Acquisition
Let us consider a straightforward strategy: acquire all the

data sensed by the mobile devices and send it to the backend.
�is is an infeasible solution for the following reasons:
● Power: Battery consumption by the Wi-Fi/3G antenna is
one of the highest components of the battery usage on a
smartphone [1], and transmitting all the data will simply
worsen the problem.
● Storage: As pointed out in Section I, even if we are able to
acquire all the data, storing this data will be signi�cantly
costly due to high hardware costs.
● Bandwidth: It is predicted that the bandwidth consumption
of a smartphone will increase on an average [1]. If we add
more bandwidth utilization to this already in�ated average
utilization then LBS 2.0 could become a turn o� for many
users.
● Number of devices: Our back-of-the-envelope calculation in
Section I was based on a conservative assumption that each
user will continue to have a single device. �is assumption
is, however, not true [1]. In fact the number of smart
devices per capita are going to increase leading to higher
data storage requirements.

�us, it is clearly not a sound approach to acquire all the
sensed data given our aim of supporting millions of users.
Naturally, we are forced to think how can we acquire all the
information that interests us keeping in mind the reasons
stated above. We brie�y look at the strategies that will be
invaluable in the future for e�ective data acquisition:

Query to Data: Instead of acquiring all the data from the
mobile devices, which is a bandwidth-intensive task, we can
send the query to the mobile device. �e device can then
process the query locally and send us the results. �is is similar
to the model followed by the parallel database systems or map-
reduce systems [11], where the query is sent to the data for
conserving network bandwidth and to obtain scalability.

Sensor Selection: In many use-cases we will not require data
from all the sensors for providing a certain service or data
from the same sensor could be used for providing many
services. �ese observations should be exploited in the future
to optimize the amount of data acquired from the sensors.

Semantic Summarization: In many instances applications
could be interested only in acquiring the semantic states
rather than actually sensor values. For example, in the activity
recognition use-case, typically we are only interested to know
whether a person is standing or sitting, we are not interested
in the sensor data that has lead to this inference [5].

Model-Based Acquisition: Here, the data that is required
for maintaining a pre-de�ned model (like, regression model,
probabilistic graphical models, etc.) is acquired. �e model is
selected in such a way that all the supported queries can be
answered using the model, without acquiring additional data
[12]. In the future there will be a high demand for model-based
data acquisition especially for the crowdsensing applications.

III. Data Storage

�ere are various aspects to this challenge starting from
hardware (�ash storage), distributed �le systems, and higher
level techniques like data compression. Investigations focused
on all these aspects are necessary for supporting LBS 2.0. In
this section we will take a deeper look at each of these aspects
and obtain a systematic understanding of the state-of-the-art
and the research directions proposed for the future:

Flash Arrays and Tiered Storage:�e most important param-
eters in regards to storage capacity and performance are: (a)
read/write speed, (b) capacity per unit dollar and (c) physical
area per unit dollar. It is obvious that we will potentially need
large amount of storage for storing data generated by the LBS
2.0. Flash storage has been gathering momentum as cost of
�ash arrays has been decreasing over the past few years.

Flash arrays are available in two types MLC (multi-level
cell) or SLC (single-level cell), where MLC is more economical
than SLC but signi�cantly slower. Many vendors (Dell, IBM,
EMC, HP, NetApp, Hitachi) combine these two �ash types (or
tiers) and slower SATA HDDs in a single box. �en automated
tiering technology that decides which data should be moved
from the MLC and which should reside in SLC depending on



access frequency is used for gaining performance.
Distributed File Systems: �e next data storage layer is
the distributed �le system. �e most popular open-source
distributed �le system is the Hadoop Distributed File System8

(HDFS). It has shown great scalability and has been success-
fully deployed on thousands of nodes. However, recently it
has been observed that HDFS is unable to scale beyond a
point, due to the manner in which it stores meta information
[13]. HDFS stores all the meta information in the memory of a
single server called the NameNode. NameNodes in large HDFS
deployments have already reached their peak capacity and
are unable to handle additional data without compromising
performance. �us, the future DFS should have hierarchical
storage of meta information [14].
Compression: A key technique used for saving space is to
compress data. On the one hand compression results in lower
�le sizes and therefore lower disk space consumption, on the
other hand it adds additional decompression overhead when
the data is needed for tasks like query processing or data
mining. In the literature there have been various techniques
used for compressing trajectories and sensor data. Below we
brie�y summarize these approaches:
● L∞-norm based compression of multi-sensor data guaran-
tees a user-de�ned worst-case maximum error [15].
● Clustered compression clusters multiple trajectories to ob-
tain a representative trajectory and then proposes to store
only the representative trajectory [16].
● Semantic compression �rst derives a much smaller number
of semantic states from location data and proposes to only
store the semantic states [5].
● Amnesic compression is a online technique that samples a
trajectory non-uniformly. It stores more samples about the
recent past and less samples about ancient past [17].

�e above techniques are not designed to handle spatio-
temporal data from multiple sensors, which is a key contribu-
tor to LBS 2.0. Techniques supporting such data and operating
in real-time will be important in the future.

IV. Data Management
In this section we discuss the data management challenges

for enabling LBS 2.0. As discussed in Section I, the data
generated in the context of LBS 2.0 will be of high volume
and velocity. �is requires that the spatio-temporal data store
(STDS) supports both real-time queries and analytical queries
(on large historical data). Current systems do not support
both these queries simultaneously due to their complimentary
requirements: real-time queries require in-memory process-
ing and analytical queries require persistent spatio-temporal
storage.

In addition to queries, a major challenge in managing such
large quantity of data is supporting enhanced capabilities like
geo-fence and geo-trigger, as it requires, upon each location
update checking if any of the geo-trigger or geo-fence condi-
tion have been satis�ed. Motivated by these observations, in

8 http://hadoop.apache.org/

the following paragraphs we discuss technological challenges
that should be addressed for supporting these capabilities.
Scalability and Performance: �e STDS supporting LBS 2.0
should exhibit high scalability. Scalability demands will require
partitioning or sharding of data across servers in order to
achieve near-uniform load distribution. Known 1-dimensional
sharding techniques used in many NoSQL systems support
locality; here, each operation is performed on a small subset
of servers even if the data could be partitioned across many
servers. Hence, such techniques have linear scalability: system
capacity is a linear function of the number of servers.

Unfortunately, for high-dimensional data (3-4 dimensional)
the 1-D sharding techniques do not preserve locality in all
dimensions. A spatio-temporal data query can be potentially
sent to a large number of servers, thereby limiting scalability.
�erefore, designing locality-preserving sharding techniques is
one of the key research challenges for achiving scalablility in
managing spatio-temporal data.
Load-Balancing and Elasticity: Designing a sharding tech-
nique involves designing load-balancing algorithms for evenly
balancing data. Load-balancing in a STDS is unavoidable
due to a) the inherent nature of user movements: users
move through space crowding some locations (or shards)
at some times and emptying them at others, and b) the
memory consumption, request load, throughput and latency
requirements change constantly. In addition, similar to high-
dimensional sharding, high-dimensional load-balancing is a
challenging task as multiple dimensions of the data have to be
balanced simultaneously. We also note that any load balancing
technique requires data transfer between shards that can
impact system performance and increase network costs. �is
is especially true for spatio-temporal data, since typically it
contains terabytes of historical data (refer Section I). �erefore,
any load-balancing technique for spatio-temporal data needs
to achieve a reasonable tradeo� between load balancing and
data movements.
Spatio-Temporal Indexing: While a sharding technique per-
forms server-level data partitions, data on each server have to
be indexed for further improving query latency. Spatial indexes
(e.g., R-Tree) for indexing 2-D (spatial) data are e�ective, but
indexing higher dimensional data is challenging and typically
requires the usage of dimensionality reduction techniques like
space-�lling curves. Although these techinques can index high-
dimensional data their e�ectiveness exponentially decreseas
due to the curse of dimensionality, thereby leading to further
challenges.
In-memory Processing: Real-time queries require in-memory
spatio-temporal data processing. However, in-memory (cache-
based) data stores typically do not support spatio-temporal
data workloads due to the high volume of such data and
lack of in-memory indexing techniques. Obviously, for many
LBS 2.0, a reasonable cache size cannot support high volume
of spatio-temporal data and requires regular data eviction to
persistent storage. Naïve strategies for data eviction from the
cache to a persistent storage can result in high cache miss for
spatio-temporal queries, and hence can lead to undesirably



poor query latency. �erefore, designing algorithms that can
potentially learn dynamic eviction policies from load and
usage type is an interesting and challenging area of research.

V. Data Visualization

Information visualization concerns the use of interactive
computer graphics to get insight into large amounts of data
like multivariate data, hierarchical data, network data, etc.
Conventional methods to depict data, such as bar-charts, pie
charts, and line-charts, are useful to show aggregate infor-
mation but fail to depict large and complex data, such that
patterns, trends, and outliers can be discovered. �erefore,
many new and useful information visualization methods that
enable people to understand large amounts of data have been
developed (extensive overviews can be found in [18]–[20]).

Visualizing Spatio-Temporal Data: LBS 2.0 data is related
to spatial properties and events. �e visualization of such
data in a geographic context is an important discipline with
a rich heritage from cartography and geovisualization. Here,
the depiction of multivariate spatio-temporal data is a topic
of immense value and intense research, especially because
mobile data are generated in high pace by modern GPS-
devices [21]. In this context, spatio-temporal complexity poses
signi�cant challenges for the visualization, but it also enables
the use of the data for many purposes. Analysts can study
the properties of space and places, understand the temporal
dynamics of events and investigate moving objects’ behavior.
Recently a great variety of possible visualization methods for
spatio-temporal data have been developed. However, several
research challenges still need to be addressed [20].

Scalable Visual Analytics: Visual Analytics is de�ned as the
smart combination of automatic algorithms for information
extraction combined with interactive visualization. Scalability
of visual analytics is typically limited to thousands of elements,
and the development of speci�c solutions is still a lengthy and
tedious process. Despite of the frameworks that are becoming
available, there is a lack of insight on how to select and
combine automated and visual methods.

Data is usually (and wrongly) assumed to be homogeneous;
o�en just one or two types of data are supported. Data are
assumed to come from a single source and to be clean,
reliable, exact, and present; noisy, polluted, uncertain, and
missing data are rarely dealt with. If one or more of these
assumptions is violated, standard methods from information
visualization fall short, and a need for new representations
arises. �e techniques of the future are expected to cope with
heterogeneous data types having multiple modalities.

Screen Space Utilization: Another key-issue in visualization
for mobile device relates to the e�cient use of the available
screen space. Coordinated Multiple View systems allow show-
ing heterogeneous data sets by distributing data over di�erent
views, but consume high screen real estate and require in-
creased user interaction. �erefore, new visual mappings need
to be devised that visually integrate key aspects of the data in
a single display.

�e rapidly growing popularity of mobile devices for every
aspect of work and pleasure, as well as the growing number of
open data sources fuel the need for new forms of visualization.
In addition, the role of aesthetics gains attention with the
increasingly important role of mobile devices for a general
audience. Applying competencies from traditional graphic
design, typography, or perception theory to the presentation of
complex data visualizations could additionally increase their
usability and hence their success in the real world.
Mobile Devices and Visualization: Mobile devices present an
additional challenge for visualization in terms of security and
consumability at all stages of the knowledge discovery process.
It is not just about how we store and transmit data, mobile
devices also change the way customers think about data.
Mobile devices have increased the number of user types and
tasks, and also users’ expectations to learn fast and accurately
from information. As a result, customers expect engaging
and aesthetic displays with intuitive interaction techniques to
explore their data and discover new insights.

VI. Conclusion
We presented a vision of the next-generation location-

based services (LBS 2.0) and discussed in detail the challenges
pertaining to acquiring, storing, managing and visualizing
multivariate spatio-temporal data. We believe this will open
exciting research areas and opportunities for building engaging
applications and services.
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