Efficient parallel mining of gradual patterns on
multicore processors

Anne Laurent, Benjamin Négrevergne, Nicolas Sicard, and Alexandre Termier

Abstract Mining gradual patterns plays a crucial role in many real world applica-
tions where huge volumes of complex numerical data must be handled, e.g., biolog-
ical databases, survey databases, data streams or sensor readings. Gradual patterns
highlight complex order correlations of the form “The more/less X, the more/less
Y”. Only recently algorithms have appeared to mine efficiently gradual rules. How-
ever, due to the complexity of mining gradual rules, these algorithms cannot yet
scale on huge real world datasets. In this paper, we thus propose to exploit paral-
lelism in order to enhance the performances of the fastest existing one (GRITE)
on multicore processors. Through a detailed experimental study, we show that our
parallel algorithm scales very well with the number of cores available.

1 Introduction

Frequent pattern mining is a major domain of data mining. Its goal is to efficiently
discover in data patterns having more occurrences than a pre-defined threshold.
This domain started with the analysis of transactional data (frequent itemsets), and
quickly expanded to the analysis of data having more complex structures such as se-
quences, trees or graphs [Han and Kamber, 2006]. All the frequent pattern mining
algorithms must explore a huge search space and are very expensive computation-
aly, the cost increasing with the complexity of the patterns to be mined. A large part

Anne Laurent
Univ. Montpellier 2, LIRMM, CNRS UMR 5506, 162 rue Ada, 34095 Montpellier cedex 5 e-mail:
laurent@lirmm.fr

Benjamin Négrevergne, Alexandre Termier
LIG, UJE, CNRS UMR 5217, 681 rue de la Passerelle, BP 72, 38402 Saint Martin d’Heéres e-mail:
Benjamin.Negrevergne @imag.fr, Alexandre. Termier @imag.fr

Nicolas Sicard
LRIE, EFREI, 30-32 avenue de la République, 94800 Villejuif e-mail: nicolas.sicard @efrei.fr

2 Anne Laurent et al.

of the research works in pattern mining thus consisted in designing more and more
efficient algorithms, capable of scaling up on huge and/or complex databases.

Very recently, a new pattern mining problem appeared: mining frequent gradual
itemsets (also known as gradual patterns). This problem considers transactional
databases where attributes can have a numerical value. The goal is then to dis-
cover frequent co-variations between attributes, such as: “The higher the age, the
higher the salary”. This problem has numerous applications, as well for analyzing
client databases for marketing purposes as for analyzing patient databases in med-
ical studies. For instance, it has recently received a lot of attention for applications
on breast cancer where a large number of DNA micro-arrays are generated by biol-
ogists containing numeric data describing the levels of expression of genes. Di Jo-
rio et al. [Di Jorio et al., 2009] recently proposed GRITE, a first efficient algorithm
for mining gradual itemsets and gradual rules. This algorithm is based on Apriori
[Agrawal and Srikant, 1994], and can be applied on synthetic databases having up
to several hundreds of attributes or up to thousands of lines, whereas previous algo-
rithms were limited to databases having six attributes [Berzal et al., 2007]. However,
because the problem at hand is by far more complex than that of classical frequent
itemset mining problem, the GRITE algorithm can be very long or impossible to ex-
ecute, even on databases that could appear small regarding current frequent pattern
mining tasks and current available scientific databases. Thus GRITE cannot scale
on large real databases (e.g., having both a large number of lines and columns, or
having millions of lines/hundreds or thousands of attributes).

There are two (complementary) options to improve the scaling up capabilities of
GRITE and to allow experts using this algorithm to handle large databases. The first
one lies in algorithmic improvements, for example using pattern growth techniques
[Han et al., 2000] and by defining the notion of closure on frequent gradual itemsets
[Pasquier et al., 1999, Uno, 2005]. This first option needs an important theoretical
and algorithmic work, and is thus an indispensable but mid-term solution. In order to
provide more quickly experts with performant algorithms capable of exploiting their
real-world databases, a second solution is to exploit parallelism on recent multi-core
processors.

Since 2005, physical limits have prevented further frequency increases in pro-
cessors, cancelling the possible related performance improvements. However the
number of transistors on a die continues to double every 18 months according to
Moore’s Law, which leads to a new generation of processors having multiple com-
putation cores. Exploiting optimally these processors is achieved through the writ-
ing of parallel programs. The multi-core processors have different specifities from
either clusters of commodity computers or SMPs (Symetric Multi-processors): the
memory is not distributed like in clusters but shared. This is similar to SMPs, but a
lot of SMPs have a NUMA (Non Uniform Memory Access) architecture: there are
several memory blocks, with different access speeds from each processor depend-
ing on how far the memory block is from the processor. Multi-core processors are
usually on a UMA (Uniform Memory Access) architecture: there is one memory
block, so all cores have an equal access time to this memory. However there is also
only one bus between the multi-core processor and its memory, which means that

Efficient parallel mining of gradual patterns on multicore processors 3

programs can be more limited by bandwith than raw computing power. The usage of
memory must be done in a very carefull way, unlike previous sequential programs.

Pattern mining researchers, always in need of more computing power, have
started investigating new algorithms dedicated for multi-core processors, as pre-
sented for example in [Buehrer et al., 2006, Lucchese et al., 2007], [Liu et al., 2007],
[Tatikonda and Parthasarathy, 2009]. Analyzing their first results shows that the
more complex the patterns to mine (trees, graphs), the better the scale-up results on
multiple cores could be. This is because memory accesses are a very limiting factor,
and in case of complex patterns there are a lot of computations to perform on the
data loaded into the processor’s cache, which execution time far outstrips the time
to recover the data from memory. This suggests that using multicore processors for
mining gradual itemsets using the GRITE algorithm could give interesting results,
as the computations to perform for a simple frequency count are very complex and
include computing the longest path of a graph. We show in our experiments that in-
deed, there is a quasi-linear scale up with the number of cores for our multi-threaded
algorithm.

The outline of this paper is as follows: In Section 2, we explain the notion of
gradual itemsets. In Section 3, we present with more details the related works on
gradual patterns and parallel pattern mining. In Section 4, we present our parallel
algorithm for mining frequent gradual itemsets, and in Section 5, we show the results
of our experimental evaluation. Last, we conclude and give some perspectives in
Section 6.

2 Gradual Patterns

Gradual patterns refer to itemsets of the form “The more/less X, ..., the more/less
X,,”. We assume here that we are given a database DB that consists of a single table
whose tuples are defined on the attribute set .#. In this context, gradual patterns are
defined to be subsets of .# whose elements are associated with an ordering, meant to
take into account increasing or decreasing variations. Note that ¢[/] hereafter denotes
the value of ¢ over attribute /.

For instance, we consider the database given in Table 1 describing fruits and their
characteristics.

Definition 1 (Gradual Itemset) Given a table DB over the attribute set .9, a grad-
ual item is a pair (I,0) where I is an attribute in . and 6 a comparison operator
in {>,<}.

A gradual itemset g = {(I1,6,), ..., (It,) } is a set of gradual items of cardinality
greater than or equal to 2.

For example, (Size, >) is a gradual item, while {(Size, >), (Weight, <)} is a grad-
ual itemset.

The support of a gradual itemset in a database DB amounts to the extent to which
a gradual pattern is present in a given database. Several support definitions have

4 Anne Laurent et al.

Id|Size (S)|Weight (W)|Sugar Rate (SR)
1 6 6 5.3
153 10 12 5.1
13 14 4 4.9
14 23 10 4.9
ts 6 8 5.0
te 14 9 4.9
t7 18 9 5.2
13 23 10 53
19 28 13 5.5

Table 1 Fruit Characteristics

been proposed in the literature (see Section 3 below). In this paper, we consider the
support as being defined as the number of tuples that can be ordered to support all
item comparison operators:

Definition 2 (Support of a Gradual Itemset) Let DB be a database and g = {(1, 6,),
ey (Ix, Ok) } be a gradual itemset. The cardinality of g in DB, denoted by A(g,DB),
is the length of the longest list | = {t1,...,t,) of tuples in DB such that, for every
p=1,...,n—1andevery j=1,....k, the comparison t,[l;] 0;t,.1[I;] holds.

The support of g in DB, denoted by supp(g,DB), is the ratio of A(g,DB) over

the cardinality of DB, which we denote by |DB|. That is, supp(q,DB) = Mﬁ)’gf)

In order to compute A(g,DB), [Di Jorio et al., 2009] proposes to consider the
graph where nodes are the tuples from DB and where there exists a vertex between
two nodes if the corresponding tuples can be ordered according to g.

For example, Figure 1 shows the ordering of the tuples of DB, according to the
gradual itemset g = {(S,>), (SR, <)}, whose intuitive meaning is the bigger the
size, the lower the sugar rate. As in this graph, the length of the longest totally
ordered list of tuples is 5, and as DB contains 9 tuples, we have supp(g,DB) = %.

The algorithm proposed by Di Jorio et al. to mine gradual itemsets is an APriori-
based algorithm. We point out that gradual itemsets are assumed to be sets of cardi-
nality greater than or equal to 2, because sorting tuples according to one attribute is
always possible, which is not the case when considering more than one attribute.

The algorithm thus starts with the computation of the support of all gradual pat-
terns constituted by a pair of gradual items (attribute, operator), and then operates
at every level k by combining the frequent patterns containing k — 1 gradual items
to build up candidates containing k attributes that are then validated or not after
computing their support before processing to step k+ 1.

It is worth noting that the storage of all orderings at level k, even in a binary
format, can be very memory-consuming. However, the main bottleneck is often due
to the fact that the computation of the support is very time-consuming. The tuples
must indeed be ordered depending on the gradual itemset being considered. This
ordering is stored in a binary matrix associated with the graph. Then the length of
the longest path of this graph is computed in order to get the support.

Efficient parallel mining of gradual patterns on multicore processors 5

(2]

Fig. 1 Graph of g = {(S,>),(SR, <)} as computed from Table 1

3 Related Work

In this section, we discuss the related works on mining gradual patterns as well as
on parallel frequent pattern mining.

3.1 Gradual Pattern Mining

Gradual patterns and gradual rules have been studied for many years in the frame-
work of control, command and recommendation.

More recently, data mining algorithms have been studied in order to automati-
cally mine such patterns [Di Jorio et al., 2009, Berzal et al., 2007, Di Jorio et al., 2008,
Fiot et al., 2008, Hiillermeier, 2002, Laurent et al., 2009].

The approach in [Hiillermeier, 2002] uses statistical analysis and linear regres-
sion in order to extract gradual rules. In [Berzal et al., 2007], the authors formalize
four kinds of gradual rules in the form The more/less X is in A, then the more/less
Y is in B, and propose an Apriori-based algorithm to extract such rules. However,
frequency is computed from pairs of objects, increasing the complexity of the algo-
rithm. Despite a good theoretical study, the algorithm is limited to the extraction of
gradual rules of length 3.

The approach in [Fiot et al., 2008] is the first attempt to formalize gradual se-
quential patterns. This extension of itemsets allows for the combination of grad-
ual temporality (“the more quickly”’) and gradual list of itemsets. The extrac-
tion is done by the algorithm GRaSP, based on generalized sequential patterns
[Masseglia et al., 2004] to extract gradual temporal correlations.

In [Di Jorio et al., 2009] and [Di Jorio et al., 2008], two methods to mine gradual
patterns are proposed. The difference between these approaches lies in the compu-

6 Anne Laurent et al.

tation of the support: whereas, in [Di Jorio et al., 2008], a heuristic is used and an
approximate support value is computed, in [Di Jorio et al., 2009], the correct sup-
port value is computed (see above).

In [Laurent et al., 2009], the authors propose another way to compute the sup-
port, by using ranking such as the Kendall 7 ranking correlation coefficient, which
basically computes, instead of the length of the longest path, the number of pairs of
lines that are correctly ordered (concordant and discordant pairs).

It is important to note in this respect that, in the current paper, the method of
[Di Jorio et al., 2009] is used for the computation of frequent gradual patterns, as it
is the most efficient exhaustive method to mine such patterns.

3.2 Parallel Frequent Pattern Mining

Since 1996, pattern mining researchers have worked on parallel algorithms. There
were numerous works for mining frequent patterns on SMPs [Zaki, 1999] or on
clusters [Agrawal and Shafer, 1996, Zaki et al., 1997]. At that time, the main mem-
ory of commodity computers was much smaller than the size of most databases
(hundreds of Megabytes versus Gigabytes), so the first interest of parallel com-
puting was to handle efficiently bigger databases through distribution. However,
with the advent of bigger memories and the discovery of more efficient ways of ex-
ploring the search space (e.g., closed frequent patterns), publications about parallel
pattern mining became scarce until 2005. Since the apparition of multicore proces-
sors, also called Chip MultiProcessors (CMP), a new trend of research has emerged
on how to have better performances by using these CMP. [Buehrer et al., 2006]
pioneered this trend, presenting a parallel graph mining algorithm with excellent
scale-up capacities. Their algorithm is based on gSpan [Yan and Han, 2002], and
their contribution consists in an efficient depth-first way to share the work be-
tween the cores, and a technique to exploit cache temporal locality when decid-
ing to either immediatly mine recursive calls or enqueue them. In 2007 Lucchese
et al. [Lucchese et al., 2007] presented the first algorithm to mine closed frequent
itemsets on CMP. Their contribution is focused on how to partition the work, and
they show the interest of using SIMD instructions for further increasing perfor-
mance. The same year, Liu et al. [Liu et al., 2007] presented a parallelisation of
the well known FP-growth [Han et al., 2000] algorithm. More recently, Tatikonda et
al. [Tatikonda and Parthasarathy, 2009] presented an algorithm for mining frequent
trees with near-linear speedup. They show that the main limiting factor for perfor-
mance of parallel pattern mining algorithm on CMP is that the memory is shared
among all the cores. So if each core requests a lot of data, the bus will be saturated
and the performance will drop: there is a too important bandwidth pressure. This
is opposite to what had always worked well with sequential algorithms, where to
avoid redundant computations a large quantity of intermediary data was stored in
memory. Here Tatikonda et al. show that the working set size must be reduced as
much as possible, at the expense of redundant computations if needed. They also

Efficient parallel mining of gradual patterns on multicore processors 7

show that traditional pointer-based data structures are ill-adapted for CMP parallel
pattern mining, because of their bad locality in the cache.

In this work, we tackle the complex problem of mining gradual patterns. We are
in the favorable case where there are a lot of computations to do for each chunk of
data transfered from memory, so the bandwidth pressure should not be a problem
as long as the memory usage is kept low. This work is the first work on parallel
extraction of gradual patterns.

4 PGP-mc: Parallel Gradual Pattern Extraction

4.1 Gradual Pattern Characteristics

The gradual itemset extraction problem relies on the following two costly opera-
tions: (i) database lines scheduling and associated binary matrix construction and
(i1) longest path exploration (see [Di Jorio et al., 2009] for more details).

This problem is different from the classical itemsets problem in which we can
tell if a given line of the database does - or does not - support the searched itemset
independently of other lines. Even the sequential pattern extraction is an intermedi-
ary problem because operations can be distributed on different blocks of database
lines (all lines from the same block belong to the same client).

In the gradual pattern case, all lines are required for each itemset construction,
making the distribution of data based on line blocks very difficult. Instead, our pro-
posal is based on the fact that these operations are repeated a significant number of
times during frequent itemset searches.

4.2 Proposed Solution: GRITE-MT

The sequential GRITE algorithm relies on a tree-based exploration, where every
level N + 1 is built upon the previous level N. The first level of the tree is initialized
with all attributes, which all become itemset siblings. Then, itemsets from the sec-
ond level are computed by combining frequent itemsets siblings from the first level
through what we call the Join() procedure. Candidates whose support is greater than
a pre-defined threshold - they are considered as frequent - are retained in level N + 1.
Algorithm 1 shows a simplified view of the level N 4 1 construction.

In this solution, every level cannot be processed until the previous one has been
completed, at least partially. So, we focused our efforts on the parallelization of each
level construction where individual combinations of itemsets (through the Join()
procedure) are mostly independant tasks. The main problem is that the number of
operations inside each inner foreach loop of the algorithm 1 cannot be easily antic-
ipated, at least for levels higher than 2. Moreover, the number of siblings may vary

8 Anne Laurent et al.

Algorithme 1 Simplified GRITE level processing.

1 foreach itemset i in level N do

2 foreach itemset j in Siblings;;(i) do

3 itemset k « Join(i,j)

4 if k is frequent then

5 k becomes child node of i (gets index j)
6 {k is stored in level N+1}

7 endif

8 endforeach

s endforeach

by a large margin depending of itemsets i. A simple parallel loop would lead to an
irregular load distribution on several processing units.

In order to offset this irregularity, our approach dynamically attributes new tasks
to a pool of threads on a first come, first served” basis. At first, all frequent itemsets
from the given level are marked unprocessed and queued in Q;. A new frequent
itemset i is dequeued and all its siblings are stored in a temporary queue Q,;. Each
available thread then extracts the next unprocessed sibling j from Qy; and builds a
new candidate k from i and j. The candidate is stored in level N + 1 if it is considered
frequent. When Qy; is empty, the next frequent itemset i is dequeued and Qy; is filled
with its own siblings. The process is repeated until all itemsets i are processed (e.g.,
Q; is empty). Algorithm 2 is a simplified description of this multithreaded approach.

4.3 Implementation and Preliminary Optimizations

As mentioned earlier, memory bandwidth is one of the main factors which can limit
speed-up progression in multithreaded programs on CMPs. Another problem comes
from the very unpredictable amount of memory which will be dynamically allo-
cated to store all frequent items. Dynamic memory allocations are usually system-
level tasks that cannot be performed simultaneously by the operating system. This
may cause another penalty for parallel executions because threads may have to wait
longer before obtaining a requested memory zone. As a matter of fact, some prelim-
inary experiments have shown that it can be very problematic when the number of
concurrent threads grows.

In order to simplify memory management and eliminate all unnecessary tempo-
rary memory transactions, we profiled and optimized the initial C++ implementation
from [Di Jorio et al., 2009]. The underlying algorithm was not modified during the
process. The resulting sequential program now needs, on average, less than half of

Efficient parallel mining of gradual patterns on multicore processors 9

Algorithme 2 Simplified GRITE-MT (multithreaded) level processing.

1 i, j : itemsets

> P : pool of threads

3 Qi : queue ¢ itemsets from level N

4+ Qs : queue < 0 {unprocessed siblings}
s foreach rthread in P (in parallel) do

6 while Q;#0 OrR Q,;#0 do

7 if Q,,=0 then

i + dequeue (Q;)

Qi < Siblings j~i(i)

10 endif

1 j ¢ dequeue (Qy)

12 local itemset k <« Join(i,j)
13 if k is frequent then
14 k becomes child node of i (gets index j)

{k is stored in level N+1}

16 endif

17 endwhile
15 endforeach

the memory usage and almost a third of the initial execution time. We conducted
our experiments with this optimized version.

Note that threads have been implemented in our program using the POSIX
threads library (threads are automatically scheduled on hardware processing units
by the operating system).

5 Experimental Results and Discussion

In this section we report experimental results from the execution of our program on
two different workstations with up to 32 processing cores.

e COYOTE is a workstation containing 8 AMD Opteron 852 processors (each with
4 cores), 64GB of RAM with Linux Centos 5.1 and g++ 3.4.6.

e IDKONN is a workstation containing 4 Intel Xeon 7460 processors (each with 6
cores), 64GB of RAM with Linux Debian 5.0.2 and g++ 4.3.2.

The experiments are led on synthetic databases automatically generated by a tool
based on an adapted version of IBM Synthetic Data Generation Code for Associa-

10 Anne Laurent et al.

tions and Sequential Patterns!. This tool generates numeric databases depending on
the following parameters: the number of lines, the number of attributes/columns and
the average number of distinct values per attribute.

5.1 Scalability

The following figures illustrate how the proposed solution scales with both the in-
creasing number of threads and the growing complexity of the problem. The com-
plexity comes either from the number of lines or from the number of attributes in
the database as the number of individual tasks is related to the number of attributes
while the complexity of each individual task - itemsets joining - depends on the
number of lines. In this article, we report results for two sets of experiments.

The first set of experiments involves databases with relatively few attributes but
a significant number of lines. This kind of databases usually produces few frequent
items with moderate to high thresholds. As a consequence the first two level com-
putations represent the main part of the global execution time. Figure 2 shows the
evolution of execution times for 10000-line databases - ranging from 10 to 50 at-
tributes - on COYOTE. Figure 3 gives the corresponding speed-ups.

Execution time vs. number of threads (COYOTE) / 10k-line databases
1500

{+ 10 attr.
- 30 attr.
50 attr.

1000

exec. time (sec)

500 4

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

threads

Fig. 2 Execution time related to the number of threads. Test databases ranging from 10 to 50
attributes with 10k lines, on COYOTE.

! www.almaden.ibm.com/software/projects/hdb/resources.shtml

Efficient parallel mining of gradual patterns on multicore processors 11

Speed-ups vs. number of threads (COYOTE) / 10k-line databases

32.0
+ 10 attr.
- 30 attr.
50 attr.

28.0

24.0 A=

20.0

speed-up

16.0 e
12.0 —~

8.0

threads

Fig. 3 Speed-up related to the number of threads. Test databases ranging from 10 to 50 attributes
with 10k lines, on COYOTE.

As shown by Figure 3, speed-ups can reach very satisfying values in sufficiently
complex situations. For example, speed-up is around 30 with 50 attributes where
the theoretical maximum is 32. The upper limit for 10 and 20 attributes is not really
surprising and can be explained by the lower number of individual tasks. As the
number of tasks decreases and the complexity of each task increases, it becomes
more and more difficult to reach an acceptable load balance. This phenomenon is
especially tangible during the initial database loading phase (construction of the
first level of the tree) where the number of tasks is exactly the number of attributes.
For example, the sequential execution on the 10-attribute database takes around 64
seconds from which the database loading process takes 9 seconds. With 32 threads,
the global execution time goes down to 13 seconds but more than 5.5 seconds are
still used for the loading phase.

We report in Figure 4 the results of the same experiments on IDKONN. We just
give the speedups, as the results are very similar to the results of COYOTE. Excel-
lent speedups, up to 22.3 out of 24 threads, are obtained with a 50-attribute database.
For a small database with only 10 attributes, speedups are limited to 4.8, for the same
reasons as above.

The second set of experiments reported in this article is about databases with
growing complexity in terms of attributes. Figure 5 shows the evolution of execution
times for 500-line databases with different number of attributes - ranging from 50
to 350 - on IDKONN. Figure 6 reports the corresponding speed-ups.

12 Anne Laurent et al.

Speed-up vs. number of threads (IDKONN) / 10k-line databases

24
T 10 attr.
4 30 attr.
50 attr.
A
/A//
18 /é‘/A
s
A
s s
o
g 12 A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
threads

Fig. 4 Speed-up related to the number of threads. Test databases ranging from 10 to 50 attributes
with 10k lines, on IDKONN.

Execution time vs. number of threads (IDKONN) / 500-line databases
19000

{+ 50 attr. <~ 100 attr.

150 attr. <+ 200 attr.
4 250attr. O 300 attr.
O 350 attr.

15200

11400

exec. time (sec)

7600

3800

threads

Fig. 5 Execution time related to the number of threads. Test databases ranging from 50 to 350
attributes with 500 lines, on IDKONN.

Efficient parallel mining of gradual patterns on multicore processors 13

Speed-ups vs. number of threads (IDKONN) / 500-line databases
24.0

1 50attr. < 100 attr. 150 attr.
<+ 200 attr. A 250 attr. 300 attr.
O 350 attr.

18.0

12.0

speed-up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

threads

Fig. 6 Speed-up related to the number of threads. Test databases ranging from 50 to 350 attributes
with 500 lines, on IDKONN.

As we can see, our solution is extremely efficient and scales very well for many
attributes: we almost reach the theoretical maximum linear speed-up progression for
150 attributes or more. For example, the sequential processing of the 350 attributes
database took more than five hours while it spend approximatively 13 minutes using
24 threads on IDKONN. Furthermore, speed-up results are particularly stable from
one architecture to another, meaning that performances do not rely on very specific
architectural features (caches, memory systems...). Figure 7 shows very similar re-
sults on COYOTE (with 32 threads)?.

The 50-attribute database experiment may not seem relevant in a massive par-
allelization problem as its sequential execution time peaks only at 3.3 seconds on
COYOTE. But, with an execution time of less than 0.2 second with 16 threads, this
example illustrates how our approach can still achieve a very tangible acceleration
on this particular case, which appears as crucial for real time or near real time data
mining and applications (e.g., intrusion/fraud detection).

2 Note that due to process running time limitations, we could’nt run tests for databases with more
than 300 attributes on COYOTE.

14 Anne Laurent et al.

Speed-ups vs. number of threads (COYOTE) / 500-line databases
32.0

28.0
< 50attr. /- 150 attr.

200 attr. <+ 250 attr.
O 300 attr.

speed-up

threads

Fig. 7 Speed-up related to the number of threads. Test databases ranging from 50 to 300 attributes
with 500 lines, on COYOTE.

5.2 Memory Limits

The major difficulty for this kind of problems is memory consumption, in partic-
ular because a very large number of candidates - equal to the number of frequent
item pairs - have to be processed at each level. In order to illustrate this situation,
we applied our program on a 30-line and 1500-attribute database. We found 1.6M
frequent items at level 2 but at the next stage, SM more new frequent itemsets were
found having used just 10,000 frequent items of level 2. According to memory con-
sumption pace at this stage, almost 150GB of RAM would have been necessary to
store all level 3 frequent items. As we will explain in the conclusion and perspective
section, these limitations lead us to explore other approaches like parallelization on
distributed memory systems (clusters) that scale better on a memory level.

6 Conclusion and Perspectives

In this paper, we propose an original parallel approach to mine large numeric
databases for gradual patterns like the oldest a people, the higher his/her salary.
Mining these rules is indeed very difficult as the algorithms must perform many
time-consuming operations to get the frequent gradual patterns from the databases.

Efficient parallel mining of gradual patterns on multicore processors 15

In order to tackle this problem, our method intensively uses the multiple proces-
sors and cores that are now available on computers. Parallelism has recently gained
much attention and is one of the most promising solution to manage huge real world
problems. The experiments performed show the interest of our approach, by leading
to quasi-linear speed-ups on problems that were previously very time-consuming or
even impossible to manage, especially in the case of databases containing a lot of
attributes.

This work opens many perspectives, not only based on technical improvements
depending on ad-hoc architectures of the machines, but also based on other data
mining paradigms. First, we will consider closed gradual patterns in order to cut
down the computation runtimes. Second, we will consider pattern growth techniques
[Han et al., 2000] in order to speed up both the sequential and parallel runtimes, and
to avoid consuming too much memory. Finally, we will study the use of another
parallel framework: clusters (including clusters of multi-core machines in order to
benefit from both architectures).

Acknowledgements

The authors would like to acknowledge Lisa Di Jorio for providing the source code
of the implementation of the GRITE algorithm [Di Jorio et al., 2009].

References

[Agrawal and Shafer, 1996] Agrawal, R. and Shafer, J. C. (1996). Parallel mining of association
rules. IEEE Trans. Knowl. Data Eng., 8(6):962-969.

[Agrawal and Srikant, 1994] Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining as-
sociation rules. In Proceedings of the 20th VLDB Conference, pages 487-499.

[Berzal et al., 2007] Berzal, E., Cubero, J.-C., Sanchez, D., Vila, M.-A., and Serrano, J. M. (2007).
An alternative approach to discover gradual dependencies. Int. Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems (IJUFKS), 15(5):559-570.

[Buehrer et al., 2006] Buehrer, G., Parthasarathy, S., and Chen, Y.-K. (2006). Adaptive parallel
graph mining for cmp architectures. In /ICDM, pages 97-106.

[Di Jorio et al., 2008] Di Jorio, L., Laurent, A., and Teisseire, M. (2008). Fast extraction of grad-
ual association rules: A heuristic based method. In IEEE/ACM Int. Conf. on Soft computing as
Transdisciplinary Science and Technology, CSTST 08.

[Di Jorio et al., 2009] Di Jorio, L., Laurent, A., and Teisseire, M. (2009). Mining frequent gradual
itemsets from large databases. In Int. Conf. on Intelligent Data Analysis, IDA’09.

[Fiot et al., 2008] Fiot, C., Masseglia, F., Laurent, A., and Teisseire, M. (2008). Gradual trends in
fuzzy sequential patterns. In Proc. of the Int. Conf. on Information Processing and Management
of Uncertainty in Knowledge-based Systems (IPMU), pages 456—463, Malaga, Spain.

[Han and Kamber, 2006] Han, J. and Kamber, M. (2006). Data Mining: Concepts and Techniques.
The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann Publishers, 2nd
edition.

16 Anne Laurent et al.

[Han et al., 2000] Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate
generation. In SIGMOD’00 : Proceedings of the International Conference on Management of
Data, pages 1-12, Dallas, USA.

[Hiillermeier, 2002] Hiillermeier, E. (2002). Association rules for expressing gradual dependen-
cies. In Proc. of the 6th European Conf. on Principles of Data Mining and Knowledge Discovery,
PKDD’ 02, pages 200-211. Springer-Verlag.

[Laurent et al., 2009] Laurent, A., Lesot, M.-J., and Rifqi, M. (2009). Graank: Exploiting rank
correlations for extracting gradual dependencies. In Proc. of FQAS 09.

[Liu et al., 2007] Liu, L., Li, E., Zhang, Y., and Tang, Z. (2007). Optimization of frequent itemset
mining on multiple-core processor. In VLDB ’07: Proceedings of the 33rd international confer-
ence on Very large data bases, pages 1275-1285. VLDB Endowment.

[Lucchese et al., 2007] Lucchese, C., Orlando, S., and Perego, R. (2007). Parallel mining of fre-
quent closed patterns: Harnessing modern computer architectures. In /CDM, pages 242-251,
Omaha, USA.

[Masseglia et al., 2004] Masseglia, F., Poncelet, P., and Teisseire, M. (2004). Pre-processing time
constraints for efficiently mining generalized sequential patterns. In International Syposium on
Temporal Representation and Reasoning, pages 87-95. IEEE Computer Society.

[Pasquier et al., 1999] Pasquier, N., Yves, Bastide, Y., Taouil, R., and Lakhal, L. (1999). Efficient
mining of association rules using closed itemset lattices. Information Systems, 24:25-46.

[Tatikonda and Parthasarathy, 2009] Tatikonda, S. and Parthasarathy, S. (2009). Mining tree-
structured data on multicore systems. In VLDB ’09: Proceedings of the 35th international con-
ference on Very large data bases, pages 694—705, Lyon, France.

[Uno, 2005] Uno, T. (2005). Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent
itemset mining. In In Proc. of the ACM SIGKDD Open Source Data Mining Workshop on
Frequent Pattern Mining Implementations, pages 77-86, Chicago, USA.

[Yan and Han, 2002] Yan, X. and Han, J. (2002). gspan: Graph-based substructure pattern mining.
In ICDM °02: Proceedings of the 2002 IEEE International Conference on Data Mining, page
721, Washington, DC, USA. IEEE Computer Society.

[Zaki, 1999] Zaki, M. J. (1999). Parallel sequence mining on shared-memory machines. In Large-
Scale Parallel KDD Systems Workshop, KDD Conference, pages 161-189, San-Diego, USA.

[Zaki et al., 1997] Zaki, M. J., Parthasarathy, S., Ogihara, M., and Li, W. (1997). Parallel algo-
rithms for discovery of association rules. Data Min. Knowl. Discov., 1(4):343-373.

