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A computational framework for the regularization
of adjoint analysis in multiscale PDE systems
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Abstract

This paper examines the regularization opportunities available in the adjoint analysis and
optimization of multiscale PDE systems. Regularization may be introduced into such op-
timization problems by modifying the form of the evolution equation and the forms of the
norms and inner products used to frame the adjoint analysis. Typically, L2 brackets are used
in the definition of the cost functional, the adjoint operator, and the cost functional gradient.
If instead we adopt the more general Sobolev brackets, the various fields involved in the
adjoint analysis may be made smoother and therefore easier to resolve numerically. The
present paper identifies several relationships which illustrate how the different regulariza-
tion options fit together to form a general framework. The regularization strategies proposed
are exemplified using a 1D Kuramoto–Sivashinsky forecasting problem, and computational
examples are provided which exhibit their utility. A multiscale preconditioning algorithm is
also proposed that noticeably accelerates convergence of the optimization procedure. Ap-
plication of the proposed regularization strategies to more complex optimization problems
of physical and engineering relevance is also discussed.
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1 Introduction

Adjoint analysis forms a foundation for many applications of model-based control
and estimation theory to nonlinear fluid systems, including:

A) transonic airfoil shape optimization [1],
B) optimization of open-loop control distributions for transitional and turbulent

flow systems [2], [3], [4], [5], and
C) state reconstruction and parameter estimation in numerical weather prediction

(known operationally as “4D-VAR”) [6].
For recent general reviews we refer the reader to, e.g., Gunzburger [7] and Sritharan
[8]. In order to apply adjoint analysis, an appropriately-defined cost functional is
first expressed which represents mathematically the physical objective in perform-
ing the computational optimization. In problem A, the objective is typically to max-
imize the lift/drag ratio of the airfoil for a range of different cruise configurations
while respecting a variety of practical “feasibility” constraints related to the con-
struction of the airfoil. In problem B, the objective is typically to reduce drag, sur-
face pressure fluctuations, or flow-induced noise or to reduce the kinetic energy of
the flow perturbations in order to inhibit transition to turbulence, though in combus-
tion applications the objective is typically the opposite—that is, to excite the flow
with minimal control input in order to enhance turbulent mixing. In problem C, the
objective is typically to reconcile the numerical weather model with recent weather
measurements in order to obtain accurate weather forecasts. All of the above prob-
lems in fact represent inverse problems, in which one seeks to determine inputs to
the system such that the outputs will have desired properties. Once the control ob-
jective is expressed mathematically as a cost functional, an appropriately–defined
adjoint field may be used as a tool to determine an appropriately–defined gradi-
ent of the cost functional with respect to the control variables. The adjoint field
calculation is thus a central component of high-dimensional gradient-based control
optimization strategies. Refs. [9] and [5] contain brief reviews of our perspective
on a few of the relevant issues related to such problems.

Even though the mathematical framework for adjoint-based optimization is fairly
mature and has already been used successfully in a broad range of applications in
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fluid mechanics, many flow systems still present fundamental challenges to this
approach. Due to their nonlinear nature, fluid-mechanical systems are often char-
acterized by energetic motions over a broad range of length scales and time scales.
Such multiscale systems present difficulties for numerical characterization. Adjoint
analyses of such flows must be crafted with care in order to be well behaved over
this full range of scales. Inverse problems are often ill–posed in the sense that mul-
tiple solutions which locally minimize the relevant cost functional exist, and the
solution found by the optimization algorithm does not necessarily have a continu-
ous dependence on the data provided. For instance, in numerical weather predic-
tion, the problem of finding the future state of the nonlinear model based on past
measurements is often ill–posed in this regard. In such problems, errors magnify
exponentially in time in the linearized (“perturbation”) analysis. In the iterative nu-
merical solution of such an inverse problem in the nonlinear setting, a small change
in the data provided (the measurements) can sometimes lead to a large change in
the forecast. Even in the control of laminar flows, adjoint fields typically grow ex-
ponentially when they are calculated (in reverse time), and can thus be exceedingly
difficult to resolve in regions where flow perturbations amplify quickly, such as in
thin shear layers.

The presence of a broad range of interacting length– and time–scales thus compli-
cates an adjoint–based analysis of a nonlinear multiscale system by causing diffi-
culties of twofold nature: on the one hand, the dependence of the solution on the
data in such cases is irregular, resulting in the presence of many local minima of
the cost functional; on the other hand, the various fields involved in an adjoint anal-
ysis are not smooth and therefore difficult to resolve numerically. These two issues
are related, and may be addressed, at least partially, by considering the regularity
of the various fields involved in the analysis of such systems. We therefore define
the term regularization rather broadly in the present work as a reformulation of an
adjoint–based algorithm in such a manner that at least some of the fields involved
in this analysis are more “smooth”, in the sense that the energy spectrum in these
fields decays more rapidly with wavenumber at the length scales of concern from
the perspective of a numerical implementation (throughout this paper by “energy
spectrum” we will mean the “kinetic energy spectrum”). Such regularization will
thus render a given optimization problem more amenable to numerical treatment,
and may sometimes turn an initially ill–posed problem into a well–posed problem.
A more narrow definition of the term regularization is often adopted in the pre-
cise mathematical study of ill–posed inverse problems (see [10], [11], and [12]);
however our broader usage of the term is adequate for the present investigation.

Though great attention has been paid to the appropriate treatment / modeling of
subgrid–scale (SGS) effects in the numerical simulation literature, much less is
known about how to address the multiscale nature of fluid–mechanical systems in
adjoint analysis. The central issue is that norms and inner products, collectively to
be referred to in this paper as “brackets”, are implied, if not explicitly stated, at
three distinct steps of the derivation of an adjoint analysis. Each of these brack-
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ets implies a relative weighting between the various length scales and time scales
in the relationship expressed. “Traditional” approaches have typically selected L2

brackets at most, if not all, of these steps in the adjoint formulation. However, this
choice is by no means unique. Other choices are sometimes more appropriate when
the system must be solved on a computer with finite-precision arithmetic using a
discrete numerical grid in both space and time. Modifying the definitions of the
three brackets used to frame the adjoint analysis facilitates a range of distinct but
related regularization opportunities. Capitalizing on these regularization opportu-
nities can result in significantly smoother space–time systems requiring numerical
approximation in the adjoint analysis. The purpose of the present paper is to clarify
these important regularization opportunities and to illustrate how they may be used
in concert to increase the speed, stability, and accuracy of adjoint-based numerical
optimization algorithms.

The possibility of achieving a regularizing effect through modification of some of
the brackets used in the derivation of an adjoint algorithm was already recognized
by Collis et al. [13]. A similar set of ideas, but in the finite-dimensional setting, was
earlier suggested by Heinkenschloss & Vicente [14]. Concepts related to the use of
Sobolev inner products to extract different cost functional gradients were devel-
oped by Neuberger [15], who employed these ideas in the solution of direct prob-
lems involving differential equations. Applications to optimization problems were
recently considered by Sial et al. in [16]. Other approaches explicitly addressing
data assimilation in multiscale environments include the works of Liu [17], Brandt
& Zaslavsky [18], Grimstad & Mannseth [19], and Brusdal & Mannseth [20]. In
particular, [17] and [20] invoke the concept of “basis norm rescaling,” which is
further elaborated here. Multigrid approaches to optimization problems were stud-
ied by Lewis & Nash [21]. Similar ideas also appear in the Numerical Weather
Prediction (NWP) literature: e.g., Lorenc [22] discussed performing optimization
with respect to a rescaled variable, whereas Thepaut & Moll [23] recognized the
possibility of using various inner products to precondition the adjoint algorithm.
An adaptive method to enforce smoothness constraints in data assimilation was re-
cently presented by Lin et al. [24]. In the present study, we attempt to synthesize
these various regularization opportunities into a more unified framework and char-
acterize the interplay between the various definitions of the brackets upon which
adjoint analyses are based.

To make this study concrete, the bulk of the paper illustrates how these regulariza-
tion techniques may be applied to a Kuramoto-Sivashinsky model system. This 1D
model problem illustrates self-sustained chaotic behavior of a multiscale nature,
and thus provides an appropriate testbed for the present study. The Kuramoto–
Sivashinsky equation was used successfully as a low-dimensional prototype for
complicated fluid systems by Holmes, Lumley & Berkooz [25]. In fact, many ad-
vanced flow control strategies were initially investigated using similar 1D models;
see, e.g., Choi et al. [26], Kunisch & Volkwein [27], and Atwell, Borggaard, &
King [28].
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In §2 we identify and discuss in general terms the four fundamental classes of reg-
ularization opportunities available in the framing of an adjoint analysis. As a point
of reference, the standard optimization framework for the Kuramoto–Sivashinsky
model is formulated in §3. The different regularization possibilities available in
framing the adjoint analysis, and interrelationships between these different formu-
lations, are discussed in §4, and some numerical examples are presented in §5.
Several extensions of this study are also underway, and are briefly introduced in
§6. Concluding remarks are presented in §7.

2 The four fundamental classes of regularization opportunities

In the adjoint–based optimization of unsteady PDE systems in general, there are
three spatial domains of interest: the domain on which cost functional is defined,
which we denote Ω1, the domain over which the state of the system modeled, which
we denote Ω2, and the domain on which the control is applied, which we denote Ω3.
In an unsteady problem, the system model is defined on Ω2 over some time interval
[0,T ]. The cost functional which measures this model on Ω1 may average over the
interval [0,T ], as in “regulation” problems, or may focus the attention on the state
at time T , which is called a “terminal control” problem. The control on Ω3 can also
be defined over [0,T ], when an unsteady control distribution is sought, or may be
defined at time t = 0, as done in the forecasting problem (where the “control” is
actually the initial condition). In the process of adjoint-based optimization, brack-
ets are used (or implied, if not explicitly stated) on all three of these space–time
domains.

In the continuous setting, the form of each of these three brackets may incorpo-
rate either derivatives or “anti-derivatives” in both space and time. Mathemati-
cally, these brackets are related to the natural measures for functions defined in
the Sobolev space H p(0,T ;Hq(Ωi)), where q is the differentiability order in space,
p is the differentiability order in time, and Ωi denotes the spatial domain. Note that
Sobolev brackets with negative differentiability indices can also be considered in
this framework by taking p and/or q negative. Such brackets are natural alterna-
tives to the L2 bracket when considering functions of different degrees of regularity
in both space and time. How each of these brackets is defined, in addition to any
smoothing that might be applied to the state equation itself, has important conse-
quences on the smoothness of the several variables in the optimization problem, as
summarized in Figure 1. As a shorthand, we use Ψ1, Ψ2, and Ψ3 to identify the
brackets selected for the three space–time domains of interest in this problem.
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nonlinear state equation

cost functional
J = ‖ · ‖2

Ψ1

adjoint identity
〈v∗,Lv′〉Ψ2 = 〈L∗v∗,v′〉Ψ2 +b

gradient extraction
J ′ = (∇J ,φ′)Ψ3

Fig. 1. The four essential components of the adjoint-based optimization process. As out-
lined in the text, each component of this process is associated with a distinct opportunity
for regularization.

Note that, even though we have borrowed certain concepts from the functional
analysis literature in the present discussion and much of the presentation in this
paper will be in a compact infinite-dimensional notation to facilitate interpretation,
the present paper specifically does not concern the problem of functional analy-
sis, which would involve the mathematical characterization of the precise degree
of differentiability of each of the quantities involved in the optimization process.
Functional analysis is essential for establishing well–posedness (i.e., existence and
uniqueness of solutions, and their continuous dependence on data) for many opti-
mization problems governed by PDEs, however, it provides little practical advice
regarding the efficient numerical solution of the corresponding optimization prob-
lems in the finite–dimensional setting, an issue which is of primary interest to us
here. Furthermore, well–posedness has not yet been established (even in the uncon-
trolled setting) for many systems important from the physical and engineering point
of view, such as Navier–Stokes systems with large data. Nevertheless, optimization
problems governed by such PDEs are very important from the application perspec-
tive, and in this work we develop a generic computational framework which does
not depend on how much is known a priori about well–posedness of the underly-
ing PDE system. We will assume (without further justification) is that the energy
content of all of the fields involved (the control, the state, etc.) eventually decay ex-
ponentially with length scale, and thus belong to the class C∞(0,T ;C∞(Ωi)), so that
they may be differentiated as many times as necessary in the analysis that follows.
In fact, in our finite-dimensional calculations, we will typically form some type of
spectral truncation so that the energy content of the fields we actually compute are
precisely zero at sufficiently small length scales. To summarize, the present paper is
not about the mathematical characterization of when a particular optimization prob-
lem governed by PDEs is well–posed, but rather it is about the engineering problem
of how to get adjoint analysis to work efficiently on multiscale systems obtained
by discretizing a given PDE optimization problem, whether or not such a charac-
terization of well–posedness of the corresponding infinite–dimensional problem is
tractable.
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The first regularization opportunity is given by adding an artificial (but well-motivated)
term to the discretized state equation itself. Two common examples are dynamic
subgrid-scale models (in turbulence research) and hyperviscosity (in numerical
weather prediction). Addition of such a term to the numerical model is useful for
tuning the behavior of the numerical model at the unresolvable scales, and may
also be needed for numerical stability. In addition to modifying the actual govern-
ing equation, we can also consider its different derived forms (e.g., the vorticity
form instead of the velocity-pressure form of the Navier-Stokes equation). These
different yet equivalent forms may serve to focus on different aspects of the dy-
namics in numerical simulations and adjoint analyses thereof.

The second regularization opportunity is given by the definition of the cost func-
tional. As mentioned previously, the cost functional can take any of a wide variety
of forms depending on the problem under consideration. However, in most such
formulations, the cost functional involves the norm of a flow quantity taken over
some subdomain of the space–time domain under consideration. Selecting for this
purpose a norm Ψ1 which incorporates either derivatives or anti-derivatives, instead
of using the standard L2 norm, effectively builds in a “filter” into the definition of
the cost functional, thereby allowing extra emphasis to be placed on certain scales
of interest in the multiscale problem. Note that the cost functional may also incor-
porate a term penalizing the magnitude of the control on Ω3, using an appropriate
norm in order to limit the magnitude of the control that results from the optimiza-
tion 1 . Such an approach is known as Tikhonov regularization [29]. Analysis of
the effect of this additional term on the stability of the optimization algorithm is
deferred to §4.5.6.

The third regularization opportunity is given by the form of the inner product which
is used to define the adjoint operator and, ultimately, the adjoint field itself. Incor-
porating derivatives or anti–derivatives into the definition of the inner product Ψ2,
instead of using the standard L2 inner product, can be useful to obtain well–behaved
(that is, numerically tractable) adjoint operators.

Finally, the fourth regularization opportunity is the definition of the inner prod-
uct used to extract the cost functional gradient. Incorporating derivatives into the
inner product Ψ3, instead of using the standard L2 inner product, has the effect
of scale-dependent filtering, and allows one to extract smoother gradients, thereby
preconditioning the optimization process.

The above regularization opportunities fall into two categories: those which affect
the descent direction (modifying the cost function and the gradient extraction pro-
cedure) and those which affect how a given gradient is computed (modifying the
form of the governing equation and the form of the adjoint identity). In the discrete

1 Note that inclusion of such a term is sometimes, but not always, necessary to insure that
the optimization problem has a bounded solution. See [5] for further discussion.
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setting, the options belonging to the first category affect the conditioning of the op-
timization problem, whereas the options belonging to the second category affect the
complexity of the gradient computation. In the present paper we characterize the in-
terplay of the different regularization options in the discrete setting and discuss how
they can be used in concert to improve adjoint–based analyses of difficult multiscale
problems of both physical and engineering interest, such as high Reynolds–number
turbulence. In our analysis below we will seek to delineate the different generic
opportunities available, but will not attempt to formulate specific recommendations
regarding how they should be applied in a given problem–specific context.

3 Forecasting a Kuramoto–Sivashinsky system: the standard framework

In this section, we first describe three different yet equivalent forms of a dynamically–
rich 1D model system governed by the Kuramoto–Sivashinsky equation, then out-
line a relatively standard adjoint-based algorithm for the forecasting of this system
based on limited noisy measurements. In the section that follows, we illustrate, in
turn, the application of the four regularization opportunities summarized above.
The Kuramoto–Sivashinsky equation ([30], [31]) has been widely studied due to
its chaotic, pattern-forming behavior. Out of the several different normalizations of
the parameters of this system which are available in the literature, we have selected
the one proposed by Hyman and Nicolaenko [32], in which the system is written





∂tu+4∂4
xu+κ

[
∂2

xu+
1
2

(∂xu)2
]

= 0, x ∈ Ω, t ∈ [0,T ],

∂i
xu(0, t) = ∂i

xu(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

u(x,0) = ψ, x ∈ Ω,

(1)

where we define ∂ix , ∂i

∂xi . Integrating this system over the domain Ω , [0,2π], the

evolution of the mean of u is given by ∂t
R 2π

0 udx = −(κ/2)
R 2π

0 (∂xu)2 dx 6= 0. For
this reason, it is common to transform the system (1) into a different form, which
is achieved by first differentiating it with respect to x and then re-expressing it in
terms of a new variable v , ∂xu such that





∂tv+4∂4
xv+κ

(
∂2

xv+ v∂xv
)

= 0, x ∈ Ω, t ∈ [0,T ],

∂i
xv(0, t) = ∂i

xv(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

v(x,0) = ∂xψ , φ, x ∈ Ω.

(2)

This is the form of the Kuramoto-Sivashinsky system that is studied most often.
As v = ∂xu and u is periodic in x, it follows immediately that

R 2π
0 vdx = 0 for all

t. The variable u can be recovered from v by inverting the differential operator ∂x

and accounting for the mean of u properly. For this purpose we define the “anti–

8



derivative” operator ∂−1
x such that

∂−1
x z(x) ,

Z x

0
z(x′)dx′−

1
2π

Z 2π

0

Z s

0
z(x′)dx′ ds.

Note that the constant is selected such that
R 2π

0 ∂−1
x z(x)dx = 0. Using this operator,

we may recover u from v with

u(x, t) = ∂−1
x v(x, t)+

1
2π

Z 2π

0
ψ(x′)dx′−

κ
4π

Z t

0

Z 2π

0
[v(x′, t ′)]2dx′ dt ′.

Yet another form of the Kuramoto-Sivashinsky system can be obtained by further
differentiating the system (2) and defining w , ∂xv





∂tw+4∂4
xw+κ

(
∂2

xw+w2 +∂−1
x w∂xw

)
= 0, x ∈ Ω, t ∈ [0,T ],

∂i
xw(0, t) = ∂i

xw(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

w(x,0) = ∂xφ , ϕ, x ∈ Ω.

(3)

In the derivations to come, we will primarily focus on system (2), which we will dub
the primitive formulation. By analogy with the equations of fluid dynamics, we will
refer to the integral form (1) as the streamfunction formulation and the derivative
form (3) as the vorticity formulation of the Kuramoto-Sivashinsky system; the same
qualifiers will be used with regard to the corresponding variables. In the above
equations the parameter κ has an interpretation similar to Reynolds number in fluid
systems. For sufficiently large values of this parameter, the Kuramoto–Sivashinsky
system exhibits self–sustained, chaotic dynamics. Issues related to the functional
setting of this equation and characterization of its attractor are discussed in Temam
[33].

We now review the relatively standard framework for adjoint–based data assim-
ilation in PDE systems by focusing on an admittedly contrived, yet dynamically
rich, 1D model forecasting problem based on the Kuramoto–Sivashinsky system
discussed above. Extensions of these approaches for the regularization of adjoint
analyses in more realistic forecasting and control problems in fluid mechanics are
discussed in §6. In the model problem to be considered, the three spatial domains
Ωi, i = 1,2,3, mentioned in the previous section happen to coincide. Note that this
will not necessarily be the case in general (cf. §6.2). More precisely, the “control”,
which is taken to be the initial condition φ in this problem, is defined on Ω = [0,2π]
at time t = 0, whereas both the system evolution and the cost functional are defined
on Ω× [0,T ]. We begin by first defining the norm

∥∥∥z
∥∥∥

2

L2(0,T ;L2(Ω))
,

Z T

0

Z 2π

0
z2 dxdt, (4)

and then attempting to minimize the cost functional

J (φ) =
1
2

∥∥∥H v− y
∥∥∥

2

L2(0,T ;L2(Ω))
, where y = H vact +η, (5)
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vact is the “actual” state (which is unknown to the forecasting algorithm), and v is
the “reconstructed” state, which is assumed to be related to the initial state φ (the
quantity to be determined in the reconstruction problem) via the primitive form (2)
of the Kuramoto-Sivashinsky system. Note that H denotes the “observation” oper-
ator, y denotes the corresponding noisy measurements taken of the system, and η
denotes the measurement noise. The problem to be solved is to find the initial state
φ in the reconstruction problem which will minimize J , thereby minimizing the de-
viation of the measurements from the corresponding quantities in the reconstructed
system. The observation operator H which we have selected for this model prob-
lem is based on the cosine decomposition of the flow system. To define H , we will
make use of a linear projection operator Pr defined such that

Prz ,

[
1
π

Z 2π

0
cos(rx′)z(x′)dx′

]
cos(rx). (6)

Note that the projection operator so defined satisfies P2
r = Pr. We now define the

observation operator as

H , ∑
r∈Λr

Pr, (7)

where Λr is the set of modes which we choose to observe.

For J (φ) to be minimized by φ, it is necessary that, in the immediate neighborhood
of φ, the perturbation J ′ of the cost functional J that arises from perturbations εφ′ to
the control distribution φ vanish for all feasible directions φ′ as ε is made small. To
be precise, the quantity J ′(φ;φ′) is defined by a limiting process as the differential2

of the cost functional J with respect to φ such that

J ′(φ;φ′) , lim
ε→0

J (φ+ εφ′)− J (φ)

ε
. (8)

To summarize, if J (φ) is minimized by φ, then J ′(φ;φ′) = 0 for all feasible φ′; this is
referred to as the first-order necessary optimality condition for the present problem.
Higher-order differentials may also be considered (namely, the second-order suf-
ficient optimality condition), however, we will not make use of such higher-order
expressions in this paper.

The differential of the cost functional defined in (5) can now be calculated in the
neighborhood of some state v(φ), which yields

J ′(φ;φ′) =
Z T

0

Z 2π

0
(H v− y)H v′ dxdt, (9)

2 In the present work we assume that J (φ) is sufficiently smooth that it is differentiable,
which is a usual assumption in numerical optimization studies.
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where, by linearization of (2), it follows that v′(φ;φ′) is the solution of the system




Lv′ = 0, x ∈ Ω, t ∈ [0,T ],

∂i
xv′(0, t) = ∂i

xv′(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

v′(x,0) = φ′, x ∈ Ω,

(10)

where the linear operator L is

Lv′ , ∂tv
′ +4∂4

xv′ +κ
[
∂2

xv′ + v∂xv′ +(∂xv)v′
]

(11)

and v(φ) is the solution of (2). Note that, as was the case with v, it follows immedi-
ately that

R 2π
0 v′ dx = 0 for all t.

Numerically, the optimal initial state φ and the corresponding evolution of the sys-
tem v cannot be determined solely from the mathematical statement of the first-
order necessary optimality condition, that is, the vanishing of the differential of the
cost functional at the optimum distribution of φ for all feasible φ′. A stable numer-
ical procedure to find such a minimum of J (φ) even when no good initial guess of
the optimum controls is available (which is quite often the case) is to use an itera-
tive gradient-based optimization procedure: given some initial guess φ0 for the ini-
tial conditions φ, consecutive refinements φ(n) are computed using a gradient-based
optimization algorithm 3 until convergence to a (local) minimum of J is obtained.
In order to apply such a gradient-based optimization procedure, we need somehow
to define a gradient in the space of the control distributions. This is accomplished
by identifying the differential (9) as an appropriately-defined inner product of a
quantity, which we will denote ∇J , with the control perturbation φ′. The quantity
∇J so defined represents the rate of change in J when φ is updated an infinitesimal
amount in the direction φ′. We thus identify ∇J as a gradient in the space where the
metric, which effectively defines angles and distances, is given by the inner product
selected. Significantly, note that different choices of this inner product will result
in different gradients of J for a particular value of the control distribution φ. How-
ever, for convex J , all such definitions of the gradient eventually lead to the same
minimizer (that is, the optimal value of φ), at which ∇J = 0 regardless of the inner
product used to define the gradient.

The most common choice for the inner product used to extract the gradient ∇J from
the expression for J ′ is the L2 inner product and, for the time being, our derivation
is performed using this inner product, that is

J ′ ,

(
∇J ,φ′

)
L2(Ω)

,

Z 2π

0
(∇J )φ′ dx. (12)

3 In such high–dimensional optimization problems, quasi–Newton methods utilizing Hes-
sians of the cost functional are becoming increasingly popular (see, e.g., Nocedal and
Wright [34]). The concepts discussed in this paper appear to extend to such optimization
algorithms; such extensions will be considered in future work.
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In order to identify ∇J , we first need to transform the expression (9) into a form in
which the control perturbation φ′ is factored out in a convenient manner, as shown
above. Note that v′ is related to φ′ through the involved yet linear relationship (10).
To accomplish this factorization, we introduce the following inner product

〈
z1,z2

〉
L2(0,T ;L2(Ω))

,

Z T

0

Z 2π

0
z1 z2 dxdt. (13)

Based on this bracket, we may derive an adjoint operator L ∗ and a corresponding
boundary term bL from the following identity

〈
v∗,Lv′

〉
L2(0,T ;L2(Ω))

=
〈

L∗v∗,v′
〉

L2(0,T ;L2(Ω))
+bL . (14)

Using integration by parts and the definition of L given in (11), it follows that

L∗v∗ = −∂tv
∗ +4∂4

xv∗ +κ
(
∂2

xv∗− v∂xv∗
)
, and (15)

bL =

[
Z 2π

0
v∗ v′ dx

]t=T

t=0
+

{
Z T

0
4
[
v∗∂3

xv′− (∂xv∗)∂2
xv′ +(∂2

xv∗)∂xv′− (∂3
xv∗)v′

]

+κ
[
v∗∂xv′− (∂xv∗)v′ + v∗vv′

]
dt

}x=2π

x=0
.

Making use of the adjoint operator derived above, we may now define an adjoint
system in the following (as yet, arbitrary) manner





L∗v∗ = H ∗(H v− y) , f , x ∈ Ω, t ∈ [0,T ],

∂i
xv∗(0, t) = ∂i

xv∗(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

v∗(x,T ) = 0, x ∈ Ω,

(16)

where H ∗ is defined in a manner analogous to L∗ in (14), and thus it is easy to show
that H is self-adjoint (that is, that H ∗ = H ). We will refer to (16) as the primitive
adjoint system and to v∗ as the primitive adjoint variable. We now combine the
state, perturbation, and adjoint systems [(2), (10), and (16)] into the identity given
in (14). Note that all the boundary terms in bL resulting from integrations by parts
in space vanish due to periodicity 4 . Due to the choice of the RHS forcing term in
the adjoint system (16), we may use (14) to re-express the differential given in (9)
in the desired factored form

J ′(φ;φ′) =

Z 2π

0
v∗
∣∣∣
t=0

φ′ dx =
(

v∗
∣∣∣
t=0

,φ′
)

L2(Ω)
, (17)

where v∗ denotes the solution of the adjoint problem defined in (16). Finally, note
that the mean of the adjoint field defined by (16) is not zero, yet all feasible φ′ under
consideration have zero mean mode. Because of this restriction on the class of φ′

4 Without further mention, we will make use of this fact in many of the transformations to
follow.
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under consideration, (17) is in fact equivalent to J ′(φ;φ′) =
(

v̄∗
∣∣
t=0,φ

′
)

L2(Ω)
, where

the overbar implies that the given variable has the mean mode removed, that is,

z̄ , z−
1

2π

Z 2π

0
zdx. (18)

Note that v̄∗ denotes an “orthogonal projection” with respect to the inner product
(12) of the adjoint variable v∗ onto the space of feasible φ′. Thus, the gradient which
we seek in the space of feasible φ′, as indicated in (12), may now be identified as

∇J = v̄∗
∣∣∣
t=0

. (19)

The gradient so defined can now be used to find the optimal feasible initial condi-
tion using any of a number of standard gradient-based optimization algorithms.

4 Regularizing the Kuramoto–Sivashinsky forecasting problem

In the subsections that follow, we discuss how the regularization opportunities in-
troduced in §2 can be applied to fine-tune the adjoint algorithm outlined in §3
to better treat multiscale phenomena. In this discussion, we will first investigate
adjoint analyses based on the different yet equivalent forms (1) and (3) of the gov-
erning equation (2). We will then consider a variety of alternative definitions of the
three distinct brackets at the heart of the adjoint formulation, as outlined in §2 and
listed in the above “standard” formulation as

• the norm ‖ · ‖Ψ1 in (4), which is used to define the cost functional,
• the inner product 〈·, ·〉Ψ2 in (13), which is used to define the adjoint operator, and
• the inner product (·, ·)Ψ3 in (12), which is used to define the gradient.

Note that, in the standard formulation given in §3, L2 brackets over the appropriate
space–time domains were used in all three cases. In the subsections to come, we
will discuss at length the effects of various choices for Ψ1, Ψ2, and Ψ3. In particular,
we will make extensive use of the following brackets

∥∥∥z
∥∥∥

2

L2(0,T ;Hq(Ω))
,

Z T

0

Z 2π

0
(∂q

xz)2 dxdt, (20a)

〈
z1,z2

〉
L2(0,T ;Hq(Ω))

,

Z T

0

Z 2π

0
(∂q

xz1)(∂q
xz2) dxdt, (20b)

(
z1,z2

)
Hq(Ω)

,

Z 2π

0
(∂q

xz1)(∂q
xz2)dx, (20c)

which are related to seminorms on the Sobolev spaces Hq(Ω). To simplify the
nomenclature, we will refer to these brackets as simply Hq inner products or norms
(though we will not make use of any of the sophisticated mathematical machinery
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of functional analysis in Sobolev spaces). For simplicity, we will restrict our at-
tention to the cases with q = 0 and ±1, though higher-order derivatives may also
be considered. Note that the special case of q = 0 reduces the Hq brackets defined
above to the L2 cases considered previously, as defined in (4), (13), and (12). Also,
the present paper will focus on brackets incorporating spatial derivatives only. For-
mulation generalizing the bracket definitions to include time derivatives as well as
space derivatives is also possible, and is discussed briefly in Appendix A. Finally,
note that it is straightforward to extend these bracket definitions by taking linear
combinations of the Hq brackets for various values of q. This fact was recognized
previously in [5] for the purpose of extending the definition of the norm used in
the cost functional, thereby focusing the cost functional on the particular range
of length scales of interest in the system under consideration. In the present work
(in §4.4), we will develop this extension further by demonstrating how it may be
applied to the definition of the inner product used to extract the gradient, thereby
preconditioning the optimization process in a tunable manner. It should be empha-
sized that, in accordance with our ultimate interest in discrete problems, the sub-
scripts used on the brackets (20a)-(20c) do not imply any differentiability property
of the states z1 and z2, but rather a different weighing of the Fourier components
of their discretizations. In this discussion, the following inner product, defined as a
weighted linear combination of the L2, H1, and H−1 inner products, will be used
heavily

(
z1,z2

)
W l1,l−1

,
l2
−1

(1+ l2
1)(1+ l2

−1)

Z 2π

0

[
z1 z2+

l2
1 l2
−1

l2
1 + l2

−1

(∂xz1)(∂xz2)+
1

l2
1 + l2

−1

(∂−1
x z1)(∂−1

x z2)
]

dx. (21)

The justification for the specific choice used above for the coefficients weighing the
three terms will become apparent in §4.4. Taking the appropriate limits as l1 and
l−1 approach zero and infinity, it follows that

(
z1,z2

)
W 0,∞

=
(

z1,z2

)
L2(Ω)

,
(

z1,z2

)
W ∞,∞

=
(

z1,z2

)
H1(Ω)

,
(

z1,z2

)
W 0,0

=
(

z1,z2

)
H−1(Ω)

.

The form
(

z1,z2

)
W l1,∞

is thus a linear combination of the L2 and H1 inner products,

whereas
(

z1,z2

)
W 0,l−1

is a linear combination of the H−1 and L2 inner products.

We will use the symbols W l1,l−1 , W l1,∞ and W 0,l−1 to refer to these different inner
products. Symbols representing the spatial components of the different brackets
will be used as superscripts to identify the way in which the different objects (that
is, the cost functionals, the adjoint operators with the associated adjoint variables,
and the cost functional gradients) are constructed. When such symbols are omitted,
L2 brackets are implied (see §3).
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4.1 The adjoints of alternative forms of the evolution equation

As indicated in (1) and (3), by applying integral or differential operators to the
governing equation in the primitive form (2) and suitably redefining the state vari-
able, we obtain a family of systems representing the same conservation law, but
emphasizing different aspects (length scales) of the system dynamics. Needless to
say, all of these systems are formally equivalent. However, they are characterized
by different energy spectra. Thus, we can expect that the adjoint operators derived
from these equations might be different as well, with some forms possibly being
easier to compute than others. In this subsection, we present two alternative forms
of the adjoint operator using the standard L2 brackets in all three steps of the adjoint
derivation, essentially reproducing the “standard” derivation of §3, but applying it
to the streamfunction and vorticity forms of the governing equation presented in (1)
and (3). The subsequent three subsections discuss the effects of choosing alterna-
tive forms for the three brackets used in the adjoint derivation. A detailed summary
of the inter–relationships between these options is presented in §4.5.

4.1.1 The standard adjoint derivation based on the vorticity formulation

We now proceed to minimize the original cost functional (5) by modeling the sys-
tem evolution with the vorticity form (3) of the Kuramoto–Sivashinsky system.
Specifically, we consider a cost functional written in the form

Jϕ(ϕ) =
1
2

∥∥∥H ∂−1
x w− y

∥∥∥
2

L2(0,T ;L2(Ω))
. (22)

Note that, as ∂−1
x w = v, Jϕ is equivalent to J , but depends on the control variable

ϕ = ∂xφ, that is, Jϕ(∂xφ) = J (φ). The differential of this cost functional can now be
expressed as

J ′
ϕ(ϕ;ϕ′) = −

Z T

0

Z 2π

0

[
∂−1

x H ∗(H ∂−1
x w− y)

]
w′ dxdt, (23)

where integration by parts was used to reveal explicit dependence of J ′
ϕ on the

vorticity perturbation w′(ϕ;ϕ′). The boundary terms obtained as a result of this
transformation vanish due to periodicity of all the variables involved. The field w′

satisfies the system obtained by linearizing (3)




M w′ = 0, x ∈ Ω, t ∈ [0,T ],

∂i
xw′(0, t) = ∂i

xw′(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

w′(x,0) = ϕ′, x ∈ Ω,

(24)

where the linear operator M is

M w′ , ∂tw
′ +4∂4

xw′ +κ
(
∂2

xw′ +2ww′ +∂−1
x w′ ∂xw+∂−1

x w∂xw′
)

(25)
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and w(ϕ) is the solution of (3). By an identity of the same form as (14), that is,

〈
w∗,M w′

〉
L2(0,T ;L2(Ω))

=
〈

M ∗w∗,w′
〉

L2(0,T ;L2(Ω))
+bM , (26)

it follows [cf. (15)] that

M ∗w∗ = −∂tw
∗ +4∂4

xw∗ +κ
[
∂2

xw∗ +∂−1
x (w∂xw∗)−∂−1

x w∂xw∗
]
, (27)

bM =

[
Z 2π

0
w∗ w′ dx

]t=T

t=0
+

[
. . .

]x=2π

x=0
.

Making use of this adjoint operator, we define the vorticity adjoint system [cf. (16)]
with





M ∗w∗ = −∂−1
x H ∗(H ∂−1

x w− y), x ∈ Ω, t ∈ [0,T ],

∂i
xw∗(0, t) = ∂i

xw∗(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

w∗(x,T ) = 0, x ∈ Ω.

(28)

Defining the gradient ∇Jϕ such that

J ′
ϕ ,

(
∇Jϕ,ϕ′

)
L2(Ω)

, (29)

it follows by an analogous derivation that

∇Jϕ = w̄∗
∣∣∣
t=0

, (30)

where the projection operator implied by the overbar is defined as in (18).

4.1.2 The standard adjoint derivation based on the streamfunction formulation

We may also minimize the cost functional (5) by modeling the system evolution
with the streamfunction form (1) of the Kuramoto–Sivashinsky system. Specifi-
cally, we consider a cost functional written in the form

Jψ(ψ) =
1
2

∥∥∥H ∂xu− y
∥∥∥

2

L2(0,T ;L2(Ω))
. (31)

If we restrict ψ to have zero mean mode, then it follows that ψ = ∂−1
x φ. Noting

that ∂xu = v, it is seen that Jψ is equivalent to J , that is, Jψ(∂−1
x φ) = J (φ). The

differential of Jψ is

J ′
ψ(ψ;ψ′) = −

Z T

0

Z 2π

0
[∂xH ∗(H ∂xu− y)]u′dxdt, (32)
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where, by linearization of (1), it follows that u′(ψ;ψ′) is the solution of the system




K u′ = 0, x ∈ Ω, t ∈ [0,T ],

∂i
xu′(0, t) = ∂i

xu′(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

u′(x,0) = ψ′, x ∈ Ω,

(33)

where the linear operator K is

K u′ , ∂tu
′+4∂4

xu′+κ
[
∂2

xu′+(∂xu)(∂xu′)
]

(34)

and u(ψ) is the solution of (1). By the identity
〈

u∗,K u′
〉

L2(0,T ;L2(Ω))
=
〈

K ∗u∗,u′
〉

L2(0,T ;L2(Ω))
+bK , (35)

it follows that

K ∗u∗ = −∂tu
∗ +4∂4

xu∗ +κ
[
∂2

xu∗−∂x(u
∗∂xu)

]
.

Making use of this adjoint operator, we define the streamfunction adjoint system
with





K ∗u∗ = −∂xH ∗(H ∂xu− y), x ∈ Ω, t ∈ [0,T ],

∂i
xu∗(0, t) = ∂i

xu∗(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

u∗(x,T ) = 0, x ∈ Ω.

(36)

Defining the gradient ∇Jψ such that

J ′
ψ ,

(
∇Jψ,ψ′

)
L2(Ω)

, (37)

it follows that

∇Jψ = u∗
∣∣∣
t=0

. (38)

4.2 Targeting the cost functional

As indicated in (20a), the definition of the cost functional may be generalized by
taking the Hq norm (rather than the L2 norm) of the quantity of interest (in the
present case, the measurement misfit5 ). By so doing, we can focus the cost func-
tional on a particular range of length scales of interest. For example, taking the H1

5 We do not consider here the possibility of changing the quantity penalized in the cost
functional. An approach in which the cost functional also includes a suitable norm of the
control variable is known as Tikhonov regularization [29] and its connection to the present
framework is discussed in §4.5.6.
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norm [see (20a)] of the misfit of the measurement y, we define [cf. (5)]

J H1
(φ) =

∥∥∥H v− y
∥∥∥

2

L2(0,T ;H1(Ω))
. (39)

It is straightforward to show that the only modification to the standard formulation
of the adjoint analysis which results from this change in the cost functional is the
right-hand-side forcing of the evolution equation for the associated adjoint field,
which now takes the form [cf. (16)]

L∗v∗ = −∂2
xH ∗(H v− y) = −∂2

x f .

Similarly, taking the H−1 norm of the misfit of the measurement y, we define

J H−1
(φ) =

∥∥∥H v− y
∥∥∥

2

L2(0,T ;H−1(Ω))
. (40)

The modification of the right-hand-side forcing of the adjoint field in the standard
formulation which results from this change in the cost functional is

L∗v∗ = −∂−2
x H ∗(H v− y) = −∂−2

x f .

We remark that this regularization option may not be available when the obser-
vations H v are not a well–defined function of space (e.g., are defined pointwise
in space). Also, if the measurement error η has the form of white noise, this may
render f non–differentiable and therefore the functional J H1

may not be applicable.

4.3 Modifying the inner product in the adjoint identity

As indicated in (20b), the definition of the adjoint operator may be generalized
by using an Hq inner product rather than the standard L2 inner product. By so
doing, we may determine the same gradient of the same cost functional as found
by the standard adjoint framework, but do so via an adjoint system with a different
energy spectrum which makes it more or (preferably) less difficult to compute in a
numerical simulation.

4.3.1 An adjoint derivation with the H1 inner product

We again proceed to minimize the original cost functional (5) by modeling the
system evolution with the primitive form (2) of the Kuramoto–Sivashinsky system,
but now derive the adjoint operator with an H1 inner product via the identity

〈
v∗,H

1
,Lv′

〉
L2(0,T ;H1(Ω))

=
〈

L∗,H1
v∗,H

1
,v′
〉

L2(0,T ;H1(Ω))
+b1, (41)
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from which it follows that

L∗,H1
v∗,H

1
= −∂tv

∗,H1
+4∂4

xv∗,H
1
+κ[∂2

xv∗,H
1
−∂−2

x (v∂3
xv∗,H

1
)], (42)

b1 =

[
Z 2π

0

(
∂xv∗,H

1
)(

∂xv′
)

dx

]t=T

t=0
+

[
. . .

]x=2π

x=0
.

Making use of this adjoint operator, we define an adjoint system with





L∗,H1
v∗,H

1
= −∂−2

x H ∗(H v− y) = −∂−2
x f , x ∈ Ω, t ∈ [0,T ],

∂i
xv∗,H

1
(0, t) = ∂i

xv∗,H
1
(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

v∗,H
1
(x,T ) = 0, x ∈ Ω.

(43)

Note that the differential of the cost functional (9) may be written in a form consis-
tent with the new inner product

J ′(φ;φ′) = −
Z T

0

Z 2π

0
∂x
[
∂−2

x H ∗(H v− y)
]
∂xv′dxdt

=
〈
−∂−2

x H ∗(H v− y),v′
〉

L2(0,T ;H1(Ω))
.

Combining (10) and (43) with (41) and substituting the above expression, we obtain

J ′(φ;φ′) = −

Z 2π

0
∂2

xv∗,H
1
∣∣∣
t=0

φ′dx =
(
−∂2

xv∗,H
1
∣∣∣
t=0

,φ′
)

L2(Ω)
. (44)

Using an L2 inner product to extract the gradient as in (12), we may identify the
gradient as

∇J = −∂2
xv∗,H

1
∣∣∣
t=0

. (45)

Note that the gradient so defined has zero mean mode and thus lies in the space
of feasible φ′. An analogous derivation using an inner product which incorporates
derivatives with respect to the time variable (that is “H1–in–time”) is presented in
Appendix A.

4.3.2 An adjoint derivation with the H−1 inner product

We again minimize the original cost functional (5) by modeling the system evo-
lution with the primitive form (2) of the Kuramoto–Sivashinsky system, but now
derive the adjoint operator with an H−1 inner product via the identity

〈
v∗,H

−1
,Lv′

〉
L2(0,T ;H−1(Ω))

=
〈

L∗,H−1
v∗,H

−1
,v′
〉

L2(0,T ;H−1(Ω))
+b−1, (46)

19



from which it follows that

L∗,H−1
v∗,H

−1
= −∂tv

∗,H−1
+4∂4

xv∗,H
−1

+κ[∂2
xv∗,H

−1
−∂2

x(v∂−1
x v∗,H

−1
)], (47)

b−1 =

[
Z 2π

0

(
∂−1

x v∗,H
−1
)(

∂−1
x v′

)
dx

]t=T

t=0
+

[
. . .

]x=2π

x=0
.

Making use of this adjoint operator, we define an adjoint system with




L∗,H−1
v∗,H

−1
= −∂2

xH ∗(H v− y) = −∂2
x f , x ∈ Ω, t ∈ [0,T ],

∂i
xv∗,H

−1
(0, t) = ∂i

xv∗,H
−1

(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

v∗,H
−1

(x,T ) = 0, x ∈ Ω.

(48)

Note that the differential of the cost functional (9) may be written in a form consis-
tent with the new inner product

J ′(φ;φ′) = −

Z T

0

Z 2π

0
∂−1

x

[
∂2

xH ∗(H v− y)
]
∂−1

x v′dxdt

=
〈
−∂2

xH ∗(H v− y),v′
〉

L2(0,T ;H−1(Ω))
.

Combining (10) and (48) with (46) and substituting the above expression, we obtain

J ′(φ;φ′) = −

Z 2π

0
∂−2

x v∗,H
−1
∣∣∣
t=0

φ′dx =
(
−∂−2

x v∗,H
−1
∣∣∣
t=0

,φ′
)

L2(Ω)
. (49)

Using the L2 inner product (12) to extract the gradient, we may identify the gradient
as

∇J = −∂−2
x v∗,H

−1
∣∣∣
t=0

. (50)

4.4 Preconditioning the gradient

As indicated in (20c), the definition of the gradient may be generalized by taking
the Hq inner product (rather than the L2 inner product) when extracting the gra-
dient from the expression of the cost functional differential. By so doing, we may
emphasize the importance of some length scales over others during the iterative
gradient–based optimization procedure, a strategy commonly referred to as pre-
conditioning. Note again that (in a convex problem) the minimizer is not changed
by such a procedure, though the gradients are significantly altered. For example, the
cost functional differential (12) in the primitive formulation of the adjoint analysis
may be rewritten to incorporate either an H1 inner product or an H−1 inner product

J ′(φ;φ′) ,

(
∇H1

J ,φ′
)

H1(Ω)
, J ′(φ;φ′) ,

(
∇H−1

J ,φ′
)

H−1(Ω)
. (51)
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By the definition of these inner products and the relation given in (17), it follows
that the H1 gradient, ∇H1

J , and the H−1 gradient, ∇H−1
J , may be identified as

∇H1
J = −∂−2

x v̄∗
∣∣∣
t=0

, ∇H−1
J = −∂2

xv∗
∣∣∣
t=0

. (52)

We may thus extract different gradients from a given adjoint field calculation. Note
that the H1 gradient emphasizes the large length scales and the H−1 gradient em-
phasizes the small length scales. Conversely, as shown in (19), (45), and (50), we
may also extract a given gradient from different adjoint field calculations.

We now explore the utility of the weighted linear combination of L2, H1, and H−1

inner products defined in (21) for preconditioning the gradient. For clarity, we first

consider for this purpose the inner product
(

z1,z2

)
W l1 ,∞

which, as discussed previ-

ously, represents a linear combination of the L2 and H1 inner products. Returning
to the standard formulation of the adjoint analysis, but extracting the gradient via
this inner product, we obtain

J ′ ,

(
∇W l1,∞

J ,φ′
)

W l1,∞
=

1

1+ l2
1

Z 2π

0

[(
∇W l1,∞

J
)

φ′+ l2
1

(
∂x∇W l1,∞

J
)(

∂xφ′
)]

dx

=
( 1

1+ l2
1

[
1− l2

1∂2
x

]
∇W l1,∞

J ,φ′
)

L2(Ω)
=
(

v̄∗
∣∣∣
t=0

,φ′
)

L2(Ω)
. (53)

We may thus identify the desired gradient ∇W l1 ,∞
J by solving the 1D Helmholtz

equation




1

1+ l2
1

[
1− l2

1 ∂2
x

]
∇W l1 ,∞

J = v̄∗
∣∣∣
t=0

,

∇W l1 ,∞
J (0) = ∇W l1 ,∞

J(2π).

(54)

The interpretation of the significance of this expression is clear in Fourier space.
Using [·̂]k to denote the corresponding spatial Fourier coefficient at wavenumber k,
it follows that

[
̂∇W l1 ,∞J

]

k
=

k2
1 +1

k2
1

Fl p(k)
[
̂̄v∗
∣∣
t=0

]
k
, (55)

where Fl p(k) , k2
1/(k2

1 + k2) is a low–pass filter (see Figure 2a) with a cut–off
wavenumber of k1 = 1/l1. A gradient defined with such a scale–dependent filter
de-emphasizes the spatial wavenumbers greater than k1 in the gradient-based opti-
mization process. Note that taking k1 → ∞ recovers the standard L2 gradient (which
weights all wavenumbers equally), whereas taking k1 → 0 recovers the H1 gradi-
ent. Note also that the inverse Laplacian is commonly used as a “smoother” in this
type of problems. The inverse Helmholtz operator used to obtain the solution to
(54) is a generalization of the inverse Laplacian, which is used to solve this system
in the l1 → ∞ (that is, k1 → 0) limit. Both such operations may be used to obtain
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a “smooth” gradient even when the system is defined on a complicated domain in
which Fourier analysis is not possible. Thus, this form of preconditioning has the
effect of enforcing smoothness of the control. In §4.5.6 we will show that it can be
used to stabilize Tikhonov regularization.

In a similar vein, we can extract the cost functional gradient using the inner product(
z1,z2

)
W 0,l−1

which is a linear combination of the L2 and H−1 terms. This yields

J ′ ,

(
∇W 0,l−1 J ,φ′

)
W 0,l−1

=
l2
−1

1+ l2
−1

Z 2π

0

[(
∇W 0,l−1 J

)
φ′+

1

l2
−1

(
∂−1

x ∇W 0,l−1 J
)(

∂−1
x φ′

)]
dx

=
( l2

−1

1+ l2
−1

[
1−

1

l2
−1

∂−2
x

]
∇W 0,l−1 J ,φ′

)
L2(Ω)

=
(

v̄∗
∣∣∣
t=0

,φ′
)

L2(Ω)
. (56)

We may thus identify the gradient ∇W 0,l−1 J by solving the system





l2
−1

1+ l2
−1

[
1−

1

l2
−1

∂−2
x

]
∇W 0,l−1 J = v̄∗

∣∣∣
t=0

,

∇W 0,l−1 J (0) = ∇W 0,l−1
J(2π).

(57)

Solution of this system has a clear interpretation in Fourier space

[
̂∇W 0,l−1 J

]

k
= (k2

−1 +1)Fhp(k)
[
̂̄v∗
∣∣
t=0

]
k
,

where Fhp(k) , k2/(k2
−1 + k2) is a high–pass filter (see Figure 2b) with a cut–off

wavenumber of k−1 = 1/l−1. Thus defined scale–dependent filters de–emphasize
spatial wavenumbers smaller than k−1. Furthermore, we note that taking k−1 →
0 recovers the standard L2 gradient, whereas taking k−1 → ∞ recovers the H−1

gradient.

We now consider a weighted linear combination of L2, H1 and H−1 inner products
used to extract the gradient

J ′ ,

(
∇W l1,l−1 J ,φ′

)
W l1,l−1

= ...

=

(
l2
−1

(1+ l2
1)(1+ l2

−1)

[
1−

l2
1 l2
−1

l2
1 + l2

−1

∂2
x −

1

l2
1 + l2

−1

∂−2
x

]
∇W l1,l−1 J ,φ′

)

L2(Ω)

=
(

v̄∗
∣∣∣
t=0

,φ′
)

L2(Ω)
.
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Fig. 2. Interpretation of the systems (54), (57) and (58) in Fourier space as (a) low–pass, (b)
high–pass, and (c) band–pass filters which de-emphasize certain ranges of wavenumbers in
the extraction of the gradient.

We may thus identify the desired gradient ∇W l1,l−1 J by solving the system




l2
−1

(1+ l2
1)(1+ l2

−1)

[
1−

l2
1 l2
−1

l2
1 + l2

−1

∂2
x −

1

l2
1 + l2

−1

∂−2
x

]
∇W l1,l−1 J = v̄∗

∣∣
t=0,

∇W l1 ,l−1 J (0) = ∇W l1 ,l−1 J (2π).

(58)

Again, the interpretation of this expression is clear in Fourier space. Taking k1 =
1/l1 and k−1 = 1/l−1, it follows that

[
̂∇W l1 ,l−1 J

]

k
=

(k2
1 + k2

−1)(k
2
1 +1)(k2

−1 +1)

k4
1

Fbp(k)
[
̂̄v∗
∣∣
t=0

]
k
, (59)

where Fbp(k) , Fl p(k) ·Fhp(k) is a band–pass filter (see Figure 2c) formed by the
product of the low–pass filter (with a cut–off wavenumber of k1 = 1/l1) and a high–
pass filter (with a cut–off wavenumber of k−1 = 1/l−1). A band–pass filter of this
sort is useful to employ when the optimization process in the multiscale system is
designed to target “intermediate–scale” phenomena.

4.5 Relations between different regularization strategies

We now summarize the relations between the various alternatives in the framing of
an adjoint analysis, as discussed in detail in the example considered above. We will
first (in §4.5.1) show how adjoint operators corresponding to alternative forms of
the evolution equation (§4.1) and alternative inner product used to define the adjoint
identity (§4.3) are related to the primitive adjoint operator L ∗ determined in §3. We
will then (in §4.5.2) discuss how the associated adjoint fields are related, and tabu-
late how any of three cost functional gradients sought may be determined from any
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of five alternative forms of the adjoint system. After brief discussions of two inter-
esting special cases (in §4.5.3 and §4.5.4), and an alternative method of deriving an
adjoint analysis (in §4.5.5), we conclude the section (in §4.5.6) with a discussion
of the relation between Tikhonov regularization and gradient preconditioning.

4.5.1 Relations between the various adjoint operators

Recall first that w = ∂xv, w′ = ∂xv′, and thus, by (11) and (25), that ∂xLz = M ∂xz.
By the identity (14), which defines L∗, it thus follows (assuming all variables are
periodic in x) that

〈
w∗,M w′

〉
L2(0,T ;L2(Ω))

=
〈

w∗,∂xLv′
〉

L2(0,T ;L2(Ω))
=
〈
−∂xw∗,Lv′

〉
L2(0,T ;L2(Ω))

=
〈

L∗(−∂xw∗),v′
〉

L2(0,T ;L2(Ω))
−

[
Z 2π

0
(∂xw∗)v′ dx

]t=T

t=0

=
〈

∂−1
x L∗(∂xw∗),∂xv′

〉
L2(0,T ;L2(Ω))

−

[
Z 2π

0
(∂xw∗)v′ dx

]t=T

t=0
.

Note that the above derivation computes the adjoint of a composition of operators,
∂xL , and the result is consistent with a general property of adjoint calculus, namely
that (T1T2)

∗ = T ∗
2 T ∗

1 , where T1 and T2 are two linear operators. Note also that, in
general, T ∗

2 T ∗
1 6= T ∗

1 T ∗
2 . Noting (26), it follows that

M ∗z = ∂−1
x L∗(∂xz). (60)

Using a similar approach, it is also straightforward to show that

K ∗z = ∂xL∗(∂−1
x z). (61)

Similar relationships may be found for the adjoint operators derived using the H1

and H−1 inner products. For example, it is easily seen (again assuming all variables
are periodic in x) that

〈
v∗,H

1
,Lv′

〉
L2(0,T ;H1(Ω))

=
〈

∂xv∗,H
1
,∂xLv′

〉
L2(0,T ;L2(Ω))

=
〈
−∂2

xv∗,H
1
,Lv′

〉
L2(0,T ;L2(Ω))

=
〈
−L∗(∂2

xv∗,H
1
),v′
〉

L2(0,T ;L2(Ω))
−

[
Z 2π

0
(∂2

xv∗,H
1
)v′dx

]t=T

t=0

=
〈

∂−2
x L∗(∂2

xv∗,H
1
),v′
〉

L2(0,T ;H1(Ω))
−

[
Z 2π

0
(∂2

xv∗,H
1
)v′ dx

]t=T

t=0
.

Noting (41), it follows that

L∗,H1
z = ∂−2

x L∗(∂2
xz). (62)
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Using a similar approach, it is also straightforward to show that

L∗,H−1
z = ∂2

xL∗(∂−2
x z). (63)

4.5.2 Relations between the various adjoint fields

Substituting (60) into (28), it is seen that −∂xw∗ satisfies an equivalent set of equa-
tions as that defining v∗ in (16). We may thus conclude that the primitive adjoint
variable v∗ and the vorticity adjoint variable w∗ are related such that v∗ = −∂xw∗.
By (30), it thus follows that

∇Jϕ = −∂−1
x v∗

∣∣∣
t=0

. (64)

The quantity ∇Jϕ is simply the gradient of the cost functional Jϕ(ϕ) in the space of
ϕ, where the metric is defined by the L2 inner product.

We now consider two gradient descent algorithms: one conducted in the space of
ϕ and proceeding at each step in the direction ∇Jϕ, and the other conducted in the
space of φ and proceeding at each step in some direction sφ. We then constrain sφ
such that the two descent algorithms are equivalent in the sense that ϕ(n) = ∂xφ(n)

for all iterations i. It follows that

ϕ(n) = ϕ(n−1) −α∇Jϕ

φ(n) = φ(n−1) −α sφ

}
=⇒ sφ = ∂−1

x (∇Jϕ),

that is, the corresponding descent direction in the space of φ is given by sφ ,

∂−1
x (∇Jϕ). Combining this with (64) and (52), we obtain

sφ = −∂−2
x v∗

∣∣∣
t=0

= ∇H1
J ,

that is, gradient extraction via the L2 inner product in the space of ϕ = ∂xφ and
gradient extraction via the H1 inner product in the space of φ are equivalent. Using
a similar approach, it is straightforward to show that gradient extraction via the
L2 inner product in the space of ψ = ∂−1

x φ (where ψ is again restricted to have
zero mean) and gradient extraction via the H−1 inner product in the space of φ are
equivalent. Similar observations regarding gradient computations before and after
a transformation of the independent variables in a system (in the finite-dimensional
setting) were made by Dennis & Schnabel [35].

Noting the convenient form of the terms b1 and b−1 in (41) and (46), it is seen that
the derivation of the H1 gradient [see (51)] follows naturally from the adjoint field
defined with the H1 inner product, and that the H−1 gradient follows naturally from
the adjoint field defined with the H−1 inner product

∇H1
J = v∗,H

1
∣∣∣
t=0

, and ∇H−1
J = v∗,H

−1
∣∣∣
t=0

.
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In order to summarize the pattern that emerges from the application of the various
regularization strategies to the formulation of adjoint–based analyses, we collect
some of the significant relations between the various adjoint operators, the corre-
sponding adjoint fields, and the different gradients in Table 1.

4.5.3 Special case: spatially-uniform linearized systems

The relationships between the various alternative forms of adjoint analyses summa-
rized above simplify greatly when the linearization of the governing evolution equa-
tion is spatially uniform (that is, it does not have spatially-varying coefficients).
This is the case, for instance, when the system (2) is linearized about the state
v = constant. The perturbation operator for such a case will be denoted L0 and its
adjoint L∗

0 ; both may be obtained from (11) and (16) by setting v = constant. The
reason for the simplification in this special case is that both L0 and L∗

0 commute

with ∂x, and thus, by (60)-(62), L∗
0 = K ∗

0 = M ∗
0 = L∗,H1

0 = L∗,H−1

0 .

We now consider the system (16), with the operator L ∗ replaced by L∗
0 . Defining

v∗1 , −∂−2
x v∗ and noting (52), the gradient of the cost functional J extracted using

the H1 inner product may be written ∇H1
J L2 = v∗1

∣∣
t=0. Thus,

L∗
0 v∗ = L∗

0 (−∂2
xv∗1) = −∂2

xL∗
0 v∗1 = H ∗(H v−y) =⇒ L∗

0 v∗1 = −∂−2
x H ∗(H v−y).

By the discussion in §4.2, it is seen that v∗1 is exactly the adjoint variable used when

the cost functional J H−1
is minimized. It follows (in this special case only) that

∇H1
J L2 = ∇L2J H−1

and, similarly, that ∇H−1
J L2 = ∇L2J H1

.

4.5.4 Special case: preconditioning the system with the nonlinear term removed

Interesting analytical insights regarding preconditioning can be obtained by consid-
ering optimization of the system (2) with the nonlinear term removed. To simplify
calculations, in the reminder of this subsection we will also assume that the obser-
vation operator H has a particularly simple form of an identity operator, H = Id,
and there is no noise in the measurements, i.e., η = 0. This fairly contrived esti-
mation problem serves simply to illustrate the behavior of a well–preconditioned
minimization algorithm. With the above assumptions, we can analytically solve
both the perturbation (10) and the adjoint system (16) which, by (19), allows us to
express the L2 gradient in closed form as

(
∇̂L2J

)
k
=

φ̂act
k

2(4k4 −κk2)

(
1− e−2(4k4−κk2)T

)
= Âk φ̂act

k , (65)

where Âk = 1−e−2(4k4−κk2)T

2(4k4−κk2)
and φact is the actual initial condition that we seek

to reconstruct. We see that, since the operator A is different from identity, the
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Section
introduced Perturbation system

Inner product in
adjoint identity

Adjoint system ∇L2 J ∇H1
J ∇H−1

J

§3
Lv′ = 0

v′(0) = φ 〈·, ·〉L2(0,T ;L2(Ω))

L∗v∗ = f = H ∗(H v− y),
v∗(T ) = 0 v∗

∣∣
t=0 −∂−2

x v∗
∣∣
t=0 −∂2

xv∗
∣∣
t=0

§4.1.1
M w′ = ∂xLv′ = 0,
w′(0) = ϕ = ∂xφ 〈·, ·〉L2(0,T ;L2(Ω))

M ∗w∗ = ∂−1
x L∗(∂xw∗) = −∂−1

x f ,
w∗(T ) = 0 −∂xw∗

∣∣
t=0 ∂−1

x w∗
∣∣
t=0 ∂3

xw∗
∣∣
t=0

§4.1.2
K u′ = ∂−1

x Lv′ = 0,
u′(0) = ψ = ∂−1

x φ 〈·, ·〉L2(0,T ;L2(Ω))
K ∗u∗ = ∂xL∗(∂−1

x u∗) = −∂x f ,
u∗(T ) = 0 −∂−1

x u∗
∣∣
t=0 ∂−3

x u∗
∣∣
t=0 ∂xu∗

∣∣
t=0

§4.3.1
Lv′ = 0,

v′(0) = φ 〈·, ·〉L2(0,T ;H1(Ω))
L∗,H1

v∗,H
1
= ∂−2

x L∗(∂2
xv∗,H

1
) = ∂−2

x f ,
v∗,H

1
(T ) = 0

−∂2
xv∗,H

1 ∣∣
t=0 v∗,H

1 ∣∣
t=0 ∂4

xv∗,H
1 ∣∣

t=0

§4.3.2
Lv′ = 0,

v′(0) = φ 〈·, ·〉L2(0,T ;H−1(Ω))
L∗,H−1

v∗,H
−1

= ∂2
xL∗(∂−2

x v∗,H
−1

) = ∂2
x f ,

v∗,H
−1

(T ) = 0
−∂−2

x v∗,H
−1 ∣∣

t=0 ∂−4
x v∗,H

−1 ∣∣
t=0 v∗,H

−1 ∣∣
t=0

Table 1. Summary of the principal relations resulting from application of various regularization strategies to the formulation of an adjoint–based
optimization algorithm.
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steepest descent direction given by (65) does not point to the minimizer φact , as
shown schematically in Fig. 3a. However, the form of relation (65) suggests that
by extracting the gradient with an A− 1

2 inner product defined as (z1,z2)
A− 1

2
=

(A− 1
2 z1,A− 1

2 z2)L2(Ω) we obtain the gradient

∇A− 1
2 J = φact (66)

which points directly to the minimizer (see Fig. 3a). Alternatively, this procedure
can be understood as changing the metric in the space where optimization is per-
formed from the metric induced by the L2 inner product to the metric induced
by the A− 1

2 inner product in which the new gradient (66) represents the steep-
est descent direction (see Fig. 3b). In accordance with the discussion in §4.5.3,

we notice that replacing the cost functional (5) with the cost functional J A
1
2 (φ) =

1
2

∥∥H v− y
∥∥2

L2(0,T ;A
1
2 (Ω))

and extracting the gradient using an L2 inner product also

yields a descent direction which points directly to the minimizer φact . Thus, this ex-
ample shows how modifying the cost functional and changing the gradient extrac-
tion procedure can improve conditioning of an optimization problem. In the present
simple case we were able to obtain a perfectly preconditioned problem (i.e., with
all Hessian eigenvalues λi equal). In more realistic cases when the nonlinear term
in (2) is present and only incomplete measurements are available (i.e., H 6= Id)
analytical expressions analogous to (65) are not available; in such cases, the ap-
proaches described in §4.2 and §4.4 appear to be natural strategies for improving
the conditioning of the resulting optimization problem, even if they do not make it
perfect.

4.5.5 Optimization derivations based on Lagrange multipliers

It is important to note that the four distinct regularization opportunities considered
in this paper are also available when the evolution equation of the system is incor-
porated into the optimization problem with a Lagrange multiplier approach. In such
derivations, the cost functional selected is first augmented with a selected form of
the inner product (cf. §4.3) of a Lagrange multiplier with a selected form of the
governing equation (cf. §4.1). This augmented cost functional is then minimized
with respect to both the chosen control variable and the Lagrange multiplier, often
using a gradient–based strategy using a selected form of an inner product to define
the gradient. This setting effectively renders the optimization problem as “uncon-
strained”, and the Lagrange multiplier itself turns out to be equivalent to the adjoint
field used in the present derivation. In derivations based on such Lagrange multi-
plier techniques, all four of the regularization opportunities outlined in this paper
are still available and may be selected to achieve the desired regularizing effect.
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Fig. 3. Schematic showing isolines of the cost functional J in the metric induced by: (a)
the L2 inner product, and (b) the A− 1

2 inner product. Descent directions corresponding to
gradient extraction performed with different inner products are also shown.

4.5.6 Tikhonov regularization in the gradient optimization setting

One common technique to regularize an optimization problem is to modify the cost
functional (see §4.2) by adding a term which explicitly penalizes the irregularity
of the control φ. This approach is commonly referred to as Tikhonov regularization
(see, e.g., [29], [10], [11], and [12]). When applied to the data assimilation problem
formulated in §3, this results in a new cost functional

Jr(φ) = J (φ)+ `2
r

∥∥∥φ
∥∥∥

2

Hr(Ω)
, (67)

where `r and r > 0 are constants characterizing the degree and form of the regular-
ization. The differential of this functional is given by

J ′
r(φ;φ′) = J ′(φ;φ′)+ `2

r

Z 2π

0
(∂r

xφ)(∂r
xφ′)dx,

from which we may extract the L2 gradient of the functional as

∇̂J r = ∇̂J + `2
r k2rφ̂, (68)

where ∇J may be determined as in §3 and for convenience we adopt the Fourier-
space representation.

The optimization problem which we are attempting to solve may be written as

29



∇̂J r(φ) = 0. Further, the gradient–based optimization strategy which we have em-
ployed to solve this problem may be interpreted as a method to find the stationary
solution of the following system, which evolves in the artificial “pseudo-time” co-
ordinate τ





dφ̂
dτ

= −∇̂J r = −∇̂J − `2
r k2rφ̂ on τ ∈ (0,∞),

φ̂ = φ̂0 at τ = 0.

(69)

Effectively, we are attempting to march this artificial system as rapidly as possible

to steady state characterized by dφ̂
dτ ≈ 0. Time accuracy during this artificial march

is not required. This interpretation facilitates solution of the optimization problem
at hand by adopting a variety of different time–discretization strategies applied to
(69). Due to complexity involved in its evaluation (employing both forward and
adjoint simulations), the term ∇̂J must be calculated explicitly. However, the term
`2

r k2rφ̂ is easily handled with a variety of either implicit or explicit treatments. This
leads to many possible forms of the optimization algorithm, including:

1. explicit (Euler) treatment of the penalty term

φ̂(n+1) = φ̂(n)−∆τ(∇̂J r)
(n) = −∆τ(∇̂J )(n) +

[
1−∆τ`2

r k2r] φ̂(n),

2. implicit (Cranck–Nicholson) treatment of the penalty term

φ̂(n+1) = φ̂(n)−∆τ
[
(∇̂J )(n) + `2

r k2r
(

φ̂(n) + φ̂(n+1)
)

/2
]

= −
∆τ

1+ 1
2 ∆τ`2

r k2r
(∇̂J )(n) +

[
1− 1

2∆τ`2
r k2r

1+ 1
2∆τ`2

r k2r

]
φ̂(n)

= φ̂(n)−∆τ
(∇̂J r)

(n)

1+ 1
2 ∆τ`2

r k2r
,

where ∆τ is some discrete stepsize in the pseudo-time coordinate τ. Taking ∆τ =
constant results in what is sometimes referred to as Landweber iteration (see, e.g.,
[10]), and is often the approach most amenable to numerical analysis. In practice,
however, it is usually more efficient to adjust the stepsize ∆τ at every iteration
in order to minimize Jr. Note that the explicit method #1 suffers from a stability
constraint ∆τ ≤ 2`−2

r k−2r
max which is reminiscent of a CFL condition and, if violated,

will result in an unstable explicit march and amplification of the small scales of
the fieldφ̂. In practice, method #1 is therefore generally not preferred. On the other
hand, no such restriction applies to method #2. Furthermore, we observe that the
semi–implicit method #2 may in fact be regarded as an explicit approach utilizing
the cost functional Jr(φ) and a smoothed gradient extracted with the inner product

(z1,z2)L2(Ω) + `2
r ∆τ
2 (z1,z2)Hr(Ω) (see §4.4). We thus see that adoption of a suitable

gradient extraction strategy in the context of Tikhonov regularization may help
bypass restrictive limitations on the length of the step ∆τ. As described above, the
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semi–implicit variant of Tikhonov regularization may in fact be viewed as a special
case of the regularization framework proposed in the present study, incorporating
appropriate forms of the cost functional and the inner product used to extract the
gradient in an explicit optimization procedure.

5 Computational examples

In this section, we provide a few computational examples to illustrate how the dif-
ferent brackets used in the framing of an adjoint analysis may be used to affect the
computational accuracy and the rate of convergence of a numerical optimization
algorithm. Based on this analysis, we then propose a family of promising multi-
scale preconditioning approaches that improve the convergence of the state recon-
struction problem highlighted in the previous two sections. Note that the present
computational study is by no means meant to be exhaustive, but simply to indicate
the utility of pursuing the various regularization opportunities outlined previously.
Many interesting related questions are left to be characterized numerically in future
work.

In the PDE setting, the descent direction determined via an adjoint analysis de-
pends solely on the choice of the norm in the cost function (see §4.2) and the inner
product used to extract the gradient (see §4.4). The choice of the form of the evo-
lution equation (see §4.1) and the inner product used to define the adjoint identity
(see §4.3) affect only how the desired gradient of the cost functional selected is
determined.

The specific problem considered in the data assimilation results reported here is ob-
tained by setting κ = 4 · 103 in (2). This rather high value for κ insures the system
under consideration exhibits chaotic multiscale dynamics. The peak of the energy
spectrum of the system is generally between k = 20 and k = 25 and, for higher
wavenumbers, the spectrum rolls off rapidly after that. Around 22 to 23 peaks may
usually be counted in the domain Ω at any given time. A typical numerical sim-
ulation of this system is shown in Figure 4. The initial condition (selected on the
chaotic attractor of the system) which we will seek to reconstruct, based solely on
measurements of the system on [0,T ], is that shown in Figure 4a. The length of
the optimization horizon T used, which corresponds to about 300 time steps, is
sufficient to demonstrate significant dynamics of the chaotic system, as illustrated
in Figure 4b. The observation operator H selected represents observation of the
real part of the first 50 Fourier coefficients (i.e., the first 50 coefficients of the co-
sine decomposition) of the primitive variable v [that is, Λr = {1, . . . ,50} in (7)].
We will assume for the purpose of this discussion that our measurements are not
corrupted by noise [that is, η = 0 in (5)]. The initial guess for the initial condi-
tions, φ(0), will be taken to be zero in all optimizations attempted. These several
choices make the (admittedly contrived) state reconstruction problem studied here
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Fig. 4. Dynamics of the Kuramoto–Sivashinsky system for κ = 4 ·103: (a) initial condition
v(0) = φ (chosen on the chaotic attractor of the system), and (b) spatio-temporal evolution
of the system (visualized are the zero (solid), several positive (dotted) and negative (dashed)
isocontours of v in the space–time plane).

difficult, yet still solvable in a reasonable number of iterations. This problem thus
provides a tractable 1D multiscale chaotic testbed which is useful in quantifying the
effectiveness of the various regularization strategies proposed. Extension of these
strategies from the present 1D model problem to 2D and 3D systems of engineer-
ing relevance are straightforward—a few such extensions of particular interest are
discussed briefly in §6.

In the present work, the state and adjoint systems are both solved in the well-
resolved setting (on 1024 grid points) using a dealiased pseudospectral method.
Time advancement is performed using an RK3 scheme on the nonlinear term and a
generalized trapezoidal method with θ = 5/8 (see [36]) on the linear terms. Gradi-
ent iterations are carried out using the Polak-Ribiere version of the Conjugate Gra-
dient (CG) method (see, e.g., Nocedal and Wright [34]). The “momentum” term
in the CG method is calculated using a standard L2 inner product, and is reset to
zero every 20 iterations. Minimization in the descent direction is performed using
Brendt’s method [37] at each iteration. A gradient method has been selected for the
optimization rather than a quasi-Newton method (which is an attractive alternative)
in order to provide a simple environment for comparison of the different adjoint
formulations.
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Fig. 5. Energy spectra of (thick solid) a typical solution of the Kuramoto–Sivashinsky equa-
tion (2) and of five different definitions of the corresponding adjoint system: (long dashed)
v∗,H

−1
, as defined in (48), (short dashed) u∗, as defined in (36), (thin solid) v∗, as defined in

(16), (dotted) w∗, as defined in (28), and (dot–dashed) v∗,H
1
, as defined in (43).

5.1 Numerical characterization of the adjoint systems obtained with alternative
formulations

In §4.5.2 we concluded that any given cost functional gradient can be extracted
from any adjoint field calculation. In the present section we characterize certain
numerical properties of the different adjoint operators derived in §4.1 and §4.3. In
Fig. 5 we compare the energy spectra of the adjoint variable at t = 0 (i.e., after the
backward–time adjoint march) at the 100th iteration obtained with adjoint systems
corresponding to different forms of the evolution equation and different forms of
the inner product employed in the adjoint identity. The energy spectrum is defined
as E(k) = ẑk · con j(ẑk), where ẑk is the Fourier transform of an appropriate adjoint
variable and con j(ẑk) denotes the complex conjugate of ẑk. For comparison, we also
show the energy spectrum of a typical solution v(t) of the Kuramoto–Sivashinsky
system (2) on the chaotic attractor. Note that the decay rates of the spectra are con-
sistent with the relations shown in columns 5–7 of Table 1. Specifically, we see that
there is a difference of the factor k2 in the roll–off of the spectra between every two
consecutive variables v∗,H

−1
, u∗, v∗, w∗, and v∗,H

1
. Despite this fact, however, close

inspection of the systems (48), (36), (16), (28), and (43) shows that discretization of
the corresponding adjoint variables with a given cut–off wavenumber kmax retains
in the resolved modes precisely the same information in each case. This can be vi-
sualized by drawing a vertical line at k = kmax in Fig. 5 and retaining the modes to
the left of this line only. The resolved modes carry the same information, but have
different weights in the Fourier–space representation. Thus, extraction of a given
cost functional gradient from different adjoint variables may be regarded as read-
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justing these different weights so that they are consistent with the definition of the
gradient sought.

Regardless of the specific approximation scheme employed, a spatial discretization
L∗ of the primitive adjoint operator L∗ can be represented as

L∗v∗ = −
d
dt

v∗ +(B+D)v∗, (70)

where v∗ is the corresponding discretization of the adjoint variable v∗, and B and
D are matrices representing discretizations of the operators −κv∂x and 4∂4

x +κ∂2
x ,

respectively. Defining now a transformation matrix S such that

[S]i j =

{
i, i = j

0, i 6= j
, i, j = 1, . . . ,kmax,

we can express the spatial discretizations of the operators L ∗,H−1
, K ∗, M ∗, and

L∗,H1
as follows

L∗,H−1
v∗,H

−1
= −

d
dt

v∗,H
−1

+(S2 BS−2 +D)v∗,H
−1

, (71a)

K∗u∗ = −
d
dt

u∗ +(SBS−1 +D)u∗, (71b)

M∗w∗ = −
d
dt

w∗ +(S−1 BS +D)w∗, (71c)

L∗,H1
v∗,H

1
= −

d
dt

v∗,H
1

+(S−2 BS2 +D)v∗,H
1
. (71d)

We note that, for any arbitrary square matrix T, T and S−n TSn, n ∈N, have exactly
the same eigenvalues. Relating this fact to explicit time–integration of systems (70)
and (71a)-(71d), we observe that the value of the CFL number is the same for
all of these systems. This allows us to conclude that truncation errors related to
spatial discretization and stability restrictions concerning explicit time–integration
affect in the same way the adjoint systems obtained based on different forms of the
evolution equation and different inner products used to define the adjoint identity.

On the other hand, each of the adjoint systems (48), (36), (16), (28), and (43) will
be to a different degree prone to numerical precision (round–off) errors. This fact
can be appreciated by drawing in Fig. 5 two horizontal lines: one for a large value,
and the other for a small value of the ordinate, and retaining Fourier modes only
with amplitudes between the values corresponding to the two lines. We observe
that, depending on the choice of the lower and upper limit, the resulting loss of
information will be different for the different adjoint variables as a result of the
finite–precision arithmetic of the numerical calculation.
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5.2 Optimization

As defined in (40), (5), (39), the three cost functionals JH−1
, J , and J H1

effectively
measure the misfit of the model with the observed measurements with particular
focus, respectively, on the large length scales, on all length scale, and on the small
length scales. By large and small length–scales we mean the ranges of length–
scales approaching the largest and the smallest length–scales resolved in the dis-
crete representation of the system. In the present study the largest length–scale,
equal to the size of the computational domain, is 2π, whereas the smallest resolved
length–scale is approximately 10−3. In the discussion of the computational results,
by large scales we will mean length–scales from the interval [100,2π], by intermedi-
ate length–scales from the interval [10−2,100], and by small length–scales from the
interval [10−3,10−2]. In this section, we will consider optimizations based on the
minimization of all three of these cost functionals. To perform the optimizations,
we will consider gradients extracted using the W l1,∞ and W 0,l−1 inner products, as
defined in (53) and (56), for various values of l1 and l−1. Recall that the W l1,∞ inner
product reduces to the L2 inner product in the l1 → 0 limit, and to the H1 inner prod-
uct in the l1 → ∞ limit. To simplify the notation, the different cases considered in
this section will be referred to using a shorthand notation {z1,z2} to characterize the
spatial component of the brackets Ψ1 and Ψ3. For example, {L2,L2} will be used
denote the standard (L2–based) formulation discussed in §3, whereas {H1,W l1,∞}
will be used to denote the formulation derived from the H1 cost functional (39)
together with the W l1,∞ inner product used to define the gradient.

For the simulations presented in this section, to bypass further consideration of
the numerical resolution issues discussed in the previous section, we will continue
to use fine resolution, discretizing the system on 1024 grid points (that is, 684
degrees of freedom after dealiasing). Thus, as summarized in Table 1, we may
determine the gradient sought via appropriate use of any of these definitions of
the adjoint operator. For simplicity, all calculations discussed in the present section
are performed using just the primitive adjoint equation (15), which is based on
the primitive form of the Kuramoto-Sivashinsky system and the standard L2 inner
product for adjoint definition. This allows us to focus our attention in this section
on the effects of modifying the brackets Ψ1 and Ψ3.

5.2.1 Analysis after one iteration

We first analyze the effect of the choice of Ψ1 and Ψ3 after just one iteration.
The reason for focusing on the first iteration is that we intend to compare different
gradients, and such a comparison is meaningful only when the state at which they
are evaluated is the same for all gradients. The progress made towards the minimum
on the large length scales, over all length scales, and on the small length scales will
be assessed based on the reduction of J H−1

, J , and J H1
respectively, regardless of
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Fig. 6. (a) The shape of the gradients ∇W l1,∞
J in physical space, normalized by their peak

value on the subinterval shown. (b) The energy contained in the gradient field as a function
of spatial wavenumber. The cases considered are: (dashed) l1 = 0.5, (dot-dashed) l1 = 0.1,
and (dotted) l1 = 0. For comparison, the solid lines depict the actual initial condition sought.

which cost functional is actually minimized in the case considered.

We begin by comparing the shapes of the gradients themselves in the case {L2,W l1,∞}
for different values of l1 (Figure 6). Note that the various choices for l1 which have
been used result in substantially different gradients, and that, as l1 increases, the
gradients ∇W l1,∞

J become significantly smoother (that is, as l1 increases, the en-
ergy in the gradient field rolls off more rapidly with wavenumber). However, it is
difficult to determine visually which of the gradients best captures the actual initial
condition.

In Figure 7, we present values of the functionals J H−1
, J , and J H1

obtained af-
ter the first iteration in all the cases considered as a function of the lengths l1 and
l−1 which parameterize the inner products used in gradient extraction. Note in all
the cases that the three functionals vary smoothly with l1 and l−1 revealing sim-
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Fig. 7. Dependence of the functionals J H−1
, J , and J H1

on the lengths l1 and l−1 parameter-
izing the inner products W l1,∞ (circles) and W 0,l−1 (diamonds) used to extract the gradients
during the first iteration. In all figures, the vertical axis is normalized by the value of the
corresponding cost functional for the initial guess φ(0) (that is, before the first iteration).
Thus, a cost functional value of 0.6 in the above figures implies a 40% reduction of the
corresponding cost functional after one iteration.

ilar trends. The upper-left subfigure illustrates the effect on JH−1
when a control

strategy is used which targets J H−1
. Similarly, the lower-right subfigure illustrates

the effect on J H1
when a control strategy is used which targets J H1

. Note in both
cases that, after a single iteration, the functional targeted by the control algorithm is
reduced substantially. In Fig. 7a we see that optimization strategies targeting large
scales may also work well at intermediate and small scales, provided the W 0,l−1

inner product with a suitable value of l−1 is selected for gradient extraction. Like-
wise, strategies targeting all scales (Fig. 7b) work best in conjunction with the inner
product W l1,∞ selected for gradient extraction. On the contrary, strategies targeting
small scales (Fig. 7c) reveal a rather weak dependence on the form of the inner
product used for gradient extraction and, moreover, their performance is degraded
on the larger scales. We note that when either J and J H−1

is minimized, a clever
choice of an inner product for gradient extraction can render an optimization strat-
egy effective also on length scales other than those explicitly targeted by the cost
functional. We thus see that, when posing an optimization problem of this sort, it is
useful to select appropriate definitions of both the cost functional (by appropriate
selection of Ψ1) and its gradient (by appropriate selection of Ψ3) in order to tune
the performance on the length scales of interest.
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5.2.2 Analysis after many iterations

We now analyze the effect of the choice of Ψ1 and Ψ3 after 100 iterations are
performed. Several cases were run; for brevity, the following cases of particular
interest are reported here:

1) {H−1,L2},
2) {H−1,W 0,l−1} with l−1 = 0.2,

3) {H−1,W 0,l−1} with l(n)
−1 = l(0)

−1ζn, where l(0)
−1 = 0.2 and ζ = 0.95,

4) {H−1,W 0,l−1} with l(n)
−1 = l(0)

−1ζn, where l(0)
−1 = 0.2 and ζ = 1.05,

5) {L2,L2},
6) {L2,W l1,∞} with l1 = 0.1,

7) {L2,W l1,∞} with l(n)
1 = l(0)

1 ζn, where l(0)
1 = 0.1 and ζ = 2/3,

8) {L2,W l1,∞} with l(n)
1 = l(0)

1 ζn, where l(0)
1 = 0.1 and ζ = 3/2.

The cases #3,4,7,8 will be referred to as a multiscale preconditioning approach. In
these strategies gradients are extracted with the inner products W l1,∞ and W 0,l−1

in which l1 and l−1 monotonously vary with iterations; cases of l1 and l−1 both

decreasing and increasing are considered. Gentle variation of l(n)
1 and l(n)

−1 thus pro-
vides a convenient “knob” controlling the cut–off length scales as a function of the
iteration number n. This approach may be regarded as a multiscale version of the
variable preconditioning method discussed in the context of finite-dimensional lin-
ear systems by Axelsson [38]. Appropriate values of l(0)

1 , l(0)
−1 and ζ for the present

system were found by trial and error.

Note that, when computing the descent direction at every iteration of the present
conjugate gradient descent algorithm, we need to evaluate a “momentum” term
formed by a ratio of inner products of the recently–calculated gradients. Though
there is some discussion of this issue in the literature, there appears to be no
commonly-accepted strategy for selecting the inner product to use to calculate the
momentum term when a variable preconditioning strategy is employed. We have
used simple L2 inner products to evaluate the momentum term in the present work.
Other strategies were also tried, including the use of inner products in this cal-
culation that varied from one iteration to the next. Unfortunately, none of these
strategies were found to significantly accelerate convergence.

In Figure 8 we show the reduction of the three metrics J H−1
, J , and J H1

in the
eight cases mentioned above. We note that when the cost functional J is minimized,
the multiscale approach starting with a “good” value of l1 and then progressively
decreasing it to zero gives better results than standard optimization employing L2

gradients. When the cost functional J H−1
is minimized, all approaches based on

W 0,l−1 gradients perform better than the standard strategy using L2 gradients. As
expected, minimizing J H−1

instead of J results in a better convergence on large
scales, while compromising slightly convergence on intermediate scales.

Some theoretical insights regarding the impact of the norm selected in the cost
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Fig. 8. Variation of the functionals J H−1
, J , and J H1

as a function of the iteration count
for reconstructions based on the following inner products: (solid) L2, (dash–dotted) W 0,l−1

with l−1 fixed (a), W l1,∞ with l1 fixed (b), (dotted) W 0,l−1 with l−1 decreasing to zero (a),
W l1,∞ with l1 decreasing to zero (b), and (dashed) W 0,l−1 with l−1 increasing (a), W l1,∞ with
l1 increasing (b).

functional and the inner product used to extract the gradient on convergence of
a gradient minimization algorithm applied to an optimization problem governed
by a linear operator such as L can be gleaned by examining construction of the
corresponding Krylov spaces. We consider a general case {Hm,Hn}, where m and
n are the differentiation orders in the definition of the cost functional and in the
inner product used for gradient extraction. After p iterations (starting with zero
initial guess) the cost functional is minimized over the following Krylov space

Km,n(0, p) = span

{
∂−2n

x (L∗)−1 ∂2m
x H ∗H y,

∂−2n
x (L∗)−1 ∂2m

x (L)−1 ∂−2n
x (L∗)−1 ∂2m

x H ∗H y,

. . . ,
p

∏
k=1

[
∂−2n

x (L∗)−1 ∂2m
x (L)−1

]k
∂−2n

x (L∗)−1 ∂2m
x H ∗H y

}
.

We see that the structure of the Krylov spaces Km,n(0, p), in which the p–th approxi-
mation of the minimizer is constructed, depends in an intricate way on an interplay
of the operators ∂−2n

x and ∂2m
x with the evolution operator L and its adjoint L∗.

In particular, we note that in the special case of spatially–uniform system consid-
ered in §4.5.3, the differential operators commute with both (L)−1 and (L∗)−1 and
therefore the case {Hm,Hn} is equivalent to {L2,Hn−m}.
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6 Extensions

In §4 we presented a comprehensive picture of different regularization strategies
applied to a simple model system. Since the ultimate goal is to apply these meth-
ods to real systems of physical and engineering interest, such as the Navier–Stokes
equation in a bounded domain, below we show that such generalization is in fact
straightforward. One significant difference is the more complicated structure of the
governing equation and its adjoint when working in higher spatial dimensions. An-
other significant difference is related to the fact that various terms obtained from
the integration by parts do not vanish on the solid boundaries. In order to highlight
some of the issues, below we will outline how applying selected regularization
options modifies the formulation of an adjoint–based optimization of the Navier–
Stokes system in a periodic domain (§6.1) and the Kuramoto–Sivashinsky equation
in a bounded domain (§6.2). Due to space limitations, we restrict ourselves to pre-
senting only the numerical framework and do not show any computational results.
For the same reason, the case of the Navier–Stokes system in a bounded domain is
also deferred to a forthcoming paper.

6.1 Controlling a 3D Navier–Stokes System

We consider here a Navier–Stokes system





∂v
∂t

+(v ·∇∇∇)v+∇∇∇p−µ∆v = φφφ, in Ω× (0,T )

∇∇∇ ·v = 0, in Ω× (0,T )

v = v0 at t = 0
v periodic in x1, x2, x3,

(72)

where v is the velocity field, p is the pressure, µ is the viscosity, and φφφ is an ex-
ternally applied body force representing the control. The system is supplemented
with the initial condition v0 and its evolution takes place in a domain Ω = [0,2π]3

periodic in all three spatial dimensions. The domains Ω1, Ω2 and Ω3 (see §2) all
coincide with Ω, while the system evolution, the control, and the cost function
are all defined on Ω× [0,T ]. Since we now deal with vector quantities depending
on three spatial variables, and the control now also depends on time, the brackets
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(20a)–(20c) used to frame the adjoint analysis need to be suitably redefined

∥∥∥z
∥∥∥

2

L2(0,T ;Hq(Ω))
,

Z T

0

Z

Ω

∂qzi

∂xq
j

∂qzi

∂xq
j

dΩdt, (73a)

〈
y,z
〉

L2(0,T ;Hq(Ω))
,

Z T

0

Z

Ω

∂qyi

∂xq
j

∂qzi

∂xq
j

dΩdt, (73b)

(
y,z
)

L2(0,T ;Hq(Ω))
,

Z T

0

Z

Ω

∂qyi

∂xq
j

∂qzi

∂xq
j

dΩdt, (73c)

where repeated indices imply summation and we will restrict our attention to the
cases with q ≥ 0. By analogy with (21), we can define inner products as a weighted
linear combination of terms of the form (73c) with different values of q, e.g.,

(
y,z
)

L2(0,T ;W l1,∞)
,

1

1+ l2
1

[(
y,z
)

L2(0,T ;L2(Ω))
+ l2

1

(
y,z
)

L2(0,T ;H1(Ω))

]
. (74)

In order to emphasize the differences with respect to the standard approach, we
analyze here the problem studied initially in the seminal paper of Abergel & Temam
[39], i.e., enstrophy minimization with control in the form of the body force applied
to the 3D Navier–Stokes system in a periodic domain. Consequently, we attempt to
minimize the functional 6

Jns(φφφ) ,
1
2

∥∥∥∇∇∇×v
∥∥∥

2

L2(0,T ;L2(Ω))
. (75)

The classical formulation is obtained by following the methodology of §3 (see also
[39]). The differential of the cost functional is

J ′
ns(φφφ,φφφ′) =

Z T

0

Z

Ω
(∇∇∇×v) · (∇∇∇×v′)dΩdt = −

Z T

0

Z

Ω
∆v ·v′dΩdt, (76)

where φφφ′ is a perturbation of the control and v′(φφφ,φφφ′) solves the system





N


 v′

p′


=


φφφ′

0


 in Ω× (0,T),

v′ = 0 at t = 0,

v′ periodic in x1, x2, x3,

(77)

6 For the sake of simplicity we skip here the penalty on the control φφφ. As noted in the
numerical experiments of [5], the removal of this control penalty in nonlinear Navier–
Stokes control problems apparently leads to bounded control feedback at least in a subset
of well–defined problems.
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with the linear operator

N


 v′

p′


=




∂v′
∂t +(v ·∇∇∇)v′+(v′ ·∇∇∇)v−µ∆v′+∇∇∇p′

−∇∇∇ ·v′


 . (78)

We now define an adjoint operator with the identity

〈
N


 v′

p′


 ,


 v∗

p∗



〉

L2(0,T ;L2(Ω))

=

〈
 v′

p′


 ,N ∗


 v∗

p∗



〉

L2(0,T ;L2(Ω))

+bns, (79)

where the inner product of vectors is defined in (73b). Consequently, the adjoint
operator has the form

N ∗


 v∗

p∗


=


−∂v∗

∂t −v ·
[
∇∇∇v∗ +(∇∇∇v∗)T

]
−µ∆v∗ +∇∇∇p∗

−∇∇∇ ·v∗


 , (80)

and the adjoint system may be defined as




N ∗


 v∗

p∗


=


−∆v

0


 in Ω× (0,T ),

v∗ = 0 at t = T,

v∗ periodic in x1, x2, x3.

(81)

In such a case we obtain bns = 0 and the relations (79), (77) and (81) can be used
to re–express J ′

ns(φφφ,φφφ′) as

J ′
ns(φφφ,φφφ′) =

Z T

0

Z

Ω
φφφ′ ·v∗ dΩdt =

(
∇∇∇L2(0,T ;L2(Ω))Jns,φφφ′

)
L2(0,T ;L2(Ω))

,

which yields the L2 functional gradient

∇∇∇L2(0,T ;L2(Ω))Jns = v∗. (82)

In the vein of §4.3 and §4.4, below we examine how this derivation is modified
when different forms of the inner product defining the adjoint identity and the gra-
dient extraction is selected.

6.1.1 Adjoint derivation with the H1 inner product

We now derive the adjoint operator using the identity

〈
N


 v′

p′


 ,


 v∗,H

1

p∗,H
1



〉

L2(0,T ;H1(Ω))

=

〈
 v′

p′


 ,N ∗,H1


 v∗,H

1

p∗,H
1



〉

L2(0,T ;H1(Ω))

+bns,1,
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(83)

which yields the new adjoint operator

N ∗,H1


 v∗,H

1

p∗,H
1


=


−∂v∗,H

1

∂t −∆−1
0

{
v ·∆

[
∇∇∇v∗,H

1
+(∇∇∇v∗,H

1
)T
]}

−µ∆v∗,H
1
+∇∇∇p∗,H

1

−∇∇∇ ·v∗,H
1


 ,

(84)

where ∆−1
0 is the inverse Laplace operator associated with homogeneous Dirichlet

boundary conditions. We define the new adjoint system as





N ∗,H1


 v∗,H

1

p∗,H
1


=


∆−1

0 ∆v

0


 in Ω× (0,T),

v∗,H
1
= 0 at t = T,

v∗,H
1

periodic in x1, x2, x3,

(85)

from which we obtain bns,1 = 0 and

J ′
ns(φφφ,φφφ′) =

Z T

0

Z

Ω

∂v∗,H
1

i

∂x j

∂φ′i
∂x j

dΩdt.

Identifying this expression with either
(

∇∇∇L2(0,T ;L2(Ω))Jns,φφφ′
)

L2(0,T ;L2(Ω))
or

(
∇∇∇L2(0,T ;H1(Ω))Jns,φφφ′

)
L2(0,T ;H1(Ω))

allows us to extract the corresponding gradients

as

∇∇∇L2(0,T ;L2(Ω))J = −∆v∗,H
1
,

∇∇∇L2(0,T ;H1(Ω))J = v∗,H
1
.

6.1.2 Preconditioning the gradient

We can extract preconditioned gradients by identifying the differential of the cost
functional J ′

ns(φφφ,φφφ′) with an alternative form of the inner product, such as that de-
fined in (74). As in §4.4, the new gradient can be obtained for all t ∈ [0,T ] as a
solution of the Helmholtz equation





1

1+ l2
1

[1−∆]∇∇∇L2(0,T ;W l1 ,∞)Jns = v∗

∇∇∇L2(0,T ;W l1,∞)Jns,
∂

∂n
∇∇∇L2(0,T ;W l1 ,∞)Jns periodic in x1, x2, x3.

(86)

We remark that we obtain by this approach the same properties with respect to
scale–dependent filtering as discussed in §4.4. Since in the present case the con-
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trol φφφ is also a function of time, the definition of the inner product used to extract
the gradient can also be generalized by incorporating derivatives with respect to
time. Using such an inner product will result in smoothing the gradient in the time
domain. This approach is discussed further in §6.2.4.

6.2 Controlling a Kuramoto–Sivashinsky System in a Bounded Domain

We now proceed to investigate how the presence of solid boundaries affects the reg-
ularization strategies developed in §4. We first briefly review the standard formula-
tion and then see how it is modified when each of the four regularization options is
applied in turn. For this purpose we consider the system (2) in a bounded domain
Ω = [0,2π] (see, e.g., [40])





∂tv+4∂4
xv+κ

(
∂2

xv+ v∂xv
)

= 0, x ∈ Ω, t ∈ [0,T ],

v(0, t) = v(2π, t) = 0, t ∈ [0,T ],

∂xv(0, t) = φ, ∂xv(2π, t) = 0, t ∈ [0,T ],

v(x,0) = v0, x ∈ Ω,

(87)

where a time–dependent control φ is applied on one boundary to regulate a quantity
defined on the opposite boundary (note that for consistency with the initial data we
must have ∂xv0

∣∣
x=0 = φ

∣∣
t=0). Consequently, the norm and the inner product needed

to formulate the adjoint analysis are redefined as follows

∥∥∥z
∥∥∥

2

H p(0,T )
,

Z T

0
(∂p

t z)2 dt, (88a)

(
z1,z2

)
H p(0,T )

,

Z T

0
(∂p

t z1)(∂p
t z2)dx. (88b)

(Note that discussion of incorporating time derivatives into the inner product defin-
ing the adjoint identity is deferred to Appendix A.) We now select the cost func-
tional as

Jb(φ) =
1
2

∥∥∥∂2
xv
∣∣∣
x=2π

∥∥∥
2

L2(0,T )
. (89)

In the present problem we have therefore the following relations between the spatial
domains of interest: Ω1 = {2π}, Ω2 = Ω and Ω3 = {0}. Both the cost functional
and the control are defined on [0,T ], whereas the system evolution again takes place
over Ω× [0,T ]. The differential of the cost functional is

J ′(φ;φ′) =
Z T

0

[
(∂2

xv)(∂2
xv′)
]

x=2π dt, (90)
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where v′ is the solution of the system





Lv′ = 0, x ∈ Ω, t ∈ [0,T ],

v′(0, t) = v′(2π, t) = 0, t ∈ [0,T ],

∂xv′(0, t) = φ′, ∂xv′(2π, t) = 0, t ∈ [0,T ],

v′(x,0) = 0, x ∈ Ω,

(91)

with the operator L defined as in (11). Note that consistency between the initial and
boundary conditions requires that φ′(0) = 0. The adjoint operator L∗ is introduced
using the identity (14) and is given by (15). Defining the adjoint state v∗ such that





L∗v∗ = 0, x ∈ Ω, t ∈ [0,T ],

v∗(0, t) = v∗(2π, t) = 0, t ∈ [0,T ],

∂xv∗(0, t) = 0, ∂xv∗(2π, t) = ∂2
xv(2π, t), t ∈ [0,T ],

v∗(x,T ) = 0, x ∈ Ω,

(92)

we can use (14), (91), and (92) to re–express the differential of the cost functional
as

J ′
b(φ;φ′) = −

Z T

0
(∂2

xv∗
∣∣∣
x=0

)φ′ dt =
(

∇L2(0,T )Jb,φ′
)

L2(0,T )
,

from which we obtain the L2 gradient

∇L2(0,T )Jb = −∂2
xv∗(0, t). (93)

6.2.1 Adjoint derivation based on the vorticity formulation

We now proceed to minimize the original cost functional (89) by modeling the
system evolution with the vorticity form of the Kuramoto–Sivashinsky system 7





∂tw+4∂4
xw+κ

(
∂2

xw+w2 +∂−1
x w∂xw

)
= 0, x ∈ Ω, t ∈ [0,T ],

v(0, t) = v(2π, t) = 0, t ∈ [0,T ],

w(0, t) = φ, w(2π, t) = 0, t ∈ [0,T ],

w(x,0) = w0, x ∈ Ω,

(94)

The cost functional can now be rewritten in the form

Jb(φ) =
1
2

∥∥∥∂xw
∣∣∣
x=2π

∥∥∥
2

L2(0,T )
(95)

7 Note that, similarly to the vorticity form of the Navier–Stokes system in a bounded do-
main, the boundary conditions of the vorticity system (94) also involve the primitive vari-
able v.
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and its differential can be expressed as

J ′(φ;φ′) =
Z T

0

[
(∂xw)(∂xw′)

]
x=2π dt, (96)

where w′ is the solution of the system





M w′ = 0, x ∈ Ω, t ∈ [0,T ],

v′(0, t) = v′(2π, t) = 0, t ∈ [0,T ],

w′(0, t) = φ′, w′(2π, t) = 0, t ∈ [0,T ],

w′(x,0) = 0, x ∈ Ω,

(97)

where the operator M is defined as in (25). The adjoint operator is introduced with
the bracket (26) and is given by (27). Defining the adjoint state w∗ such that





M ∗w∗ = 0, x ∈ Ω, t ∈ [0,T ],

∂xw∗(0, t) = ∂xw∗(2π, t) = 0, t ∈ [0,T ],

∂2
xw∗(0, t) = 0, ∂2

xw∗(2π, t) = ∂xw(2π, t), t ∈ [0,T ],

w∗(x,T ) = 0, x ∈ Ω,

(98)

we can now use (26), (97), and (98) to re–express the cost functional differential as

J ′
b(φ;φ′) = −

Z T

0
(∂3

xw∗
∣∣∣
x=0

)φ′dt =
(

∇L2(0,T )Jb,φ′
)

L2(0,T )
,

from which we obtain the L2 gradient

∇L2(0,T )Jb = −∂3
xw∗(0, t).

6.2.2 Targeting the cost functional

Since the regulated quantity is now a function of time only, an alternative, targeted,
cost functional may be selected as, for instance,

J H1

b (φ) =
1
2

∥∥∥∂2
xv
∣∣∣
x=2π

∥∥∥
2

H1(0,T )
, (99)

in which case the differential becomes

J ′H1

b (φ;φ′) =

Z T

0

[
(∂t∂2

xv)(∂t∂2
xv′)
]

x=2π dt,

= −
Z T

0

[
(∂2

t ∂2
xv)(∂2

xv′)
]

x=2π dt +
{[

(∂t∂2
xv)(∂2

xv′)
]

x=2π
}t=T

t=0
,

(100)
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so that the corresponding adjoint system is now




L∗v∗ = 0, x ∈ Ω, t ∈ [0,T ],

v∗(0, t) = v∗(2π, t) = 0, t ∈ [0,T ],

∂xv∗(0, t) = 0, ∂xv∗(2π, t) = −∂2
t ∂2

xv(2π, t)+δ(t−T )
(
∂t∂2

xv
)∣∣∣

x=2π
, t ∈ [0,T ],

v∗(x,0) = 0, x ∈ Ω.

This system must be interpreted in the sense of a distribution, as one of the bound-
ary conditions involves a “delta function” in time, effectively forcing the adjoint
system from the “corner” of the space–time domain. The fact that here, unlike in
all the previous cases, we are strictly able to identify only a weak form of the adjoint
system is not considered an insurmountable problem, as there are well–established
methods for the numerical approximation of such systems.

6.2.3 Adjoint derivation with the H1 inner product

We now derive the adjoint using the H1 inner product (41), and write out the com-
plete form of the term b1 appearing in this relation as

b1 =
Z 2π

0

[
(∂xv′)(∂xv∗,H

1
)
]t=T

t=0
dx+

Z T

0

{
κ
[
(∂xv∗,H

1
)(∂2

xv′)− (∂2
xv∗,H

1
)(∂xv′)

]

+κ
[
(∂xv∗,H

1
)∂x(vv′)− (∂2

xv∗,H
1
)vv′ +∂−1

x (v∂3
xv∗,H

1
)v′
]
+

4
[
(∂xv∗,H

1
)(∂4

xv′)− (∂2
xv∗,H

1
)(∂3

xv′)+(∂3
xv∗,H

1
)(∂2

xv′)− (∂4
xv∗,H

1
)(∂xv′)

]}x=2π

x=0
dt.

Making use of the expression for L∗,H1
in (42), we now define the new adjoint

system as




L∗,H1
v∗,H

1
= 0, x ∈ Ω, t ∈ [0,T ],

∂2
xv∗,H

1
(0, t) = ∂2

xv∗,H
1
(2π, t) = 0, t ∈ [0,T ],

∂3
xv∗,H

1
(0, t) = 0, ∂3

xv∗,H
1
(2π, t) = ∂2

xv(2π, t), t ∈ [0,T ],

v∗,H
1
(x,T ) = 0, x ∈ Ω,

(101)

which allows us to re–express the differential of the cost functional as

J ′
b(φ;φ′) = −

Z T

0
(∂4

xv∗,H
1
∣∣∣
x=0

)φ′ dt =
(

∇L2(0,T )Jb,φ′
)

L2(0,T )
. (102)

As a result, the L2 gradient can be extracted as

∇L2(0,T )Jb = −∂4
xv∗,H

1
(0, t).

By comparing this to the standard formulation culminating with (93), we note that
the same L2 gradient of the cost functional is now obtained by applying a higher–
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order differential to the adjoint field obtained in the new formulation, which is
consistent with the relationship between the corresponding expressions for the L2

gradient in the periodic case as tabulated in Table 1.

6.2.4 Preconditioning the gradient

The control φ in the present problem is a function of time only, and new gradients
of the cost function (89) can be obtained by identifying its differential with an inner
product (88b) incorporating either derivatives (p = 1), or anti–derivatives (p =−1)
with respect to the time variable. In the former case we obtain

J ′
b(φ;φ′) = −

Z T

0
(∂2

xv∗
∣∣∣
x=0

)φ′ dt =
(

∇H1(0,T )Jb,φ′
)

H1(0,T )
, (103)

so that the following holds





∂2
t ∇H1(0,T )Jb = ∂2

xv∗
∣∣∣
x=0

,

∂t∇H1(0,T )Jb(0,0) = ∂t∇H1(0,T )Jb(0,T ) = 0.
(104)

We see that the new gradient is obtained by solving this elliptic–in–time boundary–
value problem, and therefore will be smoother in the time domain. In the spirit of
§4.4, this approach can be generalized by considering an inner product which is a
combination of the L2 and H1 terms, as this would allow us to focus the optimiza-
tion on a specific range of time scales that are of interest in a given optimization
problem.

7 Discussion & Conclusions

In this paper we have identified and related the four opportunities for generaliz-
ing the formulation of an adjoint–based gradient optimization algorithm. The first
opportunity concerns the choice of the specific form of the equation assumed to
govern the system evolution. The remaining three opportunities are related to the
choice of the norm and the inner products (collectively referred to in the paper as
“brackets”) on the three space–time domains that are of interest in a generic opti-
mization problem applied to an unsteady PDE system. Most studies to date have
used L2 brackets on all three of these space–time domains. In the present study we
have explored formulations based on the more general Sobolev brackets, which in-
clude the L2 brackets as special cases. Choosing an alternative form of the evolution
equation together with the adoption of different Sobolev brackets has the effect of
emphasizing or de–emphasizing different length– and time–scales in the definition
of the cost functional, the adjoint operator and the associated adjoint field, and the
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gradient of the cost functional. These opportunities allow one to fine–tune the opti-
mization algorithm to the specific length– and time–scales of interest. By so doing,
one may make the original PDE optimization problem more “regular”, and thereby
easier to discretize and solve numerically.

The four regularization opportunities discussed in §4 fall into two categories: those
that affect the descent direction (i.e., targeting the cost functional in §4.2 and pre-
conditioning the gradient in §4.4), and those that affect the manner in which a
given descent direction is computed (i.e., changing the form of the evolution equa-
tion in §4.1 and the inner product in §4.3). In the discrete, finite–precision setting,
all four of these opportunities are significant, and the different opportunities may
be used to amend the different elements of the algorithm. For example, gradient
extraction performed using an inner product which combines the H−1, L2, and H1

brackets was shown to be equivalent to applying a suitable scale–dependent filter
to the adjoint field. A low–pass filter of this sort is useful to employ when the high–
frequency components of the system are somehow considered “less significant”
or “corrupted by noise” during the optimization process in the multiscale system.
In a data assimilation problem this could be the case, for instance, when one is
attempting to obtain a long–term forecast, in which the smallest–scale variations
of the initial conditions are thought to play a relatively unimportant role. On the
other hand, a band–pass filter could be useful to employ when one is attempting
to obtain a short–term “meso–scale” forecast, in which the small–scale variations
of the initial conditions are again thought to play a relatively unimportant role and
the large–scale variations of the initial conditions are determined by a separate
(global-scale) optimization code. Optimization based on an alternative form of the
evolution equation becomes useful when a numerical implementation of the prim-
itive form of the evolution equation is not readily available, but an implementation
of a derived form exists, and the adjoint code is to be generated using automatic
techniques (e.g., such as described in [42]). If, as is often the case, one is ultimately
interested in obtaining sensitivities with respect to the primitive variables, then the
present framework provides guidelines on how such sensitivities can be obtained
from optimizations based on derived forms of the evolution equation.

As indicated in the literature survey in §1, approaches related to some of the reg-
ularization options presented here had already been mentioned in earlier studies.
The present paper examines in detail all of the different opportunities and attempts
to unify them into a coherent framework by highlighting the relations between the
different possibilities. It should be remarked that the same set of regularization op-
portunities also applies in a straightforward fashion to the “robustified” framework
for noncooperative (“worst case”) optimization developed by Bewley, Temam, &
Ziane in [41], thus allowing for tunable incorporation of model and measurement
errors into a single framework.

The presented framework opens up the possibility for adoption of a wide range of
regularization strategies. In order to illustrate these opportunities in a clear and
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exhaustive fashion, we chose to analyze them in this work based on a simple
Kuramoto–Sivashinsky model forecasting problem. Moreover, studying a spatially–
periodic system allowed us to recast parts of the analysis in Fourier space, which
facilitated drawing conclusions regarding spatial regularity of the various fields
involved. We also addressed some of the issues arising when the framework pre-
sented is extended to systems governed by more complicated evolutions equations
(e.g., the 3D Navier–Stokes system), and systems evolving in bounded domains. In
such systems, analysis is more difficult, but the fundamental concepts remain the
same. A forthcoming paper will discuss the application of some of the regulariza-
tion opportunities presented here to complex optimization problems involving the
Navier–Stokes system in 3D bounded domains.

The computational examples presented in this paper, while far short of exhaustively
examining all of the various regularization opportunities, highlighted a few of the
computational advantages inherent in the proposed framework. Based on a mod-
ified inner–product definition used to extract the gradient, a physically–motivated
multiscale preconditioning strategy was proposed which noticeably accelerates con-
vergence of an optimization procedure applied to a nonlinear multiscale system.
Adoption of similar approaches to the optimization of more complex systems of
physical and engineering interest is currently underway.

A Adjoint derivation with the “H1–in–time” inner product

We present here yet another way of deriving the adjoint operator, namely using the
bracket of the form [cf. (20b)]

〈
z1,z2

〉
H p(0,T ;L2(Ω))

,

Z T

0

Z 2π

0
(∂p

t z1)(∂p
t z2) dxdt. (A.1)

We will focus here on the case with p = 1, and define the “anti-derivative” operator
∂−1

t as

∂−1
t z(t) ,

Z t

0
z(t ′)dt ′−

Z T

0
z(t ′)dt ′ =

Z t

T
z(t ′)dt ′, (A.2)

so that ∂−1
t z(T ) = 0 for any z(t). In order not to further complicate the notation, we

will use the symbols L∗ and v∗ to also denote the new adjoint operator and the new
adjoint variable. The adjoint identity has now the following form

〈
v∗,Lv′

〉
H1(0,T ;L2(Ω))

=
〈

L∗v∗,v′
〉

H1(0,T ;L2(Ω))
+b1t , (A.3)
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where

L∗v∗ = −∂tv
∗ +4∂4

xv∗ +κ
[
∂2

xv∗−∂−2
t (v∂x∂2

t v∗)
]
, and (A.4)

b1t =

{
Z 2π

0

[
(∂tv

∗)(∂tv
′)+(∂tv

∗)∂x(vv′)+ v′ ∂−1
t (v∂x∂2

t v∗)
]

dx

}t=T

t=0
+

[
. . .

]x=2π

x=0
.

We now define the new adjoint system as





L∗v∗ = −∂−2
t H ∗(H v− y) = −∂−2

t f , x ∈ Ω, t ∈ [0,T ],

∂i
xv∗(0, t) = ∂i

xv∗(2π, t), t ∈ [0,T ], i = 0, . . . ,3,

v∗(x,T ) = 0, x ∈ Ω,

(A.5)

which, when considering the spatially–periodic problem defined in §3 and combin-
ing with (10), (A.3), and (A.2), allows us to re–express the differential (9) as

J ′(φ;φ′) =

Z 2π

0
∂2

t v∗
∣∣∣
t=0

φ′ dx =
(

∇L2J ,φ′
)

L2(Ω)
.

From this we identify the L2 gradient in terms of the new adjoint variable as

∇L2J = ∂2
t v∗
∣∣∣
t=0

.

We note that the new adjoint operator (A.4) and the RHS forcing term used in
(A.5) have terms involving ∂−1

t and are therefore non–local in time. However, as
is evident from (A.2), at a given time instant t the operator ∂−1

t depends on its
argument in the interval [t,T ] only. Consequently, the system (A.5) can be marched
backward in time (i.e. from T to 0) using conventional numerical time–marching
methods. We also observe that, as compared to the primitive adjoint operator (15),
the new adjoint operator (A.4) has a different “advection” term in which additional
time derivatives and anti–derivatives are present. In this sense (A.4) is similar to
(42), where the “advection” term includes additional space derivatives and anti–
derivatives. Consequently, we can expect system (A.5) to produce adjoint fields
which are more regular in the time domain (cf. §5.1).
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