
Analyzing Piecewise Linear
Dynamical Systems
Njal B.O.L. Pettit and Peter E. Wellstead

iecewise linear (PL) systems are an attractive class of non- P linear systems to study, as they straddle a number of difficult
and topical control problems. It is not a new area by any means;
for a long time piecewise linear functions have been the standard
technique adopted by engineers to represent a range of system
nonlinearities, such as dead zones, saturation, relays, and hyster-
esis. Indeed, stability properties of system components, espe-
cially actuators which are piecewise linear, have been studied for
decades [1,2]. However, in recent times engineers have started
to employ control laws that are piecewise linear in nature.
Important examples are rule-based control, gain scheduling, and
programmable logic control. Rule-based control in dynamic
processes in particular fall into some definitions of what has been
termed intelligent control, an area frequently discussed in this
magazine [3,4] and often with the view that some analysis
technique is needed for these systems. There has also been a
recent interest in what has been termed hybrid systems [5] .
Although this term has been used for a wide range of systems,
from timed finite state automation to complete integrated factory
control and scheduling problems, some definitions used would
encompass the piecewise linear systems outlined here, for exam-
ple [6] . In this spirit, the work can be seen as an approach for
analyzing classes of hybrid systems. This article presents a
method that is felt to provide a possible answer to the problem
of analyzing mixed logic/dynamic systems.

The article describes the development of a computational tool
for the analysis of PL dynamical systems discussed above. Note
that we exclude situations where controllers are based on firm
analysis (i.e., sliding mode control), since then they function in
a predictable manner. Unfortunately, many PL controllers are
developed from ad hoc “intelligent systems” ideas which do not
aim or allow the associated dynamic behavior to be predicted.
An example of such a system and a strong motivation for this
work is the ABS (anti-skid braking) system in a car, where the
controller is rule-based and designed using the engineer’s knowl-
edge of the system. The only current viable approach to testing
such a system is by using extensive simulation and prototype
testing. which must be repeated for each of the different car
models on which it is installed. Anything that provides insight
into the logic and dynamic interaction of such a system would
be useful; hence the development of the work in this article.
Similarly, systems with programmable logic controllers and gain

A version of this article appeared in the 1994 IEEE 33rd CDC. The
uuthors are with the Control Systems Centre, Depnrtment E.E. & E.,
University of Munchester 1n.stitute of Science and Technology
(UMIST), PO. Box 88, Manchester; M60 IQD, U.K. Emuil: pet-
tit @ csc. umist.ac.uk.

schedulers also fall into the class of piecewise linear systems,
providing further incentive for studying this type of system.

The novel aspect of this work is to take ideas and known
results from linear systems, convex set theory, and computational
geometry and to synthesize them to create an analysis tool for
studying a class of systems that mix logic and dynamics. We
choose to develop a computational analysis tool primarily be-
cause the traditional theoretical analysis of piecewise linear
processes is intractable, except, that is, for certain local dynamic
behavior.

A Geometric Perspective
The attractions of piecewise linear (PL) systems in control

have been recognized for a long time [7,8], and a standard
description of such systems is usually used. In particular, in its
simplest form a PL system is described as a set of convex
polytopes Pi E 3?” each containing some linear system of the
form

where the Pi form a partition of 32” such that

The problem has been that the geometric interpretation leads
to a complex picture of “boxes” stacked together in state space
with each box containing a different linear dynamic system. Any
global analysis must somehow identify the behaviors in each box
and then link them together to form a global picture of the
dynamics. Fig. 1 illustrates this geometric interpretation.

In Fig. 1 a block diagram shows a three-state system with two
PL functions-a saturation followed by a relay. In state space,
the system will be in three dimensions. One axis will be split by
two planes due to the two breakpoints that appear in the satura-
tion. The other will be split by one plane due to the relay, since
although the relay has two breakpoints, they occur at the same
instance in the input. As a result, the state space will comprise
six linear regions. Fig. I shows how the PL functions of the
system result in switching surfaces in the state space. These
surfaces act as the boundaries of the convex polytopes that
contain each linear dynamic region. The difficulties presented in
analyzing this setup are bound up in the need to manipulate high
dimensional convex polytopes and the dynamic systems within
them. One analysis technique, that using the phase portrait,
fulfills many of the analysis aims. In the phase portrait PL
functions can be represented as lines in the plane and trajectories
or isoclines plotted to represent the dynamics. The result is a

October 1995 0272- I708/95/$04.000 19951EEE 43

http://umist.ac.uk

Saturation

eX(J xl

Fig. 1. The geometric interpretation of a piecewise linear system.

graphical plot of the system dynamics that gives global stability
information and shows how the dynamic patterns change due to
the switching lines and hence PL functions. The big drawback is
the limitation of the phase portrait to two states.

The System Stability Graph
In [9] the idea of mapping a piecewise linear system into a

connected graph was proposed, the idea being based on the phase
portrait. Each convex polytope or region in the state space will
have dynamics entering and exiting that region. If the boundaries
of every region were partitioned into sections containing only
dynamics entering a region (termed an Nface) and only dynamics
exiting a region (termed an Xface) then the boundaries can be
characterized into sections of homogeneous dynamic behavior.
Each section thus identified is then represented as a node of a
graph. The connections between nodes are then characterized by
tracking the set of trajectories (or trajectory bundle) entering via
some Nface and identifying which (if any) Xfaces the trajectory
bundle leaves that region. This idea is illustrated in Fig. 2.

Piecing together the nodes and connections for each region
results in a directed graph that captures the global dynamic
patterns of the system. The nodes of the graph represent the PL
functions and the directed connections represent the interaction
of the PL functions with the system’s dynamics. As will be
explained in subsequent sections, the realization of this appar-
ently simple idea is not easy.

The Problem Formulation
The problem divides into three main distinct tasks with the

link being a consistent and compatible data flow between each
task.

1. System Representation. The system model must be trans-
lated into a description that contains all the information about
the linear regions and switching surfaces that separate them. This
information needs to be in some compact form that allows easy
generation of any particular linear system and its associated

Node Representation

ode for Nface Nodes for Xfaces

Xfaces

~

Fig. 2. Forming node connections using trajectory bundles.

switching boundaries. Explicit storage of every region and its
boundaries, together with the relationship between boundaries,
leads to problems of data explosion.

2. Node Identification. To identify the nodes, the convex
polytopes containing the linear systems must be explicitly
formed and the boundaries partitioned into Nfaces and Xfaces.
This requires information about the linear system in a region, the
switching surfaces bounding that linear system, and the linear
systems adjacent to the region of interest. This data should be
accessible from the system representation described in the first
task to allow continuity.

3. Node Connection. To connect the nodes, once the Nfaces
and Xfaces of a region are identified, this information must be
combined with the linear system dynamics to allow the trajectory
bundles to be formed and tracked. Data continuity is achieved
by using the geometric information concerning the partitioned
boundaries as a key element in the definition and tracking of the
trajectory bundles.

System Representation
The most widely understood system representation method is

the block diagram approach. As such the ideal PL system repre-
sentation would be one that can be directly derived from a block
diagram of the system with PL functions. To achieve this, a
graphical user interface was selected as the input stage of the
analysis process; in this case SIMULINK was adopted. Some
work has appeared in the circuit theory literature on representing
PL systems in a compact framework ([lo-121) but a modified
approach was needed to allow SIMULINK to be used as a front
end, although the resulting method has some similarities with
[111. The PL representation devised is essentially composed of
three system equations:

where in 3(a), _n represents a vector of outputs from PL functions,
one output for each function, and is the vector of inputs to
those PL functions. At present only single-valued PL functions
that operate over the entire range of the input are considered (e.g.,
saturation, dead zones, relays, quantization). Extending the rep-
resentation to include all key logic type actions and multi-valued
PLfunctions shch as hysteresis is still a topic of research. In 3(b),
the inputs of the PL functions g are defined to comprise a linear
combination of states 5 , outputs from other PL functions n , and
any system constants u. As PL functions can interact, can be
seen as an interaction matrix for the PL functions. The dynamics
of the system are embedded in 3(c), a combination of the states
5 , PL function outputs and system constant u. The key to
extracting each linear system and associated bounding switching
surfaces is in the vector i in 3(a). Each PLfunction is composed
of a number of linear segments. The vector i indicates which
linear segments of the different PL functions is “active.” Thus
- E, &! define the active gradients and offsets of the different PL
functions. Incrementing or decrementing any element of i
moves along one PL function to its next segment and hence

44 IEEE Control Systems

moves to an adjacent region. Using this, the explicit equations
for a particular region are given by

(4)

where the linear dynamic equation for that region is given by

and the switching hyperplanes that bound the region are defined
by

The advantage of this representation is that the complete
system description is stored in six matrices and two vectors:

where B X , BY are matrices that store the look up tables used to
define the PL functions in SIMULINK from which &!, k! are
derived. The remaining matrices can be found by using the
“linmod” function of SIMULINK as a system identifier. By
redefining the system input and outputs for linmod, the remain-
ing matrices can be found with two function calls. This method
is detailed in [131.

Node Identification
In Fig. 1 , the geometric interpretation of a PL system in state

space was given. This was essentially comprised of adjacent
convex polytopes with linear systems. This interpretation essen-
tially divides the PL system into two parts: (a) a static description
built up from the PLfunctions and forming the convex polytopes;
and (b) a dynamic description that includes the linear dynamical
systems in each region. This static description can be termed a
geonzerric model, since it constitutes a geometric representation
of each region that is needed to identify the nodes of the system.
To obtain the geometric model of all or part of the PL system, a
method of representing the geometry of multiple convex poly-
tope5 is needed together with all the relationships between the
polytopes. These polytopes must then be manipulated so that
their boundaries can be partitioned into Nfaces and Xfaces to
identify the nodes.

Computer Representation
The data to build up a computer representation of the geomet-

ric model must come from the system representation in (3). This
provides the switching hyperplane information together with the
linear system dynamics. To solve this, work done in developing
data structures for high dimensional (i.e.. three dimensions and
above) convex polytopes was used as the basic representational
technique. This is essentially in the domain of computational
geometry with a good survey of the field being given in [141. The
solution developed was to generate a data structure based on the
topology of the partitions between the convex polytopes [151.
This means that the relationships between convex polytopes and
relationships between the boundaries of any one convex poly-
tope must be identified from the switching hyperplanes of the PL
system. This information is then stored as complex set of links
between objects representing the boundaries of each region. To
illustrate the idea, a tetrahedron is represented in terms of the
topology of its boundaries in Fig. 3. The tetrahedron comprises
four faces, H1, H2, H3 and H4, which share common edges: for
instance, H1 and H2 share edge e2 and H3 and H4 share e6. An
alternative to representing the tetrahedron as a fixed geometric
object in Euclidean space is to describe it as a set of connections
between objects, in this case the objects being faces and edges.
In such a way the boundary topology of the tetrahedron can be
captured as a set of linked lists of objects as shown in Fig. 3.
Since the tetrahedron can be viewed from “inside” and “outside”
we get the separate structures as shown in Fig. 3.

Any manipulation of a particular boundary then becomes a
well-defined set of operations on the topology to obtain the
updated topology. The geometric information is hidden as refer-
ences to the normals of each switching hyperplane and to the
vertices generated at the intersections of the hyperplanes. The
key algorithms that allow the relationships between boundaries
to be found are convex hull algorithms that can identify convex
hulls from vertices and sets of hyperplanes. The main algorithm
used here is based on [161.

Boundary Partitioning
As described in the problem formulation, each region must

be divided into Nfaces and Xfaces. To see how the Nfaces and

e3 Tetrahedron

e l
e6 - H2 Relationships between edges

H1 @Relationships e4 betweep the faces /

I “outside” “i&ide“

Fig. 3. An example o f a geometric object represented as a topology
based data structure.

October 1995 45

Trajectories
“coming out””

“going in“

Fig. 4. Trajectories tangent to a hyperplane.

Xfaces are defined, consider the situation of a linear system
tangent to a boundary shown in Fig. 4.

Let the equation of a hyperplane be yTz = c where y and

5 are vectors and c is a constant such that y, z E E d , c E E . Let

the linear system around the hyperplane be described by
j (t) = Ax(t) . Give two points and x2 (see Fig. 4) that belong

to y T z = c , then x2 - z, defines a vector on the hyperplane;

therefore,

- -

-

-

f(&* - X I) = c - c = 0

that is y is parallel to the hyperplane normal.
-

If z (t) is tangent to the hyperplane then i (t) must be parallel
to the hyperplane, as

- yT“t) = 0

which gives

(9)

Let PT = yTA. The trajectory gradient will thus be parallel to - -
the hyperplane yT 5 = c at a “tangent (hyper)plane” PT z = 0.

Assign to a trajectory “going in” to the hyperplane the in-
equality yT i (t) < 0. Atrajectory “coming out” of the hyperplane

will then have the inequality relationship - y T i (t) > O . This is

evident by comparing the gradient vector of z (t) when on the
hyperplane with the normal of that hyperplane. Therefore the
trajectories “going in” obey PTz < 0 and the trajectories “com-

ing out” obey PTz > 0. Thus the dynamics define a tangent

hyperplane that divides the switching hyperplane in two, one
Nface and one Xface. This is simple to prove, with the proof
given in [151. The implication of this is that any hyperplane can

- -

-

-

-

Fig. 5. The maximum number of trajectory patterns across a
hyperplane.

be split into at most two sections, one Nface and one Xface. The
corollary is that if a different linear system existed either side of
the hyperplane, the hyperplane could be split into two sections
on each side, resulting in a maximum of four sections across the
boundary. This latter case is depicted in Fig. 5.

Thus any boundary of a region can be partitioned into a
maximum of four nodes in the final System Stability Graph. As
every Nface and Xface is found by partitioning a boundary of a
convex polytope (Le., the boundary will also be convex [17]) by
one or more hyperplanes, all Nfaces and Xfaces will themselves
be convex.

Node Connection
When the boundaries of a region have been partitioned into

Nfaces and Xfaces, the geometric model is updated to accom-
modate the new information. The next stage is to identify the
connections between nodes. The approach used exploits a simple
but powerful property of linear systems. The dynamics of a linear
system can be tracked from some initial point using the solution
to a linear system equation of (1)

Using g(t) to represent the matrix exponential and k(t) the
integral expression gives

where 2(t) = e & .
Now consider all the trajectories that have an Nface as their

initial condition. The linear region the dynamics are entering
defines the linear equation to use. The Nface is a convex polytope
which can be defined by its vertices. If all points on the Nface
are projected forward in time using (1 1) to some fixed time, then
the new set of points will form another convex polytope and the

46 IEEE Control Systems

-5 w - 1 0

Fig. 6. (a) An example of a geometric model of a region. (b) Tracking
(2 trajectory bundle through the region.

.vertices defining this new convex polytope will be the projected
,vertices of the original Nface. This preservation of convexity is
:inherent in the linear system and is easy to show [IS]. The
;advantage of the property is that only the vertices of an Nface
ineed be tracked in order to follow where the trajectories from an
Vface go. To illustrate this, Fig. 6(a) shows a visualization of a
geometric model of one region. The “+” indicates Nfaces and “-”
.Xfaces. The trajectory bundle defined by the shaded Nface “a”
11s then tracked by projecting its vertices and forming the pro-
jected Nface at discrete time steps using the projected vertices.
This is illustrated in Fig. 6(b), which shows the strong tendency
for the dynamics from “a” to exit the region via the Xface “b”.
hence node “a” connects to node “b”.

The Global System Stability Graph
Once the dynamics of each region have been mapped, each

region will have its own connected graph of the dynamics in that
region. The last step in the analysis procedure is to form a global

Fig. 7. Forming a global node graph. (a) The state space of a system.
(b) The results of analyzing each region. (c) The complete system
stabiliq graph. (d) Simplibing the graph.

picture of the dynamics. This is done by connecting the graphs
for each region together to form a global directed graph. To show
this, Fig. 7 gives a stylized example of the analysis progression.
Fig. 7(a) illustrates a two-state system where two linear regions
are separated by a switch. The main patterns of dynamic move-
ment in the system are shown with the shaded sets of trajectories.
Fig. 7(b) illustrates how dividing up the boundaries according to
tangent behavior generates the nodes in each region. The projec-
tion of the dynamics through the region are shown by the
connections between nodes in the figure. In 7(c) the resulting
graphs of the two regions are merged to give the global stability
graph of the system. Finally, Fig. 7(d) demonstrates some graph
simplification to clarify the representation of the system dynam-
ics.

Bringing It All Together
The intractability of stability analysis of PL systems by

pencil-and-paper analysis have led us to a computational solu-
tion which is based upon a system stability graph that reveals the
stability patterns of the system. Note here that the fact that limit
cycles can be identified as well as convergence points is impor-
tant, since many PL control systems are designed to limit cycle
(e.g., automotive anti-skid controllers).

We have described the sequence of techniques and procedures
required to build the system stability graph for a piecewise linear
system. The research sequence was not random, but specifically
designed to yield the operational components of a computer-
aided control system design (CACSD) tool. The overall opera-
tion of such a tool can be outlined given the principles behind
the main sections of the analysis method, as discussed in this
article. The CACSD tool requires a number of different routines,
but it is envisioned that MATLAB and SIMULINK will provide
a suitable front end to the system. This front end was selected
because of its status as a de facto standard for control engineers.

Stage 1: Initial System Description. SIMULINK is used as
a well-understood visual means of inputting a model of the
system. This is already partly achieved, as outlined in the “Sys-
tem Representation” section. MATLAB is then used to manipu-
late the SIMULINK description to derive an analytic description
of the PL system. An added advantage of this is that the
SIMULINK model can be used to simulate parts of the system

October 1995 41

that show up as unusual in the systems stability graph after the
analysis.

Stage 2: Computer Representation and Node Identifica-
tion. This stage requires involved data structures and data struc-
ture manipulation. As such it is outside the realm of MATLAB
and must be done in specialist code. C++ provides the best
environment, as it is ideally suited to the types of data structures
used. Data is picked up from files stored by MATLAB that
contain the description of the PL system. The geometric model
is then generated, either in its entirety or partially depending on
the size of the system being analyzed. Information from this is
accessed via a C or C++ interface with MATLAB.

Stage 3: Node Identification. This is a local analysis prob-
lem and as such local data can be passed from the geometric
model to MATLAB; and this information is then used to project
individual trajectory bundles. More sophisticated integration
routines are needed than those included with MATLAB, so some
additional “mex” files are needed. The results of each node
connection test can be passed back to the geometric model for
storage.

Stage 4: The System Stability Graph. When all connections
are found, the geometric model can pass an adjacency matrix
back to MATLAB that describes the resulting SSG. This is then
available for graphical analysis, something to which MATLAB
is well suited. Recently a prototype graph analysis package has
been developed that links a number of graph analysis routines
together using MATLAB’s GUI tools and provides a convenient
graphics-driven analysis environment for directed, connected
graphs. The graph analysis has been extended to allow informa-
tion such as weights on each graph connection, so that connec-
tions can be allocated quantitative measures of importance in the
dynamics of the system. This weight information can then be
used as part of the graph analysis procedures.

To illustrate the analysis and how it evolves, a simple example
is presented. This example is a three-state system with relay
which generates chaotic dynamic behavior. The system is taken
from [191 and is chosen since the dynamics are interesting, but
the system is still simple enough to allow visualization of simu-
lation in three dimensions. This allows comparison of the analy-
sis results with simulation. The system model is described in
SIMULINK, as shown in Fig. 8. The block “NLI” is a relay
switching between + I at zero input.

From the graphic model, the matrices outlined in Equation
(7) that represent the system are found as

- BX=[-lO 0 0 lO],By=[-l -1 1 11

These are used by the computer to identify the regions and
their associated linear system equations. The boundaries of the
region can then be partitioned into Nfaces and Xfaces. Fig. 9(a)
shows a visualization of the geometric model the computer
constructs of the system. The central shaded boundary is due to

File Edit Options Simulation Style

I1 I 7 I I

Fig. 8. A simple system with chaotic behavior:

10

8

6

4

2

x o

-2

-4

-6

-8

-1 0

m

- 5 v -5
-10 -10

(a)

x2 xl

7

x2 xl

(b)

Fig. 9. (a) The geometric model generated from the chaotic system.
(b) Some simulated dymmics.

the relay and is shown as being split into three partitions due to
tangent trajectories. The other boundaries are “global” bounda-
ries to limit the area of interest. Fig. 9(b) superimposes some
simulated trajectories onto the geometric model, showing the
chaotic region of attraction.

Once the projections are completed, a connected graph is
generated. Fig. 10(a) shows the graph as seen in the prototype

48 IEEE Control Systems

D 4
Q

2 . 0

Fig. 10. (a) The complete system stability graph of the chaotic
system. (b) A simplified graph.

graph analysis program. Most of the nodes are related to the
global boundaries and confuse the picture. Simple graph manipu-
lation allows only the nodes related to the relay and singular
points to be visualized. This result is shown in Fig. IO@). This
latter figure shows a cycle around two of the relay nodes, with
the third relay node feeding into the cycle. The singular points
also feed into the cycle. If the nodes related to the global
boundaries were examined, it would be seen that both the singu-
lar points and the three relay nodes have connections to the global
boundaries. Although this stability graph does not explicitly state
there is chaos, the essential dynamic behavior is captured and the
combination of cyclic behavior in the dynamics with unstable
singular points suggests some kind of complex dynamic behav-
ior such as chaos. Fig. 10(b) can be compared to Fig. 9(b) to show
the graph capturing the simulated dynamics of the system.

The software used here is a prototype aimed at proving the
viability of the stages for the CACSD tool outlined and misses
many features needed for the full package. Some analysis of the
software has been carried out and reported in [20]. Summarizing
the software work to date, the approach for the software used
here is limited to systems with around five states and associated
piecewise linear functions given a standard workstation such as
a Sun Sparc 2. However, as outlined in [20], it should be possible
to reduce memory requirements by some orders of magnitude,
allowing systems of 20 or more states to be analyzed. The penalty
paid by increased computation time is uncertain at present.

What the SSG Gives Us
The whole analysis procedure can be viewed as a mapping

from piecewise linear system to system stability graph. What

does this SSG give us that was not available at the start? By
bundling trajectories in the system and representing these bun-
dles as simple connections, the global dynamics can be reduced
to a finite set of connections. The alternative being exhaustive
simulation, selecting a large number of initial conditions from
an infinite number of possibilities. The PL functions within the
system have been mapped to a finite number of nodes within a
connected graph. The connections and nodes relate directly to
the system dynamics and their interaction with PLfunctions such
as logic rules. This relationship between the continuous and
discrete system elements is almost impossible to track in a
simulation. much less make sense of. Finally the resulting SSG
is essentially a connected graph, and as such, even if the number
of nodes and connections becomes too large to allow effective
visual interpretation of the SSG, the graph can be analyzed for
patterns and critical paths using well-tested graph theoretic
algorithms that have long been in the literature (e.g., [21]). The
relationship between nodes and PL system structures means that
patterns found in the graph can be related directly to those
elements of the system that generate that particular dynamic
pattern.

Conclusion
The aim of this work has been to take ideas from linear theory,

convex set theory, and computational geometry, and from them
synthesize an analysis tool for dynamic systems with piecewise
linear functions. This mixing of ideas from different disciplines
was felt to be an effective way of approaching the analysis of a
class of systems that is not within the scope of more traditional
nonlinear systems analysis techniques. The work so far has been
to develop the algorithms and computational techniques needed
to achieve the different stages of the analysis and show their
effectiveness. Future research is directed toward solving compu-
tational and memory issues related to the analysis process, as
well as to widening the class of nonlinearities and hence systems
that can be dealt with.

References
[I] R.E. Kalman, “Analysis and Design Principles of Second and Higher
Order Saturating Servomechanisms,” Tran.r. AIEE Part / I ; Applications and
Industry, VOI. 74, pp. 294-310. 1955.

[2] I. Flugge-Lotz, Discontimwus arid Optimal Control, New York: McGraw-
Hill, 1968.

[3] H. Stephanou, guest editor for a special issue on intelligent control, IEEE
Control Systems Muga:ine, vol. 1 I , no. 4, June 199 1.

(41 P. Antsaklis (chair), “Defining Intelligent Control,” report of the Task
Force on Intelligent Control. IEEE Control Systems Maga:ine, vol. 14. no.
3, pp. 4-5 and 58-66, June 1994.

[SI R.L. Grossman, A. Nerode, A.P. Ravn. H. Richel. eds., Hybrid Systems.
Lecture Notes in Computer Science, 736, Springer Verlag, 1993.

161 B.Lennartson, B. Egardt, M. Tittus,”HybridSystems inProcessControl,”
Proc. IEEE 33rd CDC, Orlando, FL. pp. 3587-3592. 1994.

[7] E.D. Sontag, “Nonlinear Regulation: The Piecewise Linear Approach,”
IEEE Trans. Autom. Control. vol. 26. pp. 346-358. I98 1 .

[SI S.P. Banks and S.A. Kathur. “Structure and Control of Piecewise-Linear
Systems,” Int. J . Control, vol. S O , pp. 667-686. 1989.

[9] R. Wilson-Jones. N.B. Pettit, and P.E. Wellstead, “An Analysis Tool For
Piecewise Linear Dynamic Systems.” / E € Colloquium on “Nonlinear Con-

October 1995 49

trol Using Structural Knowledge andSysrem Models, ” Digest No. 1993/105,
IEE, Savoy Place, London, WC2R OBL, 1993.

[101 L.O. Chua, “Section-Wise Piecewise Linear Functions: Canonical Rep-
resentation, Properties and Applications,” Proceedings of the ZEEE, vol. 65,
pp. 915-929, 1977.

[111 W.M.G. van Bokhoven, Piecewise Linear ModellingandAnalysis, Ph.D.
thesis, Eindhoven University of Technology, Eindhoven, The Netherlands,
1981.

[121 J.T.J. van Eijndhoven, “Piecewise Linear Analysis,” Chap. 3., Analog
Circuits: Computer Aided Analysis and Diagnosis (T. Ozawa, ed.), New
York Marcel Dekker Inc., 1988.

[131 V. Besson, N.B.O.L. Pettit, P.E. Wellstead, “Representing Piecewise
Linear Systems for Analysis and Simulation,” Proc. Third ZEEE Con$ on
Control App., Glasgow, U.K., pp. 1815-1820, Aug. 23-26, 1994.

[141 D.P. Dobkin, “Computational Geometry and Computer Graphics,”
Proceedings of the ZEEE, vol. 80, pp. 1400-1411, 1992.

[I51 N.B. Pettit, P.E. Wellstead, “Piecewise-Linear Systems with Logic
Control: A State-Space Representation,” Proc. Second ECC, Groningen,
Netherlands, pp. 1581-1586, July 1993.

[16] D. Chand, S. Kapur, “An Algorithm for Convex Polytopes,” J o u m l of
the Association of Computing Machinery, vol. 17, pp 78-86, 1970.

[17] P. McMullen, G.C. Shepard, Convex Polytopes and the Upper Bound
Conjecture, London Mathematical Society Lecture Note Series 3, C.U.P.,
1971.

[18] N.B.O.L. Pettit, P.E. Wellstead, “A Graphical Analysis Method for
Piecewise Linear Systems,” Proc. ZEEE 33rd CDC, Orlando, FL, pp. 1122-
1127, 1994.

[191 P.A. Cook, “Simple Feedback Systems with Chaotic Behavior,” Systems
& Control Letters, vol. 6, pp. 223-227, 1985.

[20] N.B.O.L. Pettit and P.E. Wellstead, “Designing a Computation Environ-
ment for the Analysis of Piecewise Linear Systems,” preprints of IFAC
Nonlinear Control Design Symposium (NOLCOS ‘95). Lake Tahoe, CA,
USA, pp. 947-952, June 1995.

[21] F. Harary, R.Z. Norman, D. Cartwright, Structural Models: An Introduc-
tion to the Theory of Directed Graphs, New York, John Wiley & Sons, 1965.

Njal B.O.L. Pettit received the B.Eng degree with
diploma in electronic engineering in 1990 from the
University of Hull, England. He then attended the Con-
trol Systems Centre, UMIST, where he received his
Ph.D. in 1993. He is currently employed as a research
associate at the Control Systems Centre. His research
interests are in rule-based and logic control, hybrid
systems, and related nonlinear systems theory.

Peter E. Wellstead received the B.Sc. degree in elec-
trical engineering from Hatfield College of Technology,
England, and the M.Sc., Ph.D., and D.Sc. degrees from
the School of Engineering, University of Warwick, Eng-
land. He has worked for Marconi Instruments Ltd , first
as an apprentice and subsequently as a design engineer.
From 1970 to 1972 he was a Technical Fellow at the
European Centre for Nuclear Physics, worhng on real-
time control and image processing. He is currently

Lucas Professor in Control Engineenng at the Control Systems Centre,
UMIST, where his teaching includes system modeling and the development
of novel laboratory equipment. His current research interests are in adaptive
systems and automotive control systems

Correction
1995 IEEE Fellows

Editor’s Note: The following was inadvertently omitted from the June 1995 issue of the Magazine, where the 1995 IEEE
Fellows were featured.

Peter 8. Luh
University of Connecticut
For contributions to the development of near-optimal and efficient manufacturing scheduling
methodologies.

Peter B. Luh received his B.S. degree in Electrical Engineering from National Taiwan University,
Taipei, Taiwan, Republic of China, in 1973, his M.S. degree in Aeronautics and Astronautics Engineer-
ing from M.I.T., Cambridge, MA, in 1977, and his Ph.D. degree in Applied Mathematics from Harvard
University, Cambridge, MA, in 1980. Since 1980 he has been with the University of Connecticut, and
currently is a Professor in the Department of Electrical and Systems Engineering and Director of the
Production Systems and Information Technology Program within the Advanced Technology Center for
Precision Manufacturing of the State of Connecticut. He is interested in planning and scheduling of
manufacturing systems, and schedule and transaction optimization for power systems. Dr. Luh is an

Editor for the IEEE Transactions on Robotics and Automation (1995-), was a Technical and Associate Editor for the same Transactions
(1990-94), and an Associate Editor for IEEE Transactions on Automatic Control (1989-91). He is also an Associate Editor for the
International Journal of Intelligent Control and Systems, and a member of Administrative Committee for IEEE Robotics and
Automation Society (1992-1997). He won the Best Paper Award of the 1987 Joint Command and Control Research Symposium,
and received Award of Appreciation at the 1993 East of California Asian American Studies Conference. Dr. Luh is a member of the
Connecticut Academy of Science and Engineering, a Senior Member of the Society of Manufacturing Engineers, and an Associate
Member of CIRP (the International Institution for Production Engineering Research).

io IEEE Control Systems

