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iecewise linear (PL) systems are an attractive class of non- P linear systems to study, as they straddle a number of difficult 
and topical control problems. It is not a new area by any means; 
for a long time piecewise linear functions have been the standard 
technique adopted by engineers to represent a range of system 
nonlinearities, such as dead zones, saturation, relays, and hyster- 
esis. Indeed, stability properties of system components, espe- 
cially actuators which are piecewise linear, have been studied for 
decades [ 1,2]. However, in recent times engineers have started 
to employ control laws that are piecewise linear in nature. 
Important examples are rule-based control, gain scheduling, and 
programmable logic control. Rule-based control in dynamic 
processes in particular fall into some definitions of what has been 
termed intelligent control, an area frequently discussed in this 
magazine [3,4] and often with the view that some analysis 
technique is needed for these systems. There has also been a 
recent interest in what has been termed hybrid systems [ 5 ] .  
Although this term has been used for a wide range of systems, 
from timed finite state automation to complete integrated factory 
control and scheduling problems, some definitions used would 
encompass the piecewise linear systems outlined here, for exam- 
ple [6] .  In this spirit, the work can be seen as an approach for 
analyzing classes of hybrid systems. This article presents a 
method that is felt to provide a possible answer to the problem 
of analyzing mixed logic/dynamic systems. 

The article describes the development of a computational tool 
for the analysis of PL dynamical systems discussed above. Note 
that we exclude situations where controllers are based on firm 
analysis (i.e., sliding mode control), since then they function in 
a predictable manner. Unfortunately, many PL controllers are 
developed from ad hoc “intelligent systems” ideas which do not 
aim or allow the associated dynamic behavior to be predicted. 
An example of such a system and a strong motivation for this 
work is the ABS (anti-skid braking) system in a car, where the 
controller is rule-based and designed using the engineer’s knowl- 
edge of the system. The only current viable approach to testing 
such a system is by using extensive simulation and prototype 
testing. which must be repeated for each of the different car 
models on which it is installed. Anything that provides insight 
into the logic and dynamic interaction of such a system would 
be useful; hence the development of the work in this article. 
Similarly, systems with programmable logic controllers and gain 
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schedulers also fall into the class of piecewise linear systems, 
providing further incentive for studying this type of system. 

The novel aspect of this work is to take ideas and known 
results from linear systems, convex set theory, and computational 
geometry and to synthesize them to create an analysis tool for 
studying a class of systems that mix logic and dynamics. We 
choose to develop a computational analysis tool primarily be- 
cause the traditional theoretical analysis of piecewise linear 
processes is intractable, except, that is, for certain local dynamic 
behavior. 

A Geometric Perspective 
The attractions of piecewise linear (PL) systems in control 

have been recognized for a long time [7,8], and a standard 
description of such systems is usually used. In particular, in its 
simplest form a PL system is described as a set of convex 
polytopes Pi E 3?” each containing some linear system of the 
form 

where the Pi form a partition of 32” such that 

The problem has been that the geometric interpretation leads 
to a complex picture of “boxes” stacked together in state space 
with each box containing a different linear dynamic system. Any 
global analysis must somehow identify the behaviors in each box 
and then link them together to form a global picture of the 
dynamics. Fig. 1 illustrates this geometric interpretation. 

In Fig. 1 a block diagram shows a three-state system with two 
PL functions-a saturation followed by a relay. In state space, 
the system will be in three dimensions. One axis will be split by 
two planes due to the two breakpoints that appear in the satura- 
tion. The other will be split by one plane due to the relay, since 
although the relay has two breakpoints, they occur at the same 
instance in the input. As a result, the state space will comprise 
six linear regions. Fig. I shows how the PL functions of the 
system result in switching surfaces in the state space. These 
surfaces act as the boundaries of the convex polytopes that 
contain each linear dynamic region. The difficulties presented in 
analyzing this setup are bound up in the need to manipulate high 
dimensional convex polytopes and the dynamic systems within 
them. One analysis technique, that using the phase portrait, 
fulfills many of the analysis aims. In the phase portrait PL 
functions can be represented as lines in the plane and trajectories 
or isoclines plotted to represent the dynamics. The result is a 
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Fig. 1. The geometric interpretation of a piecewise linear system. 

graphical plot of the system dynamics that gives global stability 
information and shows how the dynamic patterns change due to 
the switching lines and hence PL functions. The big drawback is 
the limitation of the phase portrait to two states. 

The System Stability Graph 
In [9] the idea of mapping a piecewise linear system into a 

connected graph was proposed, the idea being based on the phase 
portrait. Each convex polytope or region in the state space will 
have dynamics entering and exiting that region. If the boundaries 
of every region were partitioned into sections containing only 
dynamics entering a region (termed an Nface) and only dynamics 
exiting a region (termed an Xface) then the boundaries can be 
characterized into sections of homogeneous dynamic behavior. 
Each section thus identified is then represented as a node of a 
graph. The connections between nodes are then characterized by 
tracking the set of trajectories (or trajectory bundle) entering via 
some Nface and identifying which (if any) Xfaces the trajectory 
bundle leaves that region. This idea is illustrated in Fig. 2. 

Piecing together the nodes and connections for each region 
results in a directed graph that captures the global dynamic 
patterns of the system. The nodes of the graph represent the PL 
functions and the directed connections represent the interaction 
of the PL functions with the system’s dynamics. As will be 
explained in subsequent sections, the realization of this appar- 
ently simple idea is not easy. 

The Problem Formulation 
The problem divides into three main distinct tasks with the 

link being a consistent and compatible data flow between each 
task. 

1. System Representation. The system model must be trans- 
lated into a description that contains all the information about 
the linear regions and switching surfaces that separate them. This 
information needs to be in some compact form that allows easy 
generation of any particular linear system and its associated 
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Fig. 2. Forming node connections using trajectory bundles. 

switching boundaries. Explicit storage of every region and its 
boundaries, together with the relationship between boundaries, 
leads to problems of data explosion. 

2. Node Identification. To identify the nodes, the convex 
polytopes containing the linear systems must be explicitly 
formed and the boundaries partitioned into Nfaces and Xfaces. 
This requires information about the linear system in a region, the 
switching surfaces bounding that linear system, and the linear 
systems adjacent to the region of interest. This data should be 
accessible from the system representation described in the first 
task to allow continuity. 

3. Node Connection. To connect the nodes, once the Nfaces 
and Xfaces of a region are identified, this information must be 
combined with the linear system dynamics to allow the trajectory 
bundles to be formed and tracked. Data continuity is achieved 
by using the geometric information concerning the partitioned 
boundaries as a key element in the definition and tracking of the 
trajectory bundles. 

System Representation 
The most widely understood system representation method is 

the block diagram approach. As such the ideal PL system repre- 
sentation would be one that can be directly derived from a block 
diagram of the system with PL functions. To achieve this, a 
graphical user interface was selected as the input stage of the 
analysis process; in this case SIMULINK was adopted. Some 
work has appeared in the circuit theory literature on representing 
PL systems in a compact framework ([lo-121) but a modified 
approach was needed to allow SIMULINK to be used as a front 
end, although the resulting method has some similarities with 
[ 111. The PL representation devised is essentially composed of 
three system equations: 

where in 3(a), _n represents a vector of outputs from PL functions, 
one output for each function, and is the vector of inputs to 
those PL functions. At present only single-valued PL functions 
that operate over the entire range of the input are considered (e.g., 
saturation, dead zones, relays, quantization). Extending the rep- 
resentation to include all key logic type actions and multi-valued 
PLfunctions shch as hysteresis is still a topic of research. In 3(b), 
the inputs of the PL functions g are defined to comprise a linear 
combination of states 5 ,  outputs from other PL functions n , and 
any system constants u. As PL functions can interact, can be 
seen as an interaction matrix for the PL functions. The dynamics 
of the system are embedded in 3(c), a combination of the states 
5 ,  PL function outputs and system constant u. The key to 
extracting each linear system and associated bounding switching 
surfaces is in the vector i in 3(a). Each PLfunction is composed 
of a number of linear segments. The vector i indicates which 
linear segments of the different PL functions is “active.” Thus 
- E, &! define the active gradients and offsets of the different PL 
functions. Incrementing or decrementing any element of i 
moves along one PL function to its next segment and hence 
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moves to an adjacent region. Using this, the explicit equations 
for a particular region are given by 

(4) 

where the linear dynamic equation for that region is given by 

and the switching hyperplanes that bound the region are defined 
by 

The advantage of this representation is that the complete 
system description is stored in six matrices and two vectors: 

where B X ,  BY are matrices that store the look up tables used to 
define the PL functions in SIMULINK from which &!, k! are 
derived. The remaining matrices can be found by using the 
“linmod” function of SIMULINK as a system identifier. By 
redefining the system input and outputs for linmod, the remain- 
ing matrices can be found with two function calls. This method 
is detailed in [ 131. 

Node Identification 
In Fig. 1 ,  the geometric interpretation of a PL system in state 

space was given. This was essentially comprised of adjacent 
convex polytopes with linear systems. This interpretation essen- 
tially divides the PL system into two parts: (a) a static description 
built up from the PLfunctions and forming the convex polytopes; 
and (b) a dynamic description that includes the linear dynamical 
systems in each region. This static description can be termed a 
geonzerric model, since it constitutes a geometric representation 
of each region that is needed to identify the nodes of the system. 
To obtain the geometric model of all or part of the PL system, a 
method of representing the geometry of multiple convex poly- 
tope5 is needed together with all the relationships between the 
polytopes. These polytopes must then be manipulated so that 
their boundaries can be partitioned into Nfaces and Xfaces to 
identify the nodes. 

Computer Representation 
The data to build up a computer representation of the geomet- 

ric model must come from the system representation in (3). This 
provides the switching hyperplane information together with the 
linear system dynamics. To solve this, work done in developing 
data structures for high dimensional (i.e.. three dimensions and 
above) convex polytopes was used as the basic representational 
technique. This is essentially in the domain of computational 
geometry with a good survey of the field being given in [ 141. The 
solution developed was to generate a data structure based on the 
topology of the partitions between the convex polytopes [ 151. 
This means that the relationships between convex polytopes and 
relationships between the boundaries of any one convex poly- 
tope must be identified from the switching hyperplanes of the PL 
system. This information is then stored as complex set of links 
between objects representing the boundaries of each region. To 
illustrate the idea, a tetrahedron is represented in terms of the 
topology of its boundaries in Fig. 3. The tetrahedron comprises 
four faces, H1, H2, H3 and H4, which share common edges: for 
instance, H1 and H2 share edge e2 and H3 and H4 share e6. An 
alternative to representing the tetrahedron as a fixed geometric 
object in Euclidean space is to describe it as a set of connections 
between objects, in this case the objects being faces and edges. 
In such a way the boundary topology of the tetrahedron can be 
captured as a set of linked lists of objects as shown in Fig. 3. 
Since the tetrahedron can be viewed from “inside” and “outside” 
we get the separate structures as shown in Fig. 3. 

Any manipulation of a particular boundary then becomes a 
well-defined set of operations on the topology to obtain the 
updated topology. The geometric information is hidden as refer- 
ences to the normals of each switching hyperplane and to the 
vertices generated at the intersections of the hyperplanes. The 
key algorithms that allow the relationships between boundaries 
to be found are convex hull algorithms that can identify convex 
hulls from vertices and sets of hyperplanes. The main algorithm 
used here is based on [ 161. 

Boundary Partitioning 
As described in the problem formulation, each region must 

be divided into Nfaces and Xfaces. To see how the Nfaces and 

e3 Tetrahedron 

e l  
e6 - H2 Relationships between edges 

H1 @Relationships e4 betweep the faces / 

I “outside” “i&ide“ 

Fig. 3. An example o f a  geometric object represented as a topology 
based data structure. 
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Trajectories 
“coming out”” 

“going in“ 

Fig. 4. Trajectories tangent to a hyperplane. 

Xfaces are defined, consider the situation of a linear system 
tangent to a boundary shown in Fig. 4. 

Let the equation of a hyperplane be yTz  = c where y and 

5 are vectors and c is a constant such that y, z E E d ,  c E E .  Let 

the linear system around the hyperplane be described by 
j ( t )  = Ax(t) . Give two points and x2 (see Fig. 4) that belong 

to y T z  = c ,  then x2 - z, defines a vector on the hyperplane; 

therefore, 

- - 

- 

- 

f(&* - X I )  = c - c  = 0 

that is y is parallel to the hyperplane normal. 
- 

If z ( t )  is tangent to the hyperplane then i ( t )  must be parallel 
to the hyperplane, as 

- yT“t) = 0 

which gives 

(9) 

Let PT = yTA.  The trajectory gradient will thus be parallel to - -  
the hyperplane yT 5 = c at a “tangent (hyper)plane” PT z = 0. 

Assign to a trajectory “going in” to the hyperplane the in- 
equality yT i ( t )  < 0. Atrajectory “coming out” of the hyperplane 

will then have the inequality relationship - y T i ( t ) > O .  This is 

evident by comparing the gradient vector of z ( t )  when on the 
hyperplane with the normal of that hyperplane. Therefore the 
trajectories “going in” obey PTz < 0 and the trajectories “com- 

ing out” obey PTz > 0. Thus the dynamics define a tangent 

hyperplane that divides the switching hyperplane in two, one 
Nface and one Xface. This is simple to prove, with the proof 
given in [ 151. The implication of this is that any hyperplane can 

- - 

- 

- 

- 

Fig. 5. The maximum number of trajectory patterns across a 
hyperplane. 

be split into at most two sections, one Nface and one Xface. The 
corollary is that if a different linear system existed either side of 
the hyperplane, the hyperplane could be split into two sections 
on each side, resulting in a maximum of four sections across the 
boundary. This latter case is depicted in Fig. 5. 

Thus any boundary of a region can be partitioned into a 
maximum of four nodes in the final System Stability Graph. As 
every Nface and Xface is found by partitioning a boundary of a 
convex polytope (Le., the boundary will also be convex [17]) by 
one or more hyperplanes, all Nfaces and Xfaces will themselves 
be convex. 

Node Connection 
When the boundaries of a region have been partitioned into 

Nfaces and Xfaces, the geometric model is updated to accom- 
modate the new information. The next stage is to identify the 
connections between nodes. The approach used exploits a simple 
but powerful property of linear systems. The dynamics of a linear 
system can be tracked from some initial point using the solution 
to a linear system equation of (1) 

Using g(t) to represent the matrix exponential and k(t)  the 
integral expression gives 

where 2(t) = e & .  
Now consider all the trajectories that have an Nface as their 

initial condition. The linear region the dynamics are entering 
defines the linear equation to use. The Nface is a convex polytope 
which can be defined by its vertices. If all points on the Nface 
are projected forward in time using (1 1) to some fixed time, then 
the new set of points will form another convex polytope and the 
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Fig. 6. ( a )  An example of a geometric model of a region. ( b )  Tracking 
(2 trajectory bundle through the region. 

.vertices defining this new convex polytope will be the projected 
,vertices of the original Nface. This preservation of convexity is 
:inherent in the linear system and is easy to show [IS].  The 
;advantage of the property is that only the vertices of an Nface 
ineed be tracked in order to follow where the trajectories from an 
Vface go. To illustrate this, Fig. 6(a) shows a visualization of a 
geometric model of one region. The “+” indicates Nfaces and “-” 
.Xfaces. The trajectory bundle defined by the shaded Nface “a” 
11s then tracked by projecting its vertices and forming the pro- 
jected Nface at discrete time steps using the projected vertices. 
This is illustrated in Fig. 6(b), which shows the strong tendency 
for the dynamics from “a” to exit the region via the Xface “b”. 
hence node “a” connects to node “b”. 

The Global System Stability Graph 
Once the dynamics of each region have been mapped, each 

region will have its own connected graph of the dynamics in that 
region. The last step in the analysis procedure is to form a global 

Fig. 7. Forming a global node graph. ( a )  The state space of a system. 
( b )  The results of analyzing each region. ( c )  The complete system 
stabiliq graph. ( d )  Simplibing the graph. 

picture of the dynamics. This is done by connecting the graphs 
for each region together to form a global directed graph. To show 
this, Fig. 7 gives a stylized example of the analysis progression. 
Fig. 7(a) illustrates a two-state system where two linear regions 
are separated by a switch. The main patterns of dynamic move- 
ment in the system are shown with the shaded sets of trajectories. 
Fig. 7(b) illustrates how dividing up the boundaries according to 
tangent behavior generates the nodes in each region. The projec- 
tion of the dynamics through the region are shown by the 
connections between nodes in the figure. In 7(c) the resulting 
graphs of the two regions are merged to give the global stability 
graph of the system. Finally, Fig. 7(d) demonstrates some graph 
simplification to clarify the representation of the system dynam- 
ics. 

Bringing It All Together 
The intractability of stability analysis of PL systems by 

pencil-and-paper analysis have led us to a computational solu- 
tion which is based upon a system stability graph that reveals the 
stability patterns of the system. Note here that the fact that limit 
cycles can be identified as well as convergence points is impor- 
tant, since many PL control systems are designed to limit cycle 
(e.g., automotive anti-skid controllers). 

We have described the sequence of techniques and procedures 
required to build the system stability graph for a piecewise linear 
system. The research sequence was not random, but specifically 
designed to yield the operational components of a computer- 
aided control system design (CACSD) tool. The overall opera- 
tion of such a tool can be outlined given the principles behind 
the main sections of the analysis method, as discussed in this 
article. The CACSD tool requires a number of different routines, 
but it is envisioned that MATLAB and SIMULINK will provide 
a suitable front end to the system. This front end was selected 
because of its status as a de facto standard for control engineers. 

Stage 1: Initial System Description. SIMULINK is used as 
a well-understood visual means of inputting a model of the 
system. This is already partly achieved, as outlined in the “Sys- 
tem Representation” section. MATLAB is then used to manipu- 
late the SIMULINK description to derive an analytic description 
of the PL system. An added advantage of this is that the 
SIMULINK model can be used to simulate parts of the system 
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that show up as unusual in the systems stability graph after the 
analysis. 

Stage 2: Computer Representation and Node Identifica- 
tion. This stage requires involved data structures and data struc- 
ture manipulation. As such it is outside the realm of MATLAB 
and must be done in specialist code. C++ provides the best 
environment, as it is ideally suited to the types of data structures 
used. Data is picked up from files stored by MATLAB that 
contain the description of the PL system. The geometric model 
is then generated, either in its entirety or partially depending on 
the size of the system being analyzed. Information from this is 
accessed via a C or C++ interface with MATLAB. 

Stage 3: Node Identification. This is a local analysis prob- 
lem and as such local data can be passed from the geometric 
model to MATLAB; and this information is then used to project 
individual trajectory bundles. More sophisticated integration 
routines are needed than those included with MATLAB, so some 
additional “mex” files are needed. The results of each node 
connection test can be passed back to the geometric model for 
storage. 

Stage 4: The System Stability Graph. When all connections 
are found, the geometric model can pass an adjacency matrix 
back to MATLAB that describes the resulting SSG. This is then 
available for graphical analysis, something to which MATLAB 
is well suited. Recently a prototype graph analysis package has 
been developed that links a number of graph analysis routines 
together using MATLAB’s GUI tools and provides a convenient 
graphics-driven analysis environment for directed, connected 
graphs. The graph analysis has been extended to allow informa- 
tion such as weights on each graph connection, so that connec- 
tions can be allocated quantitative measures of importance in the 
dynamics of the system. This weight information can then be 
used as part of the graph analysis procedures. 

To illustrate the analysis and how it evolves, a simple example 
is presented. This example is a three-state system with relay 
which generates chaotic dynamic behavior. The system is taken 
from [ 191 and is chosen since the dynamics are interesting, but 
the system is still simple enough to allow visualization of simu- 
lation in three dimensions. This allows comparison of the analy- 
sis results with simulation. The system model is described in 
SIMULINK, as shown in Fig. 8. The block “NLI” is a relay 
switching between + I  at zero input. 

From the graphic model, the matrices outlined in Equation 
(7) that represent the system are found as 

- BX=[-lO 0 0 lO],By=[-l -1 1 11 

These are used by the computer to identify the regions and 
their associated linear system equations. The boundaries of the 
region can then be partitioned into Nfaces and Xfaces. Fig. 9(a) 
shows a visualization of the geometric model the computer 
constructs of the system. The central shaded boundary is due to 
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Fig. 8. A simple system with chaotic behavior: 
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Fig. 9. ( a )  The geometric model generated from the chaotic system. 
(b) Some simulated dymmics. 

the relay and is shown as being split into three partitions due to 
tangent trajectories. The other boundaries are “global” bounda- 
ries to limit the area of interest. Fig. 9(b) superimposes some 
simulated trajectories onto the geometric model, showing the 
chaotic region of attraction. 

Once the projections are completed, a connected graph is 
generated. Fig. 10(a) shows the graph as seen in the prototype 
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Fig. 10. (a )  The complete system stability graph of the chaotic 
system. (b) A simplified graph. 

graph analysis program. Most of the nodes are related to the 
global boundaries and confuse the picture. Simple graph manipu- 
lation allows only the nodes related to the relay and singular 
points to be visualized. This result is shown in Fig. IO@). This 
latter figure shows a cycle around two of the relay nodes, with 
the third relay node feeding into the cycle. The singular points 
also feed into the cycle. If the nodes related to the global 
boundaries were examined, it would be seen that both the singu- 
lar points and the three relay nodes have connections to the global 
boundaries. Although this stability graph does not explicitly state 
there is chaos, the essential dynamic behavior is captured and the 
combination of cyclic behavior in the dynamics with unstable 
singular points suggests some kind of complex dynamic behav- 
ior such as chaos. Fig. 10(b) can be compared to Fig. 9(b) to show 
the graph capturing the simulated dynamics of the system. 

The software used here is a prototype aimed at proving the 
viability of the stages for the CACSD tool outlined and misses 
many features needed for the full package. Some analysis of the 
software has been carried out and reported in [20]. Summarizing 
the software work to date, the approach for the software used 
here is limited to systems with around five states and associated 
piecewise linear functions given a standard workstation such as 
a Sun Sparc 2. However, as outlined in [20], it should be possible 
to reduce memory requirements by some orders of magnitude, 
allowing systems of 20 or more states to be analyzed. The penalty 
paid by increased computation time is uncertain at present. 

What the SSG Gives Us 
The whole analysis procedure can be viewed as a mapping 

from piecewise linear system to system stability graph. What 

does this SSG give us that was not available at the start? By 
bundling trajectories in the system and representing these bun- 
dles as simple connections, the global dynamics can be reduced 
to a finite set of connections. The alternative being exhaustive 
simulation, selecting a large number of initial conditions from 
an infinite number of possibilities. The PL functions within the 
system have been mapped to a finite number of nodes within a 
connected graph. The connections and nodes relate directly to 
the system dynamics and their interaction with PLfunctions such 
as logic rules. This relationship between the continuous and 
discrete system elements is almost impossible to track in a 
simulation. much less make sense of. Finally the resulting SSG 
is essentially a connected graph, and as such, even if the number 
of nodes and connections becomes too large to allow effective 
visual interpretation of the SSG, the graph can be analyzed for 
patterns and critical paths using well-tested graph theoretic 
algorithms that have long been in the literature (e.g., [21]). The 
relationship between nodes and PL system structures means that 
patterns found in the graph can be related directly to those 
elements of the system that generate that particular dynamic 
pattern. 

Conclusion 
The aim of this work has been to take ideas from linear theory, 

convex set theory, and computational geometry, and from them 
synthesize an analysis tool for dynamic systems with piecewise 
linear functions. This mixing of ideas from different disciplines 
was felt to be an effective way of approaching the analysis of a 
class of systems that is not within the scope of more traditional 
nonlinear systems analysis techniques. The work so far has been 
to develop the algorithms and computational techniques needed 
to achieve the different stages of the analysis and show their 
effectiveness. Future research is directed toward solving compu- 
tational and memory issues related to the analysis process, as 
well as to widening the class of nonlinearities and hence systems 
that can be dealt with. 
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Correction 
1995 IEEE Fellows 

Editor’s Note: The following was inadvertently omitted from the June 1995 issue of the Magazine, where the 1995 IEEE 
Fellows were featured. 

Peter 8. Luh 
University of Connecticut 
For contributions to the development of near-optimal and efficient manufacturing scheduling 
methodologies. 
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