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ABSTRACT: Applications of current ma- 
chine vision systems in industry demand a 
highly constrained environment and also 
limit the number of objects involved. This 
paper proposes an intelligent shape represen- 
tation and recognition system that can handle 
a large class of objects under less constrained 
situations. The investigation treats intelli- 
gent integration of different shape reprehen- 
tation schemes and generation o f  the b r t  
shape recognition strategy using global 5hapc 
properties. The proposed scheme etfectivcly 
incorporate5 model-driven top-down and 
data-driven bottom-up approaches of shape 
analysis. By analyzing global shape proper- 
ties, the essential features and their degrees 
of importance are determined quickly. In the 
representation phase, objects are described 
by using these essential features; in the rec- 
ognition phase, searching for the best can- 
didate is restricted to the models represented 
by these features and the observed shape is 
matched to the candidate models in the order 
of importance of the essential features. Sys- 
tems are being developed for two- and three- 
dimensional shapes separately since they are 
exploiting different visual data-photometric 
and range, respectively. 

Introduction 
Currently, machine vision systems have a 

pervasive influence in many areas of auto- 
mated industrial processes [ 11-[6]. Particu- 
larly, in flexible manufacturing areas involv- 
ing small- to medium-sized batches, they 
have been used as the key sensing modality 
for a robot. With the aid of visual feedback, 
a robot can deal with imprecisely positioned 
and/or randomly oriented parts or subassem- 
blies. However, current machine vision sys- 
tems are not fast enough to provide real-time 
feedback to a robot, and practical applica- 
tions of machine vision systems have de- 
manded a highly constrained environment 
and limited the number of objects involved. 
As yet, a machine vision system that can 
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handle a large number of objects in an un- 
constrained situation has not emerged. 

Until now. most machine vision systems 
in industn habe been developed using a two- 
dimensional binan \ ision technique [7]. [8]. 
These systems recognize the object shape by 
matching the boundaries or skeletons ex- 
tracted from the observed silhouettes with 
the prototypical ones stored in memo?. In 
addition to the boundary and skeleton. global 
shape properties such as eccentricity, com- 
pactness. Euler number, moments, and prin- 
cipal axes also have been used. Although the 
binary vision technique often imposes con- 
straints on object pose, scene complexity, 
and scene illumination, it has been used pop- 
ularly for many industrial applications, par- 
ticularly for part identification and inspec- 
tion, because of its simplicity of design and 
low processing time. Even in a fairly com- 
plex industrial task such as bin picking, this 
technique has generated some solutions in 
providing a robot the optimal grasping site 
[61. 

However, because of the aforementioned 
limitations with the binary vision technique, 
three-dimensional vision techniques based on 
range information have been receiving more 
attention lately, particularly when the objects 
involved are inherently three-dimensional in 
nature (or voluminous) and/or when the ob- 
jects in a scene are not sufficiently well sep- 
arated. Range information has several ad- 
vantages over photometric data: (1) it 
encompasses intrinsic characteristics of the 
object shape; (2) it is free from artifacts such 
as contrast reduction and shadow effect; (3) 
it can be used to generate useful three-di- 
mensional object features such as local sur- 
face normals and local surface curvatures. 
Recently, many schemes based on range in- 
formation in relation to feature extraction, 
scene analysis, and object recognition have 
been proposed [9]-[ 121. 

Although the three-dimensional vision 
technique exploiting range information is 
more reliable and flexible than the binary 
vision technique, it also suffers from draw- 
backs that might prevent it from being widely 
adopted in industry. Commercially available 
range sensors that can acquire sufficiently 
dense and accurate range data are still very 
costly. Furthermore, acquisition and inter- 
pretation of range data is computationally 

much more expensive than that of the pho- 
tometric data. This is why machine vision 
systems based on the binary vision technique 
still remain dominant in most industrial ap- 
plications. 

Of the many problems that must be solved 
to make machine vision systems practically 
useful in performing most industrial tasks, 
the most difficult one might be the inflexi- 
bility in representing shapes and the ineffi- 
ciency in shape recognition. Although a 
number of shape representation and recog- 
nition schemes have been proposed so far, 
no single method has been successful in han- 
dling different classes of objects efficiently. 

In general, shape representation and rec- 
ognition schemes, whether they deal with 
two- or three-dimensional shapes, are eval- 
uated according to the following criteria: (1) 
whether a scheme is insensitive to the vari- 
ances such as scaling, rotation, and transla- 
tion; (2) how many different classes of shapes 
it can reliably represent and/or recognize; (3) 
how flexible and efficient is the control strat- 
egy for shape analysis. Most efforts address 
the first issue, and several schemes that are 
not very sensitive to  the aforementioned van- 
ances have emerged. As yet, the second and 
third issues have not been addressed seri- 
ously-particularly from the standpoint of the 
industrial application of machine vision sys- 
tems. 

Most machine vision systems to date apply 
to a small number of specific objects; there- 
fore, the best representation scheme for that 
category of objects can be specified in ad- 
vance. However, those systems are not flex- 
ible; if the objects or their environments 
change, they become useless. Furthermore, 
they are inadequate for complex industrial 
tasks in which a number of different dimen- 
sions and shapes of parts and subassemblies 
are involved. The main reason for this in- 
adequacy is that not all parts can be de- 
scribed equally well by a single feature. As 
an example of this problem, consider a ma- 
chine vision system designed for accom- 
plishing an automatic assembly task includ- 
ing such parts as shown in Fig. 1 .  What 
would be the best shape representation 
scheme that can describe all the parts equally 
well? Is it a scheme based on boundary, 
skeleton, or hole? The best answer would be 
that any scheme based on a single feature is 
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improper. Obviously, no single feature can 
describe all the parts sufficiently well. For 
instance, the most essential feature for the 
part shown in Fig. l(b) is the boundary; for 
the part shown in Fig. l(d), it is the skeleton. 
For the parts with complex shape, however, 
the essential feature may not be a single fea- 
ture, but multiple ones. For example, for the 
parts shown in Figs. l(a) and I(i). both the 
boundary and the holes are important in 
characterizing the shape; although it is hard 
to tell precisely which feature is more im- 
portant than the other. 

Similar questions arise when the task in- 
cludes a different class of three-dimensional 
parts and subassemblies. No three-dimen- 
sional shape representation and recognition 
scheme that uses a single three-dimensional 
feature could describe different classes of 
three-dimensional shapes equally well. 

The proposed scheme is directed at cir- 
cumventing the limitations of current shape 
representation and recognition schemes. In 
this work, we are developing two- and three- 
dimensional schemes independently, be- 
cause, although both are based on similar 
rationale and structure, they exploit different 
visual data-photometric and range, respec- 
tively. (Although we might differentiate flat- 
tish objects from voluminous ones by in- 
specting and measuring the size of the object, 
it is difficult to make a judgment objectively. 
Furthermore. size measurement requires 
range information.) 

This paper is organized as follows. First, 
we discuss the proposed scheme in general, 
and describe system units and their functions 
in detail. We then show the practical appli- 
cation of our scheme to the different classes 

of two-dimensional shapes. Here, we over- 
view and discuss two-dimensional shape 
representation schemes reported so far; de- 
tail global shape properties and three major 
shape representation schemes we currently 
employ; and provide a set of rules that we 
are currently adopting to determine the best 
representation for a given shape. 

System Description 
Our method is directed at solving the gen- 

eral representation and recognition problem, 
and its framework is not constrained to a 
particular domain of application. However, 
we believe that this scheme will be particu- 
larly useful for situations in which a large 
class of different shapes are involved, such 
as in automatic assembly. 

General Discussion of Proposed Scheme 

Our scheme is based on the premise that 
an object exhibits a wide range of properties. 
A successful representation and/or recogni- 
tion requires an integrated synthesis and/or 
analysis strategy. This philosophy is moti- 
vated by the parallel human process-a pro- 
cess that draws from numerous stimuli (such 
as visual and tactile) and a powerful knowl- 
edge that enables humans to describe and 
recognize object shapes. 

In this work, we are developing two- and 
three-dimensional schemes independently, 
although both are based on similar rationale 
and structure. This is because, in practice, 
they employ different visual data. If one 
could develop a fast and objective way of 
differentiating flattish objects from volumi- 
nous ones, he or she might integrate two- 
and three-dimensional schemes into one un- 
ified scheme; this is beyond the scope of this 
paper. 

In our shape representation and recogni- 
tion scheme, we are adopting the intelligent 
incorporation of model-driven top-down and 
data-driven bottom-up approaches, which is 
considered as the ultimate goal of an intel- 
ligent shape analysis. The overall strategies 
of our scheme can be described as follows: 

The global shape property of the object 
is measured, and the features that are 
most important in representing and/or 
recognizing the given object are deter- 
mined. Eccentricity (or elongatedness), 
compactness (or complexity), and Euler 
number are used to determine the essen- 
tial feature of two-dimensional objects, 
while the local surface curvature is used 
for three-dimensional objects. For two- 
dimensional objects, candidate features 
are boundary, skeleton, and hole. 
Whereas, for three-dimensional objects, 

they are wireframe (or edge-vertex), sur- 
face orientation, and surface curvature. 

If the essential featurc is dominant, the 
object is then represented by a scheme 
based on that feature and stored in the 
corresponding subspace in memory. If 
the essential feature is not dominant but 
ambiguous-if there exists more than one 
feature that is important-we represent 
the object by using all those features and 
record the order of their importance. 

During recognition, searching for the 
best candidate is done in the order of 
importance of the essential features in 
such a way that, if' the matching cer- 
tainty with the model of higher priority 
is less than threshold. the next one is 
tried, and so forth. Certainly, if the 
global shape property measurement 
yields one essential feature that is dom- 
inant, searching is limited to the corre- 
sponding subspace in memory. 

If the overall matching certainty is less 
than threshold, the object is declared as 
unclassifiable. 

System Conjigurntion 

At the core of this system (Fig. 2) is the 
Supervisor (SV). It interacts with other units 
with the aid of a Knowledge Base (KB). The 
Knowledge Base contains a set of rules that 
help the Supervisor determine the shape rep- 
resentation scheme best suited to produce the 
description of an input object shape. Once 
the Supervisor decides on a plan of action, 
it activates schemes that produce represen- 
tations that are added to the Shape Model 
(SM) or used to recognize the object by com- 
paring it with stored representations. The 
Knowledge Base contains a set of mles 
adopting a context-limiting strategy whereby 
rules are separated into groups. and only 
some rules are activated at any time. For- 
ward and backward chaining are incorpo- 
rated for flexible reasoning. Further, a me- 
tarule based on specificity ordering is used 
to resolve the conflict when more than one 
rule are triggered simultaneously. 

Whether the visual data is photometric or 
range, real-world images require some noise 
cleaning; this is done by the Preprocessor 
(PP). For the case of a two-dimensional 
shape, we use morphological erosion and/or 
dilation; for a three-dimensional shape, we 
exploit the averaging-of-nearest-neighbor 
technique proposed by Hoffman and Jain 
[13]. This technique is known to suppress 
noise effectively while preserving useful fea- 
tures such as edges. 

Generally, it is the global properties of an 
object that determine the validity of a rep- 
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Fig. 2. 
and recognition system consisting of PP (Preprocessor). GSPA 
(Global Shape Property Analyzer,. SV (Supemisor). KB 
(Knowledge Base). SR (Shape Representer). and Shl (Shape 

Block diagram of the proposed shape representation 

Model) 

resentation. Thi\ introduces a neu functional 
unit-the Global Shape Propen! Anal! zer 
(GSPA).  As the global shape properties for 
a two-dimensional shape. we use cccentric- 
ity (o r  elongatedness). compactness (or com- 
plexity). and the Euler number. The reason 
we include the Euler number in the global 
shape property is because many industrial 
parts often contain holes in the interior (Fig. 
I ) .  which arc crucial in characterizing a 
shape. (Note that the Eulcr number is com- 
puted by subtracting the number of holes 
from the number of connected components 
in the image.) The essential feature or fea- 
tures of the given shape are then determined 
by global shape property measurement cou- 
pled with knowledge as to the fuzzy rela- 
tionships between these measurements and 
human judgments on the essential features. 
The Knowledge Base uses the values of these 
global properties to fire rules on the basis of 
which the Supervisor generates strategies. 

For a three-dimensional shape, we exploit 
surface curvature signs and histograms as 
global shape properties to determine the es- 
sential feature. By analyzing these proper- 
ties. we characterize the shape into one of 
the following types: nonconvex polyhedral, 
convex. nonconvex curved with simple sol- 
ids. o r  complex. We prefer the surface cur- 
vature as a global shape property since it is 
a viewing-direction-invariant characteristic. 
Furthemiore, combining surface curvature 
signs with curvature histograms makes the 
global classification of the observed three- 
dimensional shape fairly reliable and easy. 

Currently, the Shape Representer (SR) for 
a two-dimensional shape consists of a nor- 
malized distance-versus-angle measurer, a 
morphological shape recognizer, and a re- 
lational modeler based on skeletal structure. 
For objects whose shapes are best described 

by their boundaries. the Knowledge Base 
might suggest the use of a boundary repre- 
sentation produced by the normalized dis- 
tance-versus-angle measurer. In the repre- 
sentation phase. this is added to the SM; in 
the recognition phase, it is used to restrict 
the search space in the model based on 
boundary representations, and then to look 
for a match in this reduced space. Objects 
that are thin and have a well-defined prin- 
cipal axis may be represented by their mor- 
phological skeleton. If there are holes in the 
interior that decrease the reliability in using 
the principal axis for detecting scale and/or 
orientation variance, a relational model based 
on skeleton features may be the better rep- 
resentation. A large Euler number is a dis- 
tinctive characteristic, and Euler numbers are 
also stored in the Shape Model. 

For three-dimensional objects, the Shape 

Representer consists of a wireframe repre- 
sentation based on edges and vertices, an 
extended Gaussian image, a three-dimen- 
sional relational modeler based on surface 
curvature, and a surface representation based 
on surface curvature. Fora nonconvex polyhe- 
dral type, we use a wireframe representation. 
For a convex type, we use an extended 
Gaussian image. For a nonconvex curved 
with simple solids, we use a three-dimen- 
sional relational modeler based on surface 
curvature. For a complex type, we use a sur- 
face representation based on surface curva- 
ture. In the representation phase, we gener- 
ate the model from different viewing 
directions and classify the object type by the 
view from that direction. (Note that for the 
object-centered representation scheme, such 
as an extended Gaussian image, model gen- 
eration from different viewing directions is 
unnecessary.) 

Table 1 depicts the comparison of the Pre- 
processor, Global Shape Property Analyzer, 
Shape Representer, and Shape Model used 
for two- and three-dimensional systems. 

Since the GSPA employs different global 
shape properties to determine the distin- 
guished feature, and the SR and SM consist 
of different shape representation schemes, 
this system is highly amenable to parallel 
implementation. 

During the model generation phase, the 
system works as follows: First, the GSPA 
computes a number of global shape proper- 
ties; next. the SV determines the suitability 
of a particular representation from the values 
of the global shape properties using rules in 
the KB. Based on its decisions, the SV ac- 
tivates modules in the SR to generate rep- 
resentations. Although each of these three 

Table 1 
Comparison of the Preprocessor (PP), Global Shape Property Analyzer (GSPA), 

Shape Representer (SR), and Shape Model Used for Two- and Three-Dimensional 
Systems 

Shape 

Unit Two-Dimensional Three-Dimensional 

PP Morphological ErosioniDilation 

GSPA Eccentricity, Compactness, 
Euler Number 

SR, SP Normalized Distance-versus-An- 
gle Measure, Morphological 
Skeleton Function, Relational 
Model Based on Skeletal 
Structure 

Nearest Neighborhood Sniooth- 
ing 

Surface Curvature Signs, Surface 
Curvature Histogram 

Wireframe Representation. Ex- 
tended Gaussian Image, 
Three-Dimensional Relational 
Model, Surface Representa- 
tion Based on Surface Curva- 
ture 
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tasks have to be executed in sequence, each 
of them can be implemented in parallel. The 
task of computing the global shape proper- 
ties can be distributed among several pro- 
cessors, with a particular processor assigned 
to a particular shape property. The SV can 
start determining the suitability of the rep- 
resentations as soon as the shape properties 
begin to become available. Again, several 
processors can be used in parallel to do this 
task, each computing the appropriateness of 
a particular representation. Finally, the 
model generation task can be executed in 
parallel with each parallel process computing 
a different representation. 

The recognition phase is quite similar; its 
first two tasks are the same as those of the 
representation phase. The global shape prop- 
erties are first computed and then the suita- 
bility of a particular kind of representation 
or representations is determined. This latter 
task is that of hypothesis generation. These 
two tasks can be implemented in parallel as 
discussed earlier for the representation phase. 
The final task, that of recognition or hypoth- 
esis verification, can be implemented as a 
highly parallel process depending on the hy- 
potheses generated and the number of pro- 
cessors available. If several hypotheses of 
comparable strength are generated, different 
processors can be assigned to different sub- 
spaces of the model base, with each proces- 
sor trying to match the object in  the scene to 
the representations in its model subspace. If 
more processors are available than there are 
hypotheses, or if one hypothesis is much 
stronger than the others, search can proceed 
on a best-hypothesis-first basis. In this case. 
all the processors can be set up to match the 
object with the different representations in 
the model subspace corresponding to the 
strongest hypothesis. 

In either the representation or the recog- 
nition phase, the Knowledge Base only gives 
suggestions to the Supervisor. These sug- 
gestions may sometimes compete in priority. 
Resolution of such ambiguities is crucial to 
the success of the system. 

Practical Application 
to Two-Dimensional Shapes 

Overview and Discussion 

Two-dimensional shape representation 
schemes can be categorized broadly as fol- 
lows [ 7 ] ,  [SI: external shape representation 
based on boundary, structural representation 
based on skeleton, representation based on 
spatial occupancy, representation based on 
global shape properties. 

External shape representation exploits one- 
dimensional entities that are used to describe 

the boundary of the object and, hence, of the 
region enclosed. Boundary approximation by 
piecewise analytic functions, Fourier de- 
scriptors, chain codes, and angle-versus- 
length signatures belong to this category. On 
the other hand, structural representation di- 
rectly uses a two-dimensional internal stmc- 
ture of an object shape constmcted from a 
skeleton. The medial axis transformation 
(MAT), morphological skeleton function, 
and relational model based on skeleton fea- 
tures (i.e., junctions, branches, loops) are 
structural representations. Spatial occu- 
pancy-based representation employs a quad- 
tree to describe an object. The root of the 
quadtree corresponds to the entire image. 
Each node corresponds to a subdivision, and 
each node has four descendents, if the region 
represented by that node is inhomogeneous. 
Global shape properties such as moments, 
projections, compactness, shape number, and 
Euler number are useful measures of specific 
aspects of shape and can be used to describe 
two-dimensional shape. 

Of the above-mentioned two-dimensional 
shape representation schemes, boundary- 
based and skeleton-based have been used 
more widely because they are less sensitive 
to the variances and encompass rich infor- 
mation as to the shape of the object. Quad- 
tree has been applied mostly to the shape 
representation and reconstruction, and used 
as a tool for the split-and-merge technique 
for region-based image segmentation. Global 
shape properties also have been used suc- 
cessfully for shape recognition when a small 
number of objects that are precisely distin- 
guishable by their global shape properties are 
involved. 

Global Shape Propeny Measurement 

In our system for two-dimensional shapes, 
eccentricity, compactness, and Euler num- 
ber are used as global shape properties. Ec- 
centricity determines whether the shape is 
long and thin or short and thick. We use the 
definition described in [7] for measuring ec- 
centricity ( e ) .  (M,, is the ijth moment and A 
is the area.) 

e = [(AI2” - Mo2)”2 + 4M,,]/A 

Compactness measures whether the shape 
is elongated, irregular, or has a wiggly 
boundary. In most cases, compactness ( c )  is 
defined as shown, where p is the perimeter 
and A is the area. 

c = p2/A 

Euler number ( E )  is defined as follows, 
where C is the number of connected com- 
ponents and H the number of holes. 

E = C - H  

The most direct method of computing the 
Euler number is via connected-component 
labeling, but this takes more time than we 
can allocate to the computation of global 
shape properties. An alternative and faster 
scheme exploits the additive set property of 
the Euler number. If the image is swept in 
one direction by a scanning line, it can be 
shown that the Euler number equals the dif- 
ference of convexities and concavities that 
are incident on the scanning line. The scan- 
ning process can be implemented locally as 
Boolean window operations. The two win- 
dows that detect convexities and concavities 
in an eight-connected image, when the scan 
direction is from the northwest to the south- 
east, are shown in Fig. 3. 

Table 2 lists the properties measured for 
different objects in Figs. l(a)-lu). 

Shape Representation and Model 

Normalized Distance- Versus-Angle Signa- 
ture A signature is a one-dimensional rep- 
resentation of a boundary. One of the sim- 
plest ways of generating a signature is to plot 
the distance from the center of the object 
region to the boundary as a function of an- 
gle. Scale variance can be normalized by set- 
ting the maximum value of this signature to 
unity, while orientation variance can be nor- 
malized by shifting this signature in such a 
way that the angle that gives the maximum 
distance is set to zero. Figure 4 illustrates a 
normalized distance-versus-angle signature 
of the object in Fig. l(g). 

Morphological Shape Representation and 
Recognition Mathematical morphology ex- 
ploits the concept of structuring elements, 
which interact with the image to extract a 
more expressive version of the shape in the 
image [14]. Since two fundamental mor- 
phological operations such as erosion and di- 
lation can be implemented via the use of 
Minkowski subtraction and addition, respec- 
tively, it is possible to implement all the 
morphological set operations using shift and 
Boolean primitives in parallel. 

Fig. 3. Two windows that detect 
convexities and concavities in an eight- 
connected image. 

26 I € € €  Control Systems Mogorine 



Table 2 
Eccentricity, Euler Number, and Compactness of the Objects Shown in Fig. 1 

Object Eccentricity Euler No. Compactness 

a 0.0047 - 12 232.21 
b 0.0009 1 26.92 
C 0.0024 0 59.52 
d 0.0093 0 79.52 
e 0.9658 - 1  40.18 
f -1.0185 1 34.63 
,e -0. IO97 1 16.57 
h 0.0124 0 16.04 
i -0.2072 - 10 260.7 
J 2.0963 I 54.72 

' 5000 I 
t 

0000 6000 1200 1800 2400 3000 3600 

Angle (deg) - 
Fig 4 Normalized distance-ver~us-dngle 
signature of the shape in Fig l(g) 

As described in [ 151, two-dimensional 
shape can be represented uniquely via a mor- 
phological skeleton function. Using the mor- 
phological skeleton as a prototype, we can 
implement a very fast and robust shape rec- 
ognition scheme. This scheme measures the 
goodness-of-fit of the prototypical skeletons 
to the silhouette of the observed object. Sim- 
ilarity is measured by taking morphological 
erosion using a skeleton as a structuring ele- 
ment. An erosion of the observed silhouette 
by the prototype skeleton will leave a residue 
of a single or at most a few points where the 
object is located. Since erosion is a transla- 
tion invariant operation, the object will be 
recognized regardless of its position. Inas- 
much as the skeleton contains size and ori- 
entation as well as shape information, a gen- 
eral recognition scheme should incorporate 
mechanisms for rotation and scaling vari- 
ance. One way to do this is using the prin- 
cipal axis defined as the eigenvector asso- 
ciated with the larger eigenvalue of the 
covariance matrix of the object. The prin- 
cipal axes of both the skeleton and the object 
to be recognized are determined, and the 
skeleton is rotated and scaled so that the di- 

rection and length of their principal axes be- 
come equal. For details concerning this rec- 
ognition scheme, see [16]. 

Figure 5(b) depicts a morphological skel- 
eton of the object (wrench) in Fig. 5(a). Fig- 
ure S(d) shows the residue remaining after 
the silhouette of the observed object [Fig. 
5(c)]. which is a scaled and rotated version 
of the silhouette in Fig. 5(a), is eroded by 
its prototype morphological skeleton [Fig. 
5(b)l. 

Relational Model Based on Skeletal 
Structure In order to describe a two-di- 
mensional shape using its skeleton features 
and their relationships, a connected and sin- 
gle-pixel-width skeleton must be generated. 
Although there exist some methods that can 
generate a connected and single-pixel-width 
skeleton [ 171, [ 181, they are not adequate for 
constructing a relational skeletal model since 
they do not generate a consistently four-con- 
nected or eight-connected skeleton. (Incon- 
sistency in the connectedness makes decom- 
position of the skeleton into its subsets 
impossible.) We use Boolean window op- 
erations to generate an eight-connected skel- 
eton consistently. Since wc use window op- 
erations instead of component labeling to 
determine simple points. the time required 
for skeletonization could be as competitive 
as Zhang and Suen's [IS] .  

Points are deleted from the four cardinal 
directions successively until the skeleton re- 
mains. A point is deleted from the north if 
its neighborhood matches with any of the 
windows of Fig. 6. The number of four 
neighbors of the point is determined, and the 
matching is done on the basis of this number. 
If the number of four neighbors is 3, the 

Fig. 5 .  
(b) morphological skeleton of Fig. 5(a), (c) silhouette of the wrench that has been scaled 
and rotated, (d) residue after Fig. 5(c) is eroded by a morphological skeleton [Fig. 5(b)] .  

(a) Silhouette of a wrench used for generating a prototype morphological skeleton. 
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Fig. 6. 
pixel-width skeleton. 

Boolean windows used for generating a consistently eight-connected and single- 

window of Fig. 6(a) is used; if it is 2 ,  then 
we try to match with the windows in Figs. 
6(b) or 6(c); and if the number of four neigh- 
bors of the point is I ,  we try to match its 
neighborhood with the windows of Figs. 
6(d)-6(i). If a match is found, the point be- 
longs to the skeleton; otherwise it is deleted. 
Since points with only 1 four neighbors are 
rare, usually only one or two windows need 
to be tried out. The same windows are used 
for the other directions, with the row and 
column indexes manipulated. 

An eight-connected and single-pixel-width 
skeleton is then decomposed into its primi- 
tives using graph traversing algorithms and 
represented by their structural relationships. 
Figure 7 shows a skeleton of the object in 
Fig. I(e). 

Knowledge Base and Supervisor 

The KB contains heuristic rules formu- 
lated from an intuitive perception of the re- 
lationship between the global shape charac- 
teristics and candidate representations. Some 

heuristics for our two-dimensional problems 
are derived as follows: 

An object may have a reliable skeletal rep- 
resentation if it satisfies two global shape 
constraints. First, it should not be too 

Fig. 7. Labeled skeleton of the object in 
Fig. l(e). 

rounded (disklike), because then the skel- 
eton would be a small structure consisting 
of a few points near the center. Second, 
it should not have a rough boundary with 
many protrusions and intrusions, because 
such a boundary induces unreliable 
branches in the skeleton. The first require- 
ment is met if the object is not very com- 
pact (a disk is the most compact shape). 
On the other hand, if the object has very 
poor compactness, it may have a tortuous 
boundary and many holes in its interior. 
Such an object violates the second require- 
ment and is probably not a good shape for 
skeletal representation. 

Faithful representation of an object’s shape 
by its morphological skeleton requires that 
it have a smooth boundary and that the 
length and direction of its principal axis 
be determined reliably. Such an object is 
generally elongated, with few holes in its 
interior. Thus, in addition to the com- 
pactness criterion, it should have a high 
eccentricity and a low Euler number. 

Shapes with very low compactness are un- 
suitable for skeletal representation. Such 
shapes can be represented adequately by 
their outer boundary, together with their 
Euler numbers. 

Of the two skeletal representations, the 
morphological one is extracted faster. 
Thus, it is to be preferred if both skeletons 
are equally valid candidates for represen- 
tation. This is an example of a metarule 
that helps the SV choose between com- 
peting representations. 

There may be situations where the object 
shape is rather compact and has a low ec- 
centricity. These values of the global 
shape properties indicate a lack of feature 
in the external boundary and in the inter- 
nal structure of the shape. In such cases, 
it may be useful to store multiple models 
of the shape, which represent both its in- 
ternal structure and its boundary. 

These heuristics form the basis of rules for 
the KB. Experiments conducted with a large 
variety of shapes suggest instantiations of 
these rules listed in Table 3. (Note that if a 
shape has no hole, then its Euler number is 
equal to I ,  and a low value of c corresponds 
to a compact shape.) A relational skeletal 
representation is to be chosen, for example, 
when the value of compactness lies between 
30 and 100, regardless of the value of ec- 
centricity and of the Euler number. The val- 
ues in Table 3 were obtained empirically and 
do not represent hard limits. Instead, they 
are typical values that could be used for cre- 
ating fuzzy decision functions. 
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Table 3 
Knowledge-Base Rules Based on Heuristics for Selecting Suitable Representations 

Using Global Shape Property Values 

Global Shape Property 

Representation 

( I )  Relational 
Skeleton 

(2) Morphological 
Skeleton 

(3) Boundary and 
Euler No. 

(4) 2 and 3 
( 5 )  1 and 3 

Euler 
Compactness Eccentricity No. 

(C) (4 ( E )  

* - -  - “don’t care.“ 

The SV module uses global shape property 
values provided by the GSPA and rules and 
metarules stored in the KB to decide on  the 
appropriate representation or representa- 
tions. For example, the shapes in Figs. l ( f )  
and l(i) are found suitable for representation 
with the morphological skeleton. Figures 
1 (c)- 1 (e) satisfy the compactness criterion 
but havc internal holes and are not elon- 
gated. In their case, the relational skeleton 
is the better model. The shapes in Figs. l(a), 
I(b), l(h), and I(i) do not have good com- 
pactness values for skeletal representation but 
can be represented adequately with their 
outer boundary together with their Euler 
number. Figure l(g) has a relatively large 
eccentricity and no internal holes, but it is 
rather compact for skeletal representation. 
We  represent this object by both its boundary 
and its morphological skeleton. 

Concluding Remarks 
We have discussed the problems and lim- 

itations of current shape representation and 
recognition schemes and the necessity of an 
intelligent and flexible shape representation 
and recognition system for complex indus- 
trial tasks. W e  confirmed that intelligent in- 
tegration of different shape representation 
schemes is essential in dealing with a num- 
ber of different classes of objects effectively. 

Using global shape properties. we could 
determine distinguished features of the ob- 
ject together with their degrees of impor- 
tance fast and reliably. In the representation 
phase, we exploited this information to de- 
scribe objects; in the recognition phase, using 
this information, we could restrict the search 
space and perform matching in the order of 
importance. This strategy yields a fairly ef- 
ficient shape recognition. Currently, we are 

implementing an  intelligent shape represen- 
tation and recognition system for three-di- 
mensional shapes following the strategy pro- 
posed in this paper. 
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