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Abstract. The extraction of energy from renewable sources is rapidly
growing. The current pace of technological development makes it com-
mercially viable to harness energy from sun, wind, geothermal and many
other renewable sources. Because of the negative effects on the envi-
ronment and the economy, conventional energy sources like natural gas,
crude oil and coal are coming under political and economic pressure.
Thus, they require a better mix of energy sources with a higher per-
centage of renewable energy sources. Harnessing energy from renewable
sources range from small scale (e.g., a single household) to large scale
(e.g., power plants producing several MWs to a few GWs providing en-
ergy to an entire city). An inherent characteristic common to all renew-
able power plants is that power generation is dependent on environmental
parameters and thus cannot be fully controlled or planned for in advance.
In a power grid, it is necessary to predict the amount of power that will
be generated in the future, including those from the renewable sources,
as fluctuations in capacity and/or quality can have negative impacts on
the physical health of the entire grid as well as the quality of life of its
users. As renewable power plants continue to expand, it will also be nec-
essary to determine their optimal sizes, locations and configurations. In
addition, management of the smart grid, in which the renewable energy
plants are integrated, is also a challenging problem. In this paper we pro-
vide a survey on different machine learning techniques used to address
the above issues related to renewable energy generation and integration.
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1 Introduction

The world is faced with a number of challenges related to energy sustainability
and security. If not promptly addressed, these can lead to economic and politi-
cal instability. The depletion of fossil fuel reserves as well as the environmental
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impact of burning these fuels have led to increased interest in developing al-
ternative and more sustainable energy sources. Renewable energy resources like
solar photovoltaic (PV), solar thermal (a.k.a. concentrated solar power, CSP),
geothermal, tidal waves, wind power, and biomass have been growing rapidly in
energy market [1]. Many countries and companies are seeking to diversify their
energy mix by increasing the share of renewables.

In conventional energy generation process, energy production depends on the
energy demand from the users, and the stability of the power grid relies on the
equilibrium of energy demand and supply. When the energy demand surpasses
the energy supply, it destabilizes the power grid and results in power quality
degradation and/or blackouts in some parts of the grid. When the demand is
lower than the supply, energy is lost incurring high unnecessary costs due to
wastage. Producing the right amount of energy at the right time is crucial both
for the smooth running of the grid and for higher economic benefits. To maintain
this stability, much research has focused on energy supply and demand forecast-
ing to predict the amount of energy that will be required. This will then ensure
that there will be sufficient capacity to meet these requirements, but also that
excess capacity and hence energy wasted will be minimized..

Renewable energy resources like solar light, solar heat and wind are highly
variable and the resulting fluctuations in the generation capacity can cause in-
stability in the power grid. This is because the energy/power output of these
plants is defined by the environmental factors such as wind speed, the intensity
of solar radiation, cloud cover and other factors. Another important limitation
of renewable energy power plants is that they are subject to marked daily and
annual cycles (e.g., solar energy is only available during the day). Thus, it is
necessary to generate power when resources are available and store it for later
use while using a certain portion of the generated power at the same time. Wind
and solar PV energy is expensive to store, thus careful management of energy
generation is needed. When the generation capacity of natural resources are in-
sufficient to meet demand, conventional sources such as gas power plants are
typically used to cover the electricity shortfall.

The above-mentioned challenges have motivated the use of machine learning
techniques to support better management of energy generation and consump-
tion. Different machine learning techniques are used in different stages of a re-
newable energy-integrated power grid, depending on the requirements and the
characteristics of the problem. For a power grid with renewable energy sources
contributing a considerable proportion of energy supply, it is necessary to fore-
cast both short and medium term demand. This would facilitate the formulation
of well informed energy policies, for example by helping to determine important
parameters such as the appropriate spinning reserve levels and storage require-
ments. On the other hand, it is also necessary to forecast the energy output from
renewable energy power plants themselves, since the energy output from these
power plants depends on many environmental factors that cannot be controlled.
This in turn necessitates the prediction of these environmental factors such as
wind speed, direction and solar radiation in the region of the power plant. An-
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other important use for machine learning techniques in the context of renewable
energy is in determining the optimal location, size and configuration of renew-
able power plants. These parameters are dependent on many factors such as
proximity to population centers, local climatic fluctuations, terrain, availability
and costs of logistics and other facilities and many others. Yet another area for
the application of machine learning methods is in the overall operations and
management of the smart grid, i.e. issues such as fault detection, control and so
on.

Figure 1 depicts possible areas where we can use machine learning techniques
for performance improvements and better management of renewable energy. The
right side of the figure depicts consumers and prosumers (who consume energy
from the grid as well as produce small-scale renewable energy and feed the ex-
cessive energy to the grid). The left side depicts large-scale renewable energy
producers. Conventional power plants are still involved in the grid in order to
balance of demand and supply and to ensure adequate power quality.

Fig. 1. Overview of power grid with integrated renewable sources and its usage of
machine learning techniques in different steps.

This paper will summarize and compare the machine learning techniques
that have been or can be used not just in the generation of renewable energy
but also in the integration of these resources into existing power grids.
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Table 1. List of acronyms.

Acronym Meaning

ANN Artificial Neural Network
AR Additive Regression
ARIMA Auto-Regressive Integrated Moving Average
ARMA Auto-Regressive Moving Average
CART Classification and Regression Trees
CSP Concentrated Solar Power
DEA Data Envelopment Analysis
FFT Fast Fourier Transformation
GA Genetic Algorithm
kNN k-Nearest Neighbor
LLP Loss of Load Probability
LMS Least Median Square
LR Linear Regression
LWL Locally Weighted Learning
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLP Multi-Layer Perceptron
MPPT Maximum Power Point Tracking
MTBF Mean Time Between Failures
NMSE Normalized Mean Square Error
NWP Numerical Weather Prediction
PCA Principal Component Analysis
P&O Perturb and Observe
PR Pace Regression
PSO Particle Swarm Optimization
PV Photovoltaic
RMSE Root Mean Square Error
RBF Radial Basis Function
SLR Simple Linear Regression
SVM Support Vector Machines
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The rest of the paper is organized as follows. Section 2 describes the ma-
chine learning techniques in power output prediction from different renewable
sources. Section 3 discusses the techniques used in optimizing location, sizing,
and configurations of renewable sources. Section 4 covers the methods in overall
operations and management of a mixed-source smart grid with renewable energy
playing a significant role. Finally, Section 6 concludes the paper.

2 Forecasting Renewable Energy Generation

Forecasting power output from a renewable energy power plant is crucial as
this depends on many non-human-controllable factors such as environmental
parameters. Depending on the energy source it uses, the power plant exhibits
certain characteristics that enables the use of machine learning techniques for
prediction purposes. In this section we will review the different machine learning
techniques used in different types of power plants including wind farms, solar
farms, and hydro power.

2.1 Wind Power Generation

Wind power generation depends on many characteristics and the power output
from a wind turbine can be calculated using the Equation 1. Here A stands for
area that is covered by the wind turbine blades (a circle with radius r), ρ is for
air density, V is wind speed and Cp for efficiency factor usually imposed by the
manufacturer.

P =
AρV 3Cp

2
(1)

In this equation wind speed is a significant factor as the power output is pro-
portional to the wind speed. It also observed that there is a cutoff speed where
the power output is steady after that speed (so as to ensure the safety of the
turbine). Other factors such as humidity and temperature also affect the den-
sity of the air, which in turn affects the power generation. Thus, it is necessary
to forecast these factors and ultimately the final power output in a wind farm.
Many methods have been proposed for forecasting power generation in wind
farms. Brief descriptions and reviews on them are given below.

In [2], Lei et al. presented physical and statistical-based models as two main
categories of forecasting models. The physical models are more suitable for long
term forecasting whereas the statistical models are used for short and medium
term forecasting. Our interest lies in the statistical models as they are more
closely associated with machine learning techniques.

Auto-regressive moving average (ARMA) and auto-regressive integrated mov-
ing average (ARIMA) models are presented in [3] for wind speed forecasting and
then wind power forecasting by analyzing the time-series data. The authors
start with the well known ARMA model and then apply ordered differential
transformation to the model to get the ARIMA model. The ARMA model is a
combination of AR model and MA model on the same time series data.
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A Kalman filter model using the wind speed as the state variable is used in [4].
The authors suggested that this model is suitable for online forecasting of wind
speed and generated power. Online forecasting of power generation is important
as it can provide the most recent and updated future forecasting which then can
be used for power grid management.

Comparison of the ARIMA and ANN models for wind speed forecasting in
Oaxaca region in Mexico is presented in [5] by Sfetsos. Their analysis showed that
seasonal ARIMA model outperformed ANN model for more accurate forecasting,
but when the number of training vectors were increased for ANN model its
accuracy could be improved. Using the previous ten-minute data for training,
Sfetsos also presented a model [6] using ANN for wind time-series forecasting.
Subsequent predictions are averaged to obtain the mean hourly wind speed and
then to determine the power generation from the wind turbine.

Recurrent multi-layer perceptron (MLP) model, a variant of ANN, was pro-
posed in [7], which employs Kalman filter based back-propagation network. The
proposed model performs well in long term power generation prediction than in
short term prediction.

In Mohandes et al. [8] an SVM using Gaussian kernels was used to predict
the wind speed. The proposed method performed better than the MLP in terms
the root mean square error (RMSE) on 12 years of wind data from Medina city,
Saudi Arabia.

Fuzzy models are another way of using machine learning for prediction. In
[9], Damousis et al. used a fuzzy model with spatial correlation method for wind
power generation prediction. The proposed model performs well on wind turbines
installed in a flat terrain, but performs poorly with respect to those installed in
a deteriorated terrain. This might be due to variation of the wind speed with
respect to height of the tower from the ground level as well as quality differences
in the air.

Numerical weather prediction (NWP) models [10] were also used for wind
forecasting and subsequently power generation prediction in many research works.
In this approach, selecting an accurate NWP model is crucial as the accuracy well
depends on the initial NWP model. In order to mitigate the effect of single NWP
model, an ensemble method was proposed in [11]. The ensemble model allows
to use same NWP with different parameters such as different initial conditions,
physical parameterization of the sub-grid system or different data assimilation
systems. It also can employ completely different NWP models to obtain the final
ensemble learner.

Jursa and Rohrig [12] presented a mixed model using k-nearest neighbor
(kNN) and ANN approaches. Their optimization model produces the results
with 10.75% improvement over the benchmark model (persistence method) used
with respect to RMSE. Jursa [13] also proposed the use of a variety of machine
learning models. In that work, wind power forecasts were determined at 10 wind
farms and compared to the NWP data at each wind farm using classical ANNs,
mixture of experts, SVM and kNN with particle swarm optimization (PSO).
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The main conclusion was that combining several models for day-ahead forecasts
produces better results.

Foley et al. [14] provides a good survey of methods for wind power generation
forecasting. It listed SVM, MLP, ANN, regression trees, and random forest as
the widely-used machine learning methods in the context of wind power.

2.2 Solar Energy Generation

Solar photovoltaic (PV) usage ranges from the single household level to large
solar PV plants with capacities of 1–100MW. As solar PV have been used in
small domestic level for a long time, a number of research works for performance
estimation for PV using machine learning techniques have been conducted in
the past years.

Thermo siphon solar heater is a way of using renewable energy to get hot
water for domestic usage. Kalogirou et al. [15] conducted performance prediction
for these devices using ANN. The performance was measured in terms of the
useful energy extracted and of the stored water temperature rise. The ANN was
trained using the performance data for four types of systems, all employing the
same collector panel under varying weather conditions. The output of ANN is
the useful energy extracted from the system and the water temperature rise.
Seven input units, 24 hidden neurons and 2 neurons as output comprises the
network model with Sigmod as the transfer function.

A site specific prediction model for solar power generation based on weather
parameters was proposed in [16], in which Sharma et al. used different machine
learning techniques. Multiple regression techniques including least-square SVM
using multiple kernel functions were used in the comparison with other models.
Experimental results showed that the SVM model outperformed the others with
up to 27% more accuracy. Linear least-square regression model was also used
for prediction with 7 weather parameters and results indicate 165W/m2 and
130W/m2 RMSE for validation and prediction sets respectively. For the SVM-
based model they tired linear, polynomial and RBF kernels, and chose the RBF
kernel for the final SVM model (as the first two did not perform well). Further
improvement to the model was made by using principal component analysis
(PCA), thus by selecting the first 4 features from the ranked output features
from PCA.

A hybrid intelligent predictor for 6 hour ahead solar power prediction was
proposed in [17]. The system used an ensemble method with 10 widely-used
regression models namely linear regression (LR), radial basis function (RBF),
SVM, MLP, pace regression (PR), simple linear regression (SLR), least median
square (LMS), additive regression (AR), locally weighted learning (LWL) and
IBk (an implementation of kNN). Their results showed that, with respect to
MAE and MAPE, the top most accurately performing regression models are
LMS, MLP, and SVM.

Diagne et al. [18] recently provided a survey of solar energy forecasting meth-
ods covering various physical and statistical/machine learning techniques.
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2.3 Hydro Power Generation

Hydro power is the most widely used and one of the most established renewable
energy sources. Due to its characteristics and economic viability, many third
world countries depend on extracting energy from their available water sources.
As hyrdo power uses running water or stored water sources which depend on the
rainfall in the region, it is obviously affected by non-human controllable weather
parameters which need to be forecasted for better planning and management.

Recurrent ANNs [19–21] as well as SVMs have been widely used for rainfall
prediction. In [22], Hong presented the use of a combination of recurrent ANN
and SVM to forecast rainfall depth values. Moreover, chaotic PSO algorithm
was employed to choose the parameters for the SVM model. With the 129 data
points provided to the model, the resulting performance of the model in terms
of the normalized mean square error (NMSE) values were 1.1592, 0.4028 and
0.3752 for training, validation, and testing sets respectively.

An ensemble learning model for hydropower energy consumption forecasting
was presented in [23], where Wang et al. used a seasonal decomposition-based
least-squares SVM mechanism. The original time series data was decomposed
into regional factors (which demonstrate seasonal effects/trends) and irregular
components, and then all of them were used for least-square SVM analysis. This
least-square SVM model was used to predict the three main components known
as trend cycle, seasonal factor, and irregular component which were in turn fed
into another least-square SVM to combine the prediction values. The authors
stated that the model outperformed the other benchmark models by providing
accurate results when seasonal effects and irregularities were presented in the
input time-series.

Lansberry and Wozniak [24] used a genetic algorithm (GA) to support opti-
mal governor tuning in hydro power plants. The authors investigated the GA as
one possible means for adaptively optimizing the gains of proportional-plus-
integral governors. This tuning methodology was adaptive towards changing
plant parameters-conduit time constant and load self-regulation.

Djukanovic et al. [25–27] presented an ANN-based coordinated control for
both exciter and governor for low head hydropower plants. Their design was
based on self-organization and the predictive estimation capabilities of ANN
implemented through the cluster-wise segmented associative memory scheme
[25].

3 Determining Plant Location, Size, and Configuration

Unlike natural gas, diesel or coal fired plants, renewable energy power plants
require a huge area for their operation. For example, Shams-1, which is the
biggest CSP power plant in the world opened recently in Abu Dhabi, UAE,
occupies an area of 2km2 and generates 100MW of electricity. A conventional
power plant of similar capacity only takes a few square meters space. Thus, it is
necessary to analyze the required size of the renewable energy power plant with



Machine Learning in Renewable Energy 9

respect to the energy requirements. Power plants like solar PV and CSP also
exhibits special requirements of location selection and orientation selection as
solar panels need to be faced to solar irradiation to absorb the optimal energy.
Thus, machine learning techniques play a crucial role in assisting these decision
making steps.

Conventional methods for sizing PV plants have generally been used for
locations where the required weather data (irradiation, temperature, humidity,
clearness index, wind speed, etc.) is available and so is the other information
concerning the site where the PV plant is to be built. However, these methods
could not be used for sizing PV systems in remote areas where the required data
are not readily available, and thus machine learning techniques are needed to be
employed for estimation purposes.

Mellit et al. [28] developed an ANN model for estimating sizing parameters of
stand-alone PV systems. In this model, the inputs are the latitude and longitude
of the site, while the outputs are two hybrid-sizing parameters (f, u). These
parameters are determined by simple regression of loss of load probability (LLP)
as shown in Equation 2.

f = f1 + f2 log(LLP ) and u = e(u1+u2·LLP ) (2)

These parameters allow the designers of PV systems to determine the number of
solar PV modules and the storage capacity of the batteries necessary to satisfy
demand. In the proposed model, the relative error with respect to actual data
does not exceed 6%, thus providing accurate predictions. In addition, radial
basis function network has been used for identification of the sizing parameters
of the PV system. Their model, depicted in Figure 2, has been evaluated on 16
different sites and experimental results indicated that prediction error ranges
from 3.75%–5.95% with respect to the sizing parameters f and u.

Seeling-Hochmuth [29] presented research into the optimization of PV-hybrid
energy systems. The proposed method optimizes the configuration of the system
and the control strategy by means of a GA. The control of the system is coded
as a vector whose components are five decision variables for every hour of the
year.

Senjyua et al. [30] also developed an optimal configuration of power gener-
ating systems in isolated islands with renewable energy using a GA. The hybrid
power generation system consisted of diesel generators, wind turbine generators,
PV system and batteries. The proposed methodology can be used to determine
the optimum number of solar array panels, wind turbine generators, and bat-
tery configurations. The authors argued that by using the proposed method,
operation cost can be reduced by about 10% in comparison with using diesel
generators only.

Similarly, Yokoyama et al. [31] proposed a multi-objective optimal unit sizing
of hybrid power generation systems utilizing PV and wind energy.

Hernadeza et al. [32] presented a GA-based approach to determining the op-
timal allocation and sizing of PV grid connected systems in feeders that provides
the best overall impact on the feeder. The optimal solution is reached by a multi-
objective optimization approach. According to the authors, the results obtained
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Fig. 2. The overview of the sizing, configuration, and optimizing of a PV plant [28].
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with the proposed methodology for feeders performed well when compared with
the results found in the literature.

A flexible neuro-fuzzy approach for location optimization of solar plants with
possible complexity and uncertainty was described in [33]. The flexible approach
was composed of ANN and fuzzy data envelopment analysis (DEA). In the
model, first fuzzy DEA was validated by ordinary DEA, and then it was used for
ranking of solar plant units and the best α-cut was selected based on the test of
normality. Several ANN models are developed using MLP and the network with
minimum MAPE was selected for the final model building.

Maximum power point tracking (MPPT) in solar PV is essential as it helps
to extract the maximum energy in a given time period. Rotational non-static PV
panels are employed with intelligent mechanisms for sun tracking. An intelligent
MPPT was outlined in [34], which used fuzzy logic approach with the perturb and
observe (P&O) algorithm. The subjective fuzzy model of the system was designed
based on prior expert knowledge of the system. The Fuzzy logic controller was
divided into four sections: fuzzification, rule-base, inference and defuzzification.

4 Managing Renewable Energy-Integrated Smart Grid

As rapid advancements in the power grid continue to make it smarter, its
users/stakeholders expect more efficient and effective operation and manage-
ment of the grid. Since more and more stakeholders take part in the power grid,
managing such a big network becomes harder. Thus, intelligent techniques are
required to cater the better management of the smart grid. In this section we
will outline some problems the power grids are facing, namely supply/damand
balancing, grid operations and management, grid’s data management, and the
proposed machine learning solutions to them. In addition, we will briefly describe
a promising approach for the grid’s data management problem.

4.1 Balancing Supply and Demand

When a power grid is integrated with renewable sources, it is even more im-
portant to accurately forecast energy generation as well as energy consumption.
Fluctuations and intermittent behavior of solar and wind power plants imposes
vulnerabilities to the power grid, thus by destabilizing the grid. Therefore, in
order to maintain the stability of the grid, it is necessary to connect to the
conventional power generation in time, disconnect malfunctioning wind power
plants/turbines, or use smoothing techniques for the solar PV plants and grid
connection. To identify those factors affecting the grid’s stability and to ensure
its good management, various machine learning techniques were employed.

The MIRABEL [35] system offers forecasting models which target flexibili-
ties in energy supply and demand, thus helping to manage the production and
consumption in the smart grid with renewable energy plants. The forecasting
model can also efficiently process new energy measurements to detect changes
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in the upcoming energy production or consumption and to enable the reschedul-
ing of flex-offers if necessary. The model uses a combination of widely adopted
algorithms like SVM and ensemble learners. In order to better manage the de-
mand and supply depending on the time domain, it employs different models for
different time scales.

In a near future, the smart grid will consist of many individual autonomous
units such as smart households, smart offices or smart vehicles. These users
on the demand side pose a varying demand on the grid as their requirements
are changing over the time and their life styles. Moreover, the demand is also
affected by pricing regulations of the grid, as the smart grid employ deregulated
pricing mechanisms at many levels. This deregulated market offers a flexibly to
the users, thus allowing them to bid for energy that they need. Forecasting those
flexibility offers is crucial in the smart grid systems today. Barbato et al. [36] and
Reinhardt et al. [37] forecasted t he energy demand through meter readings from
households. This provides detecting the flexible energy usage from the connected
autonomous users in the demand side. Kaulakiene et. al. extended that idea in
[38] by suggesting methods to extract the flexibilities from the electricity time
series.

On the energy supply side, since there are different stakeholders with different
characteristics, predicting energy supply can be a very challenging task. Use of
multiple models to predict the energy supply is a common approach among the
users. This impose another challenge as there is no systematic method to select
which models to use when necessary. Ulbricht et. al. [39] presented a systematical
optimized strategy to select suitable models from a model pool to use for solar
energy supply forecasting.

4.2 Grid Operations and Management

For the operations and management of the grid itself, an overview of machine
learning techniques used in New York City power grid was provided in [40] by
Rudin et al. The system consisted of many different models for forecasting in
different levels of the entire power grid. These models can be used directly by
power companies to assist with prioritization of maintenance and repair work.
Specialized versions of the proposed process are used to produce 1) feeder failure
rankings, 2) cable, joint, terminator, and transformer rankings, 3) feeder mean
time between failures (MTBF) estimates, and 4) manhole events vulnerability
rankings. In their model, the authors used approximately 300 features generated
from the time series data and associated parameters. SVM, classification and
regression trees (CART), ensemble learning techniques such as random forests,
and statistical methods were used for model building.

4.3 Grid Data Management

As smart grid deployments continue to expand via the addition of more users,
it often requires information to be exchanged amongst different stakeholders.
Many users generated frequent data that need to be shared among interesting
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parties to help make decisions for better management of the smart grid. So, it
is required to employ a efficient and effective methods to share the smart grid’s
data.

Compression is a widely used technique to help data exchange when it has
to deal with large quantities of data. Louie and Miguel [41] presented a lossless
compression of wind plant data by using characteristics related to the wind
plants. They suggests two methods to use with grid based wind plants and un-
ordered wind plants. The authors claimed the superiority of their methods having
50% more compression than state-of-the-art methods and managed to achieve
∼1.8 times compression rate. In simple terms 1.8 compression rate means 1.8GB
of data compressed to 1GB data, thus, user only has to work on 1GB data
instead of 1.8GB of data.

Reeves et. al. [42] described a model-based compression of massive time series
data. The authors presented a method employing fast Fourier transformation
(FFT), filtered spikes and random signal projection to represent the original
time series data. The method achieved a data reduction rate of 91.5%. The
method was a lossy compression but still preserved the important information.

Here, we suggest that a similar model-based data representation method be
used for smart grid data as it can potentially provide many advantages.

1. Model-based representation provides low memory footprint while maintain-
ing the same required information.

2. It also provides efficient method to exchange information, since it does not
need to exchange raw data, but can exchange the representation model.

3. Models provide efficient query processing when compared to query processing
on raw data.

We envision that the smart grid will greatly benefit from model-based data
representation. Further analysis and results will be included in the upcoming
research papers.

5 Conclusion

Due to the depletion of conventional energy sources like natural gas, crude oil
and coal and to mitigate the environmental effects of the burning of fossil fuels,
governments and companies are focusing increasingly on developing renewable
energy sources. Hydro power is a good example of a renewable source that has
been successfully used for many decades. Wind and solar are also promising
renewable sources that have experienced a fast pace of growth in the recent years.
An inherent feature of these resources is that the energy production capacity is
not fully controllable or even predictable, thus necessitating the use of proper
forecasting and management techniques to ensure smooth integration with the
power grid. A smart power grid that incorporates renewable energy sources needs
to be constantly monitored and need to have the forecasting ability to predicting
sudden changes in the power supply and demand. The studies reviewed in this
paper analyze the different machine learning techniques used for supporting
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the generation of renewable energy and more importantly their integration into
the power grid. It is very difficult to generalize the machine learning models
for each and every aspect of renewable energy generation and integration into
the grid, but a strong coordination is necessary among the different prediction
and decision making models to better enhance the grid’s overall efficiency and
effectiveness.

In addition, machine learning techniques have been successfully used in the
planning of renewable energy plants based on available data with reasonable
accuracy. Published literature on location, sizing, and configuration of wind and
PV systems based on machine learning techniques underline their popularity,
particularly in isolated areas. This shows the potential of machine learning as a
design tool in strategic planning and policy making for renewable energy.
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