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Security isolation is a foundation of computing systems that enables resilience to different forms of at-
tacks. This article seeks to understand existing security isolation techniques by systematically classifying
different approaches and analyzing their properties. We provide a hierarchical classification structure for
grouping different security isolation techniques. At the top level, we consider two principal aspects: mecha-
nism and policy. Each aspect is broken down into salient dimensions that describe key properties. We break
the mechanism into two dimensions: enforcement location and isolation granularity, and break the policy
aspect down into three dimensions: policy generation, policy configurability, and policy lifetime. We apply
our classification to a set of representative papers that cover a breadth of security isolation techniques and
discuss trade-offs among different design choices and limitations of existing approaches.
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1. INTRODUCTION

Isolation is a foundational concept of multitasking computing systems that dates back
to at least Multics [Corbató and Vyssotsky 1965]. Multics introduced the concept of
a process. Each process has its own address space, which isolates memory between
programs. This process abstraction and its memory isolation simplifies software de-
velopment by providing a modular abstraction for programs. It also provides security
isolation, which was a primary goal of Multics. The process abstraction also enables
fault isolation. Security isolation and fault isolation are similar, but there are also dif-
ferences between them. Fault isolation ensures that a fault in one partition does not
affect others. Therefore, if a software program has a bug, it will not crash the entire
system. However, security isolation means that even if the security of a partition is
compromised, the adversary cannot breach the security of other partitions. Finally,
the process abstraction enables performance isolation. That is, a supervisor scheduler
can ensure each process fairly shares the CPU compute time.

However, imperfection in security isolation may be exploited by several attacks. For
example, in cloud computing, since many users share one physical computing platform,
security threats may come from co-location of services [Ristenpart et al. 2009]. Shared
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resources such as CPU, network or caches also make the construction of covert channel
communication possible. Therefore, an efficient security isolation technique is required
for security assurance.

This survey article focuses on studying security isolation, one of the building blocks
for resilient architectures. Resilient architectures are among the key challenges in
security research. For example, it is identified as one of the hard problems for the
NSA’s science of security research [Nicol et al. 2012]. Security isolation relates to the
principles of least privilege and privilege separation [Saltzer and Schroeder 1975].

Security isolation is commonly used in two broad ways, depending on the threat
model. First, it can be used to safely execute a program that is not trusted, or not yet
trusted. Second, it can be used to harden a system that must run trusted programs
that have an increased attack surface. For example, it is beneficial to isolate network-
facing daemons such as Web, DNS, and Email servers. In this case, the software is
trusted, but assumed to contain vulnerabilities. The goal of isolation is to limit what
can happen if a vulnerability is exploited. In contrast to isolating an untrusted pro-
gram, techniques that isolate a trusted program can leverage support of the developer.

There are many different techniques and abstractions for achieving security iso-
lation. Different techniques have different benefits and drawbacks. The goal of this
survey article is to define a structure for classifying existing techniques to better un-
derstand how to build future systems. A secondary goal is to understand where fu-
ture research can enhance existing isolation techniques. For example, more resilient
architectures can be built by incorporating some of the more dynamic benefits of per-
formance isolation into security isolation.

We provide a hierarchical classification structure for grouping existing security iso-
lation techniques. The top level of the classification hierarchy includes two principal
design aspects, which are mechanism and policy. These two broad concepts are com-
monly used to describe systems in literature and textbooks. For each design aspect,
we define a set of dimensions that describe the key properties relevant to the design
aspect. For example, we describe the mechanism aspect with respect to the security
enforcement location and isolation granularity. Dimensions are then broken down into
categories that cover different design choices of specific security isolation techniques.
For example, the enforcement location might be in hardware or within a supervisor
such as a kernel or hypervisor. We iteratively developed this classification hierarchy
by studying a set of representative papers that propose a diverse set of security isola-
tion techniques. We then characterize these works within the hierarchy.

To better understand different security isolation techniques, we provide an introduc-
tion to the trade-offs among different design choices (i.e., categories) for each dimen-
sion (e.g., enforcement location, isolation granularity). We compare and contrast dif-
ferent categories within each dimension based on performance overhead, requirement
of code for the isolated subject, and the security assurances provided by the technique.
Because generalizations are often difficult to make, we discuss trade-offs with respect
to scenarios, providing concrete examples from the literature.

This article makes the following contributions:

— We provide a classification hierarchy for describing existing security isolation tech-
niques. We use the hierarchy to classify a set of representative papers that cover all
possible design choices for each design dimension.

— We discuss the trade-offs among different design choices. In doing so, we help design-
ers of future security isolation systems to best understand which security isolation
techniques to incorporate.

— We discuss the limitations of existing approaches.
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The remainder of this article proceeds as follows. Section 2 introduces our paper se-
lection process, hierarchical classification structure and evaluation criteria. Section 3
describes different design choices for the security isolation mechanism. Section 4 de-
scribes classification with respect to policy. Section 5 concludes.

2. METHODOLOGY

This section describes our survey methodology. We begin by describing our paper selec-
tion process. We then describe the classification hierarchy we devised to characterize
the various security isolation techniques. This hierarchy was iteratively created as
we investigated various techniques. Finally, we describe the criteria to evaluate the
trade-offs among different design choices for implementing security isolation.

2.1. Paper Selection

We surveyed a wide variety of security isolation techniques to cover various categories
of approaches, and identified relevant papers from the proceedings of the top venues for
academic research in systems security (e.g., USENIX Security, IEEE S&P, ACM CCS
and ISOC NDSS) and systems (e.g., ACM SOSP, USENIX OSDI and USENIX ATC).
For this study, we focus on more recent proceedings (within the last 5 to 10 years), as
recent work has digested and applied many of the security isolation concepts that have
been discovered in the last 50 years. We supplement our list of publications with well-
known papers and systems that are frequently discussed in current literature. Some
of these techniques (e.g., User-Mode Linux) may not have corresponding publications.

Our paper selection process is integrated with the creation and refinement of the
classification hierarchy described in Section 2.2. In doing so, we ensure that our sample
provides representative examples of a wide range of security isolation techniques. As
we explore different classifications, we note areas with limited coverage and seek to
identify papers to fill deficits. Our goal is not to quantify the use of any specific security
isolation characteristic, but rather to cover a large range of prior work representing the
various design choices involved in security isolation. Tables I and II list some of the
papers discussed in this article, classified using the methodology we describe further
in this section. At least two authors validated the classification for every paper.

2.2. Hierarchical classification structure

We create a hierarchical classification structure to describe different facets of security
isolation techniques, as shown in Figure 1. We give each level of the hierarchy a name.
The top level consists of two aspects, which represent the two orthogonal design issues:
mechanism and policy. The middle level consists of different design dimensions for each
aspect. The bottom level (leaf nodes) comprises of different categories representing the
potential design choices for each dimension. To classify a particular security isolation
technique, we characterize it along each dimension, for both aspects (i.e., policy and
mechanism). For each dimension, we place the technique into one of the categories
that matches the design decision adopted by the technique.

In Tables I and II, we also highlight a set of representative security isolation tech-
niques in order to present that these techniques are evaluated throughout all the cat-
egories in all dimensions. However, due to the space constraints, it is difficult to cover
all techniques. The examples we list in the tables are representative techniques that
belong to each category.

Mechanism: The mechanism aspect describes how the security isolation goals are
achieved. We break the mechanism into two dimensions: enforcement location and iso-
lation granularity. Note that while some categories under the two dimensions may
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Fig. 1: Hierarchical classification structure for security isolation.

appear similar, they capture semantically different design decisions, as will be clear
further in this section.

The enforcement location defines where the mediation occurs, i.e., the location of
the conditional logic that allows or denies access to resources. The mediation logic
must be non circumventable and tamperproof [Anderson 1972] to ensure security. The
most common location for the mediation logic is within a supervisor of some form (e.g.,
kernel or hypervisor); however, some security isolation techniques leverage hardware
enforcement or place mediation within an application itself (e.g., inline reference mon-
itors). Finally, we include physical host separation for completeness.

In contrast to enforcement location, the isolation granularity describes the scope of
the subject being isolated. The categories range from coarse to fine. At the coarsest
granularity is the entire operating system. The next (finer) granularity is of a group
of applications, followed by the granularity of a single application. Finally, the last
granularity describes isolation among different parts of an application.

We separate the isolation granularity from the enforcement location, because iso-
lation at a particular granularity can be enforced by reference monitors at various
enforcement locations. For example, Flicker [McCune et al. 2008] uses hardware to
isolate a sub-application subject called a Piece of Application Logic (PAL), while Cap-
sicum [Watson et al. 2010] uses a supervisor to isolate parts of an application. Addition-
ally, the isolation granularity alone (i.e., without considering the enforcement location)
may provide a coarse estimate of the performance overhead and security guarantees of
a particular technique. For instance, isolating different guest OSes using OS virtual-
ization requires duplication of OS kernels, storage stacks, and memory management.
In contrast, isolating groups of applications within the same OS (e.g., using Linux
Containers [Helsley 2009]) avoids the duplication of core OS services, resulting in less
resource consumption. At the same time, we can broadly assume that isolation of guest
OSes is more robust from the security standpoint, as the isolated guests depend on a
very small number of shared host services, although the specifics of how the isolation
is implemented may challenge this assumption.
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Table I: Examples of relevant work on mechanism.

Categories Subcategories Example papers
Enforcement Location
Physical Host IceFS [Lu et al. 2014]
Hardware Component Cerium [Chen and Morris 2003], Flicker [McCune et al.

2008], SICE [Azab et al. 2011], Haven [Baumann et al.
2014]

Supervisor Hypervisor Xen [Barham et al. 2003], Terra [Garfinkel et al.
2003], Svgrid [Zhao et al. 2005], QEMU [Bellard 2005],
sHype [Sailer et al. 2005], CHAOS [Chen et al. 2007],
Overshadow [Chen et al. 2008], SP3 [Yang and Shin 2008],
TrustVisor [McCune et al. 2010], HUKO [Xiong et al.
2011], Appshield [Cheng et al. 2013], Proxos [Ta-Min et al.
2006]

Library OS Drawbridge [Porter et al. 2011], Bascule [Baumann
et al. 2013], Mirage [Madhavapeddy et al. 2013],
Graphene [Tsai et al. 2014]

Container MAPbox [Acharya and Raje 2000], Vx32 [Ford and Cox
2008], TxBox [Jana et al. 2011], ARMor [Zhao et al.
2011], MBOX [Kim and Zeldovich 2013],Capsicum [Wat-
son et al. 2010], Pivot [Mickens 2014], MiniBox [Li et al.
2014], ARMlock [Zhou et al. 2014a], OpenVZ [Kolyshkin
2006], Linux-VServer [Soltesz et al. 2007], LXC [Helsley
2009], Docker [Merkel 2014], PREC [Ho et al. 2014]

Intra-Application Code Rewriting SFI [Wahbe et al. 1994], MiSFIT [Small 1997], microker-
nels [Singaravelu et al. 2006], SFI for CISC [McCamant
and Morrisett 2006]

Compiler Modula-3 [Cardelli et al. 1989], SPIN [Holzmann 1997],
certifying compiler [Necula 1998], J-kernel [Von Eicken
et al. 1999], TALx86 [Crary et al. 1999], Language-based
security [Schneider et al. 2001], Singularity [Hunt and
Larus 2007], Native Client [Yee et al. 2009]

System Loading Aurasium [Xu et al. 2012]
Isolation Granularity
Guest OS Xen [Barham et al. 2003], User-mode Linux [Dike et al.

2001], OpenVZ [Kolyshkin 2006], Denali [Whitaker et al.
2002], Shuttle [Shan et al. 2012]

Application Group MAPbox [Acharya and Raje 2000], LXC [Helsley 2009],
Terra [Garfinkel et al. 2003], Pea-Pod [Potter et al. 2007],
Jails [Kamp and Watson 2000]

Application Inktag [Hofmann et al. 2013], Privexec [Onarlioglu
et al. 2013], Cerium [Chen and Morris 2003] Over-
shadow [Chen et al. 2008], TxBox [Jana et al. 2011],
MBOX [Kim and Zeldovich 2013], Polaris [Stiegler et al.
2006], MiniBox [Li et al. 2014], Svgrid [Zhao et al.
2005], Janus [Wagner 1999], AirBag [Wu et al. 2014],
SICE [Azab et al. 2011]

Sub-application Program shepherding [Kiriansky et al. 2002], Cap-
sicum [Watson et al. 2010], PREC [Ho et al. 2014],
Flicker [McCune et al. 2008], Native Client [Yee et al.
2009], TrustVisor [McCune et al. 2010], Embassies [How-
ell et al. 2013], SFI for CISC [McCamant and Morrisett
2006], SFI [Wahbe et al. 1994], Addroid [Pearce et al.
2012], AdSplit [Shekhar et al. 2012], Vx32 [Ford and Cox
2008], Gazelle [Wang et al. 2009], Codejail [Wu et al.
2012], Adjail [Ter Louw et al. 2010]

∗ Note that in the table we highlight a set of techniques that are fully classified in all dimensions.

Policy: The policy aspect describes a set of rules that when enforced, achieve the iso-
lation goals. We break the policy aspect down into three dimensions: policy generation,
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Table II: Examples of relevant work on policy.

Categories Example papers
Policy Generation
Automatic Systrace [Provos 2003]
Manual MAPbox [Acharya and Raje 2000], PREC [Ho et al. 2014],

Cerium [Chen and Morris 2003], Xen [Barham et al.
2003], Trustvisor [McCune et al. 2010], Capsicum [Wat-
son et al. 2010], MiniBox [Li et al. 2014], Flicker [Mc-
Cune et al. 2008], SICE [Azab et al. 2011]

Policy Configurability
Reconfigurable Cerium [Chen and Morris 2003], Singularity [Hunt and

Larus 2007], Xen [Barham et al. 2003], Flicker [McCune
et al. 2008], Capsicum [Watson et al. 2010], Inktag [Hof-
mann et al. 2013], PREC [Ho et al. 2014], MiniBox [Li
et al. 2014]

Non-reconfigurable Libra [Ammons et al. 2007], SICE [Azab et al. 2011]
Policy Lifetime
Always On SFI [Wahbe et al. 1994], Program shepherding [Kiriansky

et al. 2002], Xen [Barham et al. 2003], Cerium [Chen
and Morris 2003], Polaris [Stiegler et al. 2006], SFI for
CISC [McCamant and Morrisett 2006], Singularity [Hunt
and Larus 2007], Vx32 [Ford and Cox 2008], Flicker [Mc-
Cune et al. 2008], Gazelle [Wang et al. 2009], SICE [Azab
et al. 2011], Inktag [Hofmann et al. 2013], MiniBox [Li
et al. 2014]

On Demand Capsicum [Watson et al. 2010], TxBox [Jana et al. 2011],
PREC [Ho et al. 2014]

∗ Note that in the table we highlight a set of techniques that are fully classified in all dimensions.

policy configurability, and policy lifetime. Note that the categories do not represent
types of policies, but the characteristics of an isolation policy.

The policy generation dimension captures how the policy is created. Sometimes, pol-
icy generation is simple and can be done manually (e.g., isolate an entire guest OS).
Other times, policy generation is more nuanced; e.g., systrace [Provos 2003] must iden-
tify all of the system calls and resources that an application may need to access. In this
case, automatic policy generation is more appropriate.

The policy configurability dimension captures whether or not the policy can change,
if so, how. Some techniques (e.g., OS virtualization) hard code the security isolation pol-
icy. Such policies cannot be changed without recompiling and deploying new software.
Other techniques use a policy that is separate from the mechanism, which enables
configurability. As we discuss later, the ability to configure a policy may be limited to
specific points in time (e.g., on reboot), or may be changed on the fly.

Finally, the policy lifetime dimension captures the time at which the security isola-
tion enforcement mechanism is activated. That is, there are cases wherein the policy
may not be enforced throughout the system’s lifetime, but may only be activated on-
demand after the occurrence of a certain event. For example, in Capsicum [Watson
et al. 2010], the execution of a code segment causes a part of the application to be iso-
lated. The lifetime dimension helps us separate such cases where the policy is enforced
on-demand, from the usual case where the policy is enforced all the time.

2.3. Evaluation criteria

Our classification hierarchy defines the design space for security isolation techniques.
For each dimension, the system designer must decide among different categories.1

1In some cases, a system may use a combination of categories for different aspects of the security isolation.
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Fig. 2: Evaluation Criteria

Therefore, our discussion of each dimension concludes with an evaluation of the broad
trade-offs between the categories.

Figure 2 shows the three areas of evaluation: performance overhead, code require-
ment, and security assurance. The first two criteria capture the practicality of incor-
porating the security isolation technique into a production system, whereas the third
criterion describes the security guarantees that can be achieved.

Performance Overhead: The performance overhead describes the additional appli-
cation execution time incurred due to the isolation mechanism. Note that this is differ-
ent from resource overhead. For example, an isolation system may require additional
disk resource (i.e., resource overhead) for storing the policy files while enforcing the
isolation policies might incur extra execution time by requiring the system to intercept
each disk access (i.e., performance overhead). Further, most security isolation papers
that we studied do not describe the resource overhead. Thus, in this paper, we only
focus on the performance overhead.

Security isolation techniques proposed in the studied papers are evaluated using
a diverse array of performance benchmarks. Hence, a quantitative performance com-
parison may be infeasible. Even with the same benchmarks, it may not be possible
to objectively compare the performance of techniques with different objectives, service
requirements, isolation granularity, and other characteristics. Therefore, our criteria
only provides a generalized perspective on the performance overhead incurred due to
different design decisions. For an objective evaluation to be possible, future work in the
development of standardized performance metrics for security isolation is necessary.

In this paper, we attempt to provide four generalized categories based on the perfor-
mance overhead: 1) Negligible, 2) Practical, 3) Borderline and 4) High. We use these
categories for comparison wherever appropriate (i.e., to compare identical approaches).
Note that we are primarily concerned with what overhead will allow the security isola-
tion technique to be incorporated into a production system. Many research prototypes
do not meet this bar. Finally, some papers do not evaluate the performance overhead
of their security isolation technique, and therefore, cannot be classified.

Code requirement: Our second evaluation criterion considers the code requirement
for incorporating the security isolation technique into a production system. For exam-
ple, some security isolation techniques might use a compiler to extract information
from source code to generate security isolation policy. Given recent advancements in
reversing binaries, the binary of the subject to be isolated may be sufficient. However,
some binary reversal techniques rely on symbols (i.e., relocation information, symbol
table), which are sometimes stripped from the binary for performance or intellectual
property reasons.
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We break code requirement into four categories. First, source code indicates that
the security isolation technique requires the source code for the subject or some part
of the subject being isolated. This category does not explicitly indicate if the source
code must be modified, but we touch upon this characteristic in the evaluation where
relevant. However, note that some systems (e.g., Berkeley Packet Filter [McCanne and
Jacobson 1993] and some subsequent works such as Jitk [Wang et al. 2014]) may also
be considered to fall into this category, although those techniques require code to be
written in specific languages. Second, binary with symbols indicates both binary code
and symbols are required for the security isolation technique to be deployed in practice.
Similar to the source code category, we do not distinguish binary code-rewriting. Third,
binary without symbols indicates that some information from the binary is needed, but
symbols are not required. This category is compatible with stripped binaries. Finally,
no code required indicates that the security isolation technique does not require any a
priori knowledge of the subject being isolated. This category is the most ideal case for
deployment in production systems.

Security assurance: In contrast to the other evaluation criteria, it would be inade-
quate to evaluate security using a set of metrics. Instead, security is modeled using the
properties of the “reference monitor” [Anderson 1972] that enforces the security isola-
tion. The reference monitor must 1) provide complete mediation, 2) be tamperproof, and
3) be verifiable. We now discuss the evaluation of the mechanism and policy aspects of
security isolation techniques in terms of the properties of the reference monitor.

The enforcement mechanism provides complete mediation if it is uncircumventable
with respect to the security isolation guarantees being provided, i.e., provides complete
mediation. The mechanism is tamperproof if it can maintain its own integrity. These
properties, especially resistance to tampering, are directly affected by the choice of the
trusted computing base (TCB), i.e., by the other components of the system that are
trusted by the reference monitor.

To evaluate the security of the TCB, one may consider its size, both in terms of the
number of entry points and the amount (and complexity) of its code. A larger TCB, in
terms of the number of entry-points (i.e., the APIs exposed) into privileged code, may
have a larger attack surface. Further, the code size of the TCB (in terms of the lines
of code), or the addition of code to existing API may also have direct influence on the
scope for potential vulnerabilities [Rosenberg 2014]. Thus, a smaller TCB is generally
desired for stronger security isolation guarantees.

Another approach would be to look at the actual contents of the TCB when com-
paring systems that provide security isolation at the same granularity (e.g., sub-
application), and evaluate systems that trust the lower levels of the system architec-
ture (e.g., hardware) as being more secure than those that trust the upper levels (e.g.,
the OS). For instance, Flicker [McCune et al. 2008] uses hardware to isolate the execu-
tion of critical sections of code within applications, and is thus less prone to tampering
than the Gazelle Web Browser [Wang et al. 2009] that relies on the OS to enforce
similar sub-application isolation.

The primary means of evaluating the policy is verifiability. That is, in order to ensure
correct isolation, the policy must be validated against the isolation goals defined for the
system. Formal verification is both necessary and sufficient to ensure the soundness of
an isolation policy, and its consistency with the isolation goals. Unfortunately, formal
verification for even slightly complex policies is hard. For instance, the simplest policy
to formulate is one that ensures total security isolation, i.e., denies all accesses in
and out of the isolated environment. Policy generation as well as verification becomes
more challenging when the policy rules are relaxed, and accesses are conditionally
allowed. Further, approaches such as certifying compilers [Necula and Lee 1998] that
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incorporate the policy as a property of the language itself, and then formally verify the
compiler output, can provide stronger security isolation guarantees than approaches
with a complex and separate security isolation policy.

Finally, we note that formal analysis and verification of the TCB (e.g., seL4 [Klein
et al. 2009]) may make it more trustworthy. At the same time, we note that the formal
program verification of the reference monitor’s implementation using tools such as
Coq [Cornes et al. 1995] is an orthogonal problem, and outside the scope of this work.
The rest of the paper uses the previously described criteria for analyzing the TCB of
the discussed isolation techniques. We provide examples and describe the nuances of
evaluating the TCB in detail, in Section 3.3.

3. ISOLATION MECHANISM

This section discusses various security isolation mechanisms from the surveyed tech-
niques. Different techniques enforce security isolation at different locations (e.g., su-
pervisor, inside an application) and at varying granularities (e.g., guest OS, whole ap-
plications, some application components). Hence, we describe the isolation mechanism
in two dimensions: (1) enforcement location and (2) isolation granularity.

In Tables III and IV, we present a general comparison of the isolation mechanism
(i.e., the enforcement location and the isolation granularity respectively), based on
evaluation criteria proposed in Section 2.3. The values in the tables are a purely gen-
eralized representation of each mechanism, based directly on our trade-off discussions
that follow each section. To make the table manageable with respect to the perfor-
mance overhead criterion, we mainly account for the most common cases in each cat-
egory. For example, among the four techniques that we study in the category of Li-
brary OS, Drawbridge [Porter et al. 2011], Mirage [Madhavapeddy et al. 2013] and
Graphene [Tsai et al. 2014] incur a high performance overhead, while Bascule [Bau-
mann et al. 2013] adds a negligible overhead. Therefore, we use the value “High” to
stand for most of the cases, although there may exist some exceptions.

3.1. Enforcement Location

Security isolation is applied and enforced at different locations within the system.
The enforcement location plays a critical role in determining and upholding security
guarantees. Therefore, system designers must be aware of the benefits and trade-offs
of various enforcement locations.

As depicted in Figure 1, we identify four high level categories that encompass the
location of isolation enforcement: (1) physical host, (2) hardware component, (3) super-
visor, and (4) intra-application. The supervisor category and intra-application category
have sub-categories, which will be described in detail in this subsection. These cate-
gories are loosely ordered from strongest to weakest guarantee of security isolation,
which will be discussed at the end of this subsection.

Enforcement locations are not always mutually exclusive and one system can incor-
porate multiple locations to address specific threat models and system requirements.
We now discuss each of these enforcement locations in detail citing specific examples.

Physical host: The strongest isolated systems are those that do no share any physical
resources with others. Physical isolation is often used to prevent the threat of possible
side-channel leaks [Zhang et al. 2011] and covert channels that can occur from shar-
ing resources [Ristenpart et al. 2009]. Extremely sensitive materials may be physi-
cally isolated to prevent remote intrusion or unauthorized physical access to hardware
components. File systems may also be physically isolated on different disks or over
a network [Lu et al. 2014]. Networked systems have become a common requirement
for modern communication, which could raise challenges for ensuring strong security
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Table III: Comparisons based on evaluation criteria with regard to enforcement
location.

Categories Trusted Computing Base Performance
Overhead
of common
cases∗

Code Requirement

(Subcategories)

Physical Host Hardware Negligible No code modification required

Hardware compo-
nent

Hardware, isolation technique
framework

High Application source code may be
required

Supervisor

Hypervisor Hardware, isolation technique
framework, or BIOS

Practical Application source code or bi-
nary code may or may not re-
quire to be modified

Library OS Hypervisor, OS, Library OS
framework

High Application code may require
to be ported or recompiled

Container OS, sandbox framework, Con-
tainer Engine, Piece of Appli-
cation Logic

Practical No code modification required

Intra-application

Code Rewriting OS and Binary Writer Practical Modification to binary re-
quired.

Compiler Operating system, compiler
and runtime

Low Source code modification may
or may not be required

System Loading OS kernel, isolation technique
framework

High Application code modification
may or may not be required.

∗ Note that the performance overhead-based comparisons have been derived from the papers’
descriptions, rather than an experimental study, and hence may be subjective and imprecise.

isolation of physically separated systems. Still, networks can be monitored to uphold
security isolation between physically isolated systems.

Hardware component: To support sharing of hardware resources amongst different
users and applications, specialized hardware components have been developed to pro-
vide security isolation for shared resources. Those specialized hardware components
can be either passive or active. Passive components can act as secure storage and pro-
vide tamper-proof logging and be used as building blocks in the active methods. For
example, the Trusted Platform Module (TPM) [Trusted Computing Group 2011] pro-
vides tamper-resistant storage of keys that can be used to bootstrap trust in code that
is loaded, in what is often a small trusted environment that operates separately from
the main applications and OS.

Active components control critical system operations and exist as a property of exe-
cution. For example, Flicker [McCune et al. 2007; McCune et al. 2008] is an architec-
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Table IV: Comparisons based on evaluation criteria with regard to isolation
granularity.

Categories Trusted Computing Base Performance
Overhead
of common
cases∗

Code Requirement

Guest OS Hypervisor and Hardware Practical No application modification re-
quired, but guest OS modifica-
tion may be required.

Application Group OS, isolation technique frame-
work

Borderline No modification required.

Application OS, hypervisor, isolation tech-
nique framework or service
runtime

Practical Many techniques need source
code or binary modification

Sub-application OS, isolation technique frame-
work or hardware

Practical Many techniques need source
code or binary modification

∗ Note that the performance overhead-based comparisons have been derived from the papers’
descriptions, rather than an experimental study, and hence may be subjective and imprecise.

ture that isolates sensitive code execution using hardware support from AMD’ Secure
Virtual Machine (SVM) architecture [AMD64 2005]. Intel’s Trusted eXecution Tech-
nology (TXT) [Intel 2007] is similar in nature and function; i.e., both SVM and TXT
support Late Launch of a Virtual Machine Monitor (VMM) or Security Kernel to cre-
ate a dynamic root of trust. Particularly, SVM launches the VMM by invoking the
SKINIT instruction, which takes the physical memory address of Secure Loader Block
(SLB) as the only argument. Using this instruction, Flicker starts a special session
to execute a marked critical section of code, i.e., Piece of Application Logic (PAL), by
suspending the underlying untrusted OS and all other software on the device. The
OS is resumed at the end of the Flicker session. TrustVisor [McCune et al. 2010]
is a special-purpose hypervisor that leverages similar techniques as Flicker but with
a lower performance overhead. TrustVisor incurs low overhead because it employs a
two-level integrity measurement approach, in which approach the measurements of
TrustVisor are stored by physical TPM and TrustVisor in turns measures each PAL.
This approach reduces the performance overhead that caused by frequent hardware
support for DRTM in Flicker.

Research prototypes for protecting application code and data have motivated native
support from processors. For example, Intel’s Software Guard eXtentions (SGX) [Mc-
Keen et al. 2013] allows applications to protect their private code and data from priv-
ileged software (e.g., an OS daemon running as root). SGX generates protected soft-
ware containers (i.e., enclaves) to prevent untrusted system software from accessing
an application’s sensitive code and data. An enclave is a protected area located in-
side application’s address space, and the protected code of the application is loaded
into an enclave after it is measured using hardware-based attestation. For confiden-
tiality, enclave data is automatically encrypted when leaving the CPU package into
platform memory. While SGX provides the necessary hardware support for protecting
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critical code and data, developers may find it difficult to identify sensitive data and
all the operations that may work on that data. This is especially true in terms of com-
plex applications. Additionally, correctly defining the enclave interface (i.e., the attack
surface) may also be an overwhelming and error prone task for complex applications.
Some isolation techniques such as Haven [Baumann et al. 2014] also leverage hard-
ware support of Intel SGX for shielded execution of unmodified applications.

Finally, hardware security isolation guarantees of active components can not only
allow applications to protect their private (and trusted) data and code, but can also
be extended to verify data on untrusted components. For example, in Cerium [Chen
and Morris 2003], a tamper-resistant CPU and microkernel work cooperatively to re-
sist hardware attacks. The microkernel partitions user-level processes’ address spaces,
while Cerium CPU makes use of memory protection to prevent from application access-
ing data located in other address spaces. Some data of the microkernel is stored in the
secure CPU’s cache to prevent tampering. The CPU identifies the microkernel by its
kernel signature, which is the hash of microkernel’s data. An identified microkernel
can authenticate data and code in the untrusted DRAM.

Supervisor: A supervisor generally represents security isolation via a centralized en-
tity that exists outside the isolated program. Typically, the isolated program is viewed
as untrusted from the supervisor’s perspective and therefore requires monitoring. Of-
ten, a supervisor is placed on the critical path of execution to intercept monitored ex-
ecutions and enforce security isolation policies. A supervisor may encompass enforce-
ment that occurs in a kernel, hypervisor, or a virtualized environment like the Java
Virtual Machine. There are mainly three groups of techniques to enable supervisor
enforcement: (1) hypervisor, (2) library OS, and (3) container.

Hypervisors or virtual machine monitors (VMMs) can be software or hardware that
create and host multiple virtual machines (VMs). They supervise guest VMs and
trap access to critical resources such as protected instructions, memory, or CPU cy-
cles [Chen et al. 2007; Cheng et al. 2013; Barham et al. 2003; Zhao et al. 2005]. There
are two forms of hypervisors, namely type-1 and type-2, as shown in Figure 3. A type-
1 hypervisor (bare-metal) runs directly on the host’s hardware. A type-2 hypervisor
(hosted) resides above a conventional host operating system and provides a full set of
virtual hardware resources to the above guest OS. Further, a type-2 hypervisor trans-
lates all communications between the guest OS and the hardware. This translation
may not be direct; i.e., in some cases accesses to virtual devices are trapped to a host
OS daemon which uses a device model to interpret the operation. The host OS daemon
may then use host-level system calls to implement updates to the model. While a type-
1 hypervisor’s TCB may only contain the hypervisor code itself, the type-2 hypervisor
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also includes the underlying commodity OS in its TCB, and hence provides weaker
security guarantees.

The Library OS approach implements the OS functionality on which an application
depends as a user-mode library [Engler et al. 1995; Ammons et al. 2007; Porter et al.
2011; Baumann et al. 2013; Madhavapeddy et al. 2013; Tsai et al. 2014]. The tradi-
tional OS kernel is refactored into a library, which implements only the OS system
calls needed by the application as library function calls [Porter et al. 2011]. That is, a
library OS usually executes with an interface restricted to a small set of host kernel
Application Binary Interfaces (ABIs). Without a shared system call interface, mutu-
ally untrusted applications running on library OS have little opportunity to interfere
with each other. Therefore, by using library OS, the goal of securely isolating mutually
untrusted, multi-process applications can be realized on the same host system, along
with better guarantees of system and application integrity. Figure 4 shows two generic
library OS architectures, which run on an unmodified host OSes or a hypervisor respec-
tively. Further, compared to the approach of isolating applications in separate VMs, a
library OS is lightweight and incurs far less performance overhead in terms of the
CPU, memory and storage. At the same time, library OSes maintain backwards com-
patibility with applications [Porter et al. 2011], and support both single-process as
well as multi-process applications [Tsai et al. 2014]. Finally, library OSes facilitate the
secure and efficient isolation of third-party OS extensions [Baumann et al. 2013].

A container is a system abstraction developed to provide an alternate, restricted ex-
ecution environment to an application or a group of applications. For instance, Linux
Containers (LXC) [Helsley 2009] is an operating system level container-based virtual-
ization technology that enables running multiple isolated virtualized environments on
a Linux host. LXC uses Linux namespaces for separating shared resources among mul-
tiple containers as well as the host, and provides applications the illusion of running
on separate machines. Currently, Linux implements six different types of namespaces,
namely mount namespace, UTS namespace, IPC namespace, PID namespace, network
namespace and user namespace. Global system resources are wrapped into abstrac-
tions through namespaces and applications that within the namespaces can only see
the global resources associated with that namespace. Therefore, applications are able
to have a unique view on the resources. Docker [Merkel 2014] is a container-based
technique that incorporates Linux namespaces and control groups (cgroups) [Menage
2004] to create independent virtual environments. Docker containers are similar to
LXC containers and they have similar security features. Specifically, Docker uses the
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PID namespace to provide a contained application with its own virtual environment,
where it can be the root process (i.e., PID 0). At the same time, in terms of the global
PID namespace of the host OS, the container actually runs as a different PID and
does not have systemwide root privilege. Similarly, Docker also provides the container
with its own custom network namespace and file system. An application and its depen-
dencies can be packaged into a Docker container, enabling flexibility and portability.
Figure 5 provides a general overview of Docker’s components within the OS. Another
example is FreeBSD Jails [Kamp and Watson 2000], which partition the system into
several independent controlled environments to isolate untrusted processes.

Many security mechanisms may use sandboxing (e.g., intercept all system calls from
a sandboxed application), but may not necessarily be called containers. That is, con-
tainers are an application of sandboxing, the wider technique of confining a security
principal (e.g., an application, a user) to a certain subset of the privileges available
in the operating environment. For instance, TxBox [Jana et al. 2011] inspects system
calls made by the program and its access to system resources, terminates program
execution on detecting a policy violation. While TxBox uses sandboxing, it does not re-
ally provide a virtual, customized, container-like environment to the application, and
hence cannot be called a container. Additionally, sandboxing may also be used in con-
fining untrusted JavaScript code [Stefan et al. 2014; Giffin et al. 2012; Politz et al.
2011; Miller et al. 2008], although such systems may not be called containers. For ex-
ample, COWL (Confinement with Origin Web Labels) [Stefan et al. 2014] sandboxes
untrusted JavaScript in Web browsers, to prevent it from leaking sensitive data.

Some real-world examples of sandboxes include seccomp (secure computing
mode) [Corbet 2009], a sandboxing mechanism in Linux kernel that restricts processes
with limited number of system calls, and chroot in Linux systems, which restricts
a program to a restricted root file-system (i.e., chroot jail), so that the program is
restricted from accessing files outside the environment. Android’s Linux UID-based
sandbox prevents applications from accessing protected resources not accessible to
their users/groups, and allows the OS to provide a clear separation between the private
directories of applications. The Windows AppContainer [MSDN 2012] provides similar
application sandboxing for Metro apps. Other examples of real world sandboxes may
include Qubes [Rutkowska 2012] from the Invisible Things Lab, and Seatbelt [Miller
et al. 2012] from Apple (discussed further in Section 4.3).

Now that we have discussed the types of supervisors, we discuss general properties
that apply to all supervisors or subsets of the class.

In general, supervisors can leverage hardware features to enforce security isolation.
For example, the System Management Mode (SMM) provided by x86 processors can
be used to isolate workloads and configure hardware to ensure isolation of CPU exe-
cution [Azab et al. 2011]. Note that while the suitability of SMM in its current state
is limited, it serves as a prominent example of leveraging hardware features for secu-
rity isolation. Hardware features can be used to extend supervisor models to protect
applications against malicious operating systems [McCune et al. 2008; McCune et al.
2010; Chen et al. 2008; Li et al. 2014; Yang and Shin 2008]. Additionally, software
alone, without hardware support, can be used for supervisor-based enforcement. Na-
tive Client (NaCl) [Yee et al. 2009] provides supervisor enforcement that exists outside
of an isolated and sandboxed binary. The sandbox limits API calls through well-defined
interfaces that enforce a supervisor-based security isolation policy.

Supervisors can also be leveraged to achieve recursive isolation. The isolation goal
behind nested approach may often be motivated by the need to reduce privileges at
each subsequent level. For example, the two-tiered sandbox architecture proposed
by [Phung and Desmet 2012] allows web applications (themselves contained in a
coarse-grained sandbox) to define a fine-grained application-specific isolation policy
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(i.e., the second tier) for untrusted JavaScript. Similar motivations, as well as the abil-
ity to run hypervisor-level rootkits and honeypots in a contained environment, have
also led to nested hypervisor-based approaches. For example, the Turtles Project [Ben-
Yehuda et al. 2010] efficiently runs multiple nested hypervisors such as KVM and
VMware as guest hypervisors, with associated virtual machines such as Linux and
Windows as nested VMs. Similarly, Fluke [Ford et al. 1996] runs multiple vertically
stacked VMs for securely running untrusted applications, using nested processes in a
manner similar to LXC (specifically the Pid namespace).

As previously discussed, physical separation is often used to eliminate side-channels,
but supervisors may also be made resistant to side-channels. For example, Deter-
land [Wu and Ford 2015] provides a hypervisor-based timing channel resistant ap-
proach. The supervisor in Deterland eliminates internal timing channels, i.e., chan-
nels that allow guest VMs to learn information using shared resources such as the
L1 cache, using system-enforced deterministic execution. Further, it rate-limits in-
formation leakage via external channels (e.g., a network connection) by by applying
mitigation to each VM’s external input/output. Similarly, [Stefan et al. 2012] provide
a language-based dynamic information flow control approach that is resistant to tim-
ing and termination channels. The supervisor in this case ensures that threads that
observe secret values run with raised labels, including other threads that may observe
the timing and termination of such secret threads.

Finally, supervisors can often be integrated into existing systems, which reduces the
cost of deployment. Many supervisors extend the system call mechanism to enforce
security isolation policy [Kim and Zeldovich 2013; Acharya and Raje 2000; Watson
et al. 2010]. Some supervisor-based systems also require applications to be modified.
TrustVisor [McCune et al. 2010] requires sensitive application logic to be extracted
to be protected. Capsicum [Watson et al. 2010] adds a capability system by extending
UNIX API but requires the application to be modified to use the capabilities. Mini-
Box [Li et al. 2014] does not require application modification but isolates an entire
sensitive application providing a two-way sandbox.

Intra-application: Security isolation enforcement that occurs within the context of
the target runtime component is referred to as intra-application location enforcement.
This category encompasses those techniques and approaches that will modify run-
time execution to include or remove some operations, and those operations may check
or prevent accesses to isolated components. The most well known examples that ex-
hibit intra-application security isolation are Software Fault Isolation (SFI) [Wahbe
et al. 1994] and Inline Reference Monitors (IRM) [Erlingsson 2003], which notably add
policy enforcement as part of application runtime. However, implementations among
these examples can differ based on techniques. In many cases, intra-application secu-
rity isolation is paired with other location enforcement approaches to provide strong
security guarantees [Yee et al. 2009; Kiriansky et al. 2002]. There are three groups
of techniques used to enable intra-application security isolation enforcement: (1) code
rewriting: (2) compiler and (3) system loading. Each group provides different capabili-
ties and benefits when addressing design challenges such as performance, compatibil-
ity, and security guarantees.

Code rewriting represents approaches that apply policy by making static changes
that enforce security isolation to existing code components. In these approaches, ap-
plication source files, intermediate representation, or binaries are analyzed and trans-
formed to include access checks or remove accesses to protect resources. Transformed
sources are then reassembled into versions of binary applications that include security
isolation checks. Code rewriting includes static binary instrumentation, which disas-
sembles or decompiles a target binary into a source or intermediate language that is
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then transformed. One approach to isolate via code rewriting is to wrap critical or sen-
sitive functions thereby including a layer of indirection to enforce security isolation
policy. Similarly, function calls can also be replaced in a straightforward manner to
hook restricted resource access [Singaravelu et al. 2006]. Code rewriting can occur on
low-level languages such as assembly [Wahbe et al. 1994; McCamant and Morrisett
2006]. Pittsfield [McCamant and Morrisett 2006] rewrites assembly files to align CISC
instructions to enable software fault isolation. Some instances of dynamic binary in-
strumentation rewrite control flow instructions to enforce security isolation policy at
runtime. For instance, [Kiriansky et al. 2002] rewrite and check all branch instruc-
tions and ensure security isolation checks are not bypassed. Further, [Kiriansky et al.
2002] also use the RIO interpreter to perform instrumentation and enforce explicit pol-
icy when rewriting to protect the RIO interpreter itself from modification. In this case,
the dynamic binary instrumentation also co-exists as a supervisor as security isolation
policy protects the rewriting component itself.

Compiler based intra-application security isolation adds and removes access to re-
sources as part of the compilation process. In these approaches, security isolation pol-
icy is a property of generated code enforced by compilers. One well-known compiler
based security isolation approach is through type systems, which rely on the properties
of type-safe programming languages to assist the enforcement of security isolation
at runtime. For instance, the type-safe properties of Java can ensure that programs
can only access appropriate memory locations and perform known control transfers.
Type systems have also been used to enforce well-defined interfaces and marshal
shared data to isolate processes in software [Hunt and Larus 2007]. Isolation policy
can be enforced by monitoring interfaces and IPC to verify capabilities performed on
objects [Von Eicken et al. 1999].

Certifying compilers, which make use of the properties of a type-safe programming
language, goes beyond type systems by including a proof that generated code satisfies
a set of security rules. Code can then be statically verified to ensure that a program
follows a given security isolation policy. Satisfying a set of security rules can be an
iterative process. Certification that does not satisfy a correctness claim may lead to
application refinement and recompilation until claims are met [Holzmann 1997].

Finally, compiler-based security isolation can also be applied to non-type safe lan-
guages. For example, Native Client [Yee et al. 2009] provides a constrained execution
environment for the C and C++ languages and sandboxes the runtime component by
restricting memory access within the sandboxed binary. It uses static analysis to de-
tect security defects in untrusted code and utilizes segmented memory to limit data
and instruction memory reference with the help of hardware range checks. Native
Client also limits instructions available at runtime, and requires all APIs flow through
a well-defined interface to enable supervisor capabilities. For its enforcement, Native
Client inserts instructions to mask off address ranges before any write instruction.
This property is useful to protect a small trusted region of code within the address
space, and trampolines can be placed in that region to ensure important API calls
can have mediation and security checks. Thus, Native Client’s enforcement is in fact
present in three locations (i.e., hardware component, supervisor, and intra-application)
to provide strong intra-application security isolation security guarantees.

System loading performs intra-application security isolation by forcing target appli-
cations to use customized libraries that perform access control checks. Applications
can be forced to use security isolation libraries seamlessly without the knowledge of or
modification to the main program logic. Customized libraries can be loaded as part of
the library loading process or by repackaging security isolation libraries with the tar-
get application. Aurasium [Xu et al. 2012] repackages arbitrary Android applications
by inserting instrumentation code into applications to attach sandboxing and policy
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enforcement code. Aurasium also leverages monitor code to intercept application’s in-
teraction with operating system so that the behaviors of applications are monitored for
security and privacy concern.

While system loading is generally insecure because a syscall instruction in the
untrusted code could circumvent enforcement, separating the untrusted code into an-
other sandboxed process may provide complete mediation. That is, the sandboxed ap-
plication may be deployed in an unprivileged process, with all protected library calls
being redirected to a different reference monitor process that performs the access con-
trol check. For example, consider Boxify [Backes et al. 2015], a security mechanism
deployed as an Android application that can load and isolate untrusted third party ap-
plications. Boxify uses Android’s “isolated process” security feature to encapsulate un-
trusted Android application code in an unprivileged (i.e., isolated) process. Any syscalls
or Android API calls made by the application code are forwarded to Boxify’s reference
monitor (i.e., the “Broker”). A permitted call is executed in the broker’s context and the
result is returned to the isolated application process. Note that Boxify is secure as it
uses Android’s isolated process abstraction, which is backed by Linux’s UID enforce-
ment as well as SELinux, i.e., each isolated process has a separate Linux UID and the
isolated process type has a dedicated sandbox in SELinux.

Discussion: Ideally, security isolation enforcement should incur low performance
overhead, be largely compatible, and provide strong security isolation guarantees.
However, satisfying the three properties simultaneously is challenging. For instance,
while supervisors as reference monitors offer complete mediation (for isolating the
layers above) and hence strong security isolation guarantees, they may incur high per-
formance overheads for commonly used functionality [Provos 2003; Kim and Zeldovich
2013; Chen et al. 2008; Acharya and Raje 2000; Hofmann et al. 2013; Jana et al. 2011;
Porter et al. 2011; McCune et al. 2010; Yang and Shin 2008]. This is mainly due to
the context switch, i.e., from the enforced program’s context to the reference monitor’s
(e.g., kernel’s) context. In some cases, supervisors also adversely affect backwards com-
patibility by requiring applications to modify their source code [McCune et al. 2010;
Watson et al. 2010; Hunt et al. 2007; Zhou et al. 2014b] or binaries [Hofmann et al.
2013; Yang and Shin 2008].

The engineering advantages as well as the enforcement context (i.e., policy com-
plexity) at various enforcement locations often directly impact system performance,
security, and compatibility. For instance, hardware components can often be fine tuned
to provide security isolation enforcement with minimal added overhead. Hence, tech-
niques that use hardware and especially specific hardware features meant for security
isolation (e.g., Intel SGX) may generally exhibit low performance overheads. Further,
techniques that only rely on the hardware generally have smaller TCBs, and provide
stronger reference monitor guarantees. Yet, hardware can only provide coarse-grained
isolation, as it lacks the context from the higher layers (e.g., the kernel, application
layer). If hardware support is to be used for fine-grained isolation (e.g., for isolating
parts of an application), the context (i.e., the critical section to be isolated) often has
to be explicitly specified to guide the enforcement (e.g., Flicker [McCune et al. 2008]).
This requirement in turn sacrifices on backwards compatibility.

On the contrary, supervisors residing in the OS can generally be more precise than
the hardware for the goal of protecting OS resources and isolating entire applications,
without requiring application instrumentation. Such approaches may still suffer from
higher performance overheads (relative to hardware). Further, supervisor-based ap-
proaches reside in the OS or hypervisor, and hence often require OS modification to
exist or upgrade, which may be avoided by the use of intra-application reference mon-
itors. For example, compiler based intra- application security isolation that use type-
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safe languages can provide type safety without OS modification, at the cost of addi-
tional runtime overhead for the type enforcement. Similarly, dynamic binary instru-
mentation, which enforces policy on runtime operation, also suffers from performance
overhead well beyond supervisor-based approaches [Kiriansky et al. 2002].

As discussed in Section 2.3, the potential for vulnerabilities in privileged code in-
creases with the size of the TCB (in terms of the code size as well as the attack sur-
face, i.e., the API “entry points”). For example, SICE uses a supervisor consisting of 300
LOC to manage security isolation of components in System Management Mode [Azab
et al. 2011]. TrustVisor [McCune et al. 2010] uses a thin hypervisor to isolate small
pieces of application logic (PAL) from untrusted operating systems. Such techniques
may be said to be more secure than ones that use higher levels of the OS architecture
for enforcement (i.e., have a larger attack surface). Further, microkernels isolate sen-
sitive operations into small kernel components and allows kernel drivers to execute
with less privileges, thereby having a smaller TCB than monolithic kernels. Generally,
type-1 hypervisors are believed to be more secure than operating systems which can
contain orders of magnitude more code [Barham et al. 2003]. However, type-2 hyper-
visors include the entire host operating system in the TCB making it difficult to argue
the security guarantees. Note that for supervisors that exist within the address space
of the isolated component, such as a sandbox (e.g., Native Client), the TCB includes
software running within the process address space outside of the sandbox.

Reconfiguring system architecture can incur compatibility challenges, which may
be avoided at the cost of security. That is, as we described before, intra-application
approaches do not require OS or architecture modification, but may trade-off security
(and also performance overhead) in most cases. The primary reason for this is that
the TCB for such approaches includes a portion of the untrusted application itself.
Compiler based security isolation is an exception, as the code generated has security
isolation policy enforced as a property of the compiler and the language.

Finally, prior research has shown that combining multiple enforcement locations
provides significant advantages in performance, security advantages and backwards
compatibility. Consider Native Client [Yee et al. 2009] as an example of a system that
enhances precision while maintaining security through a combination of enforcement
locations. The isolation goal behind Native Client is to sandbox untrusted applica-
tion components. For this, Native Client deploys its reference monitor as a supervi-
sor, but within the process address space of the application, i.e., intra-application.
Additionally, Native Client prevents a potentially drastic performance hit due to its
intra-application supervisor access control checks through its use of x86 segmented
memory. While Native Cleint requires application source code to be compiled with a
trusted compiler, it does not require the OS to be modified, and hence may provide a
compatibility advantage in scenarios where the OS may not be easily replaced or modi-
fied. To summarize, Native Client [Yee et al. 2009] combines the security advantages of
a supervisor-like enforcement, specifically tamper resistance, with the precision ben-
efits of intra-application placement. SIESTA [Hicks et al. 2007] also provides similar
advantages in terms of security and precision, but in contrast with Native Client, it
requires OS modification to enable SELinux.

3.2. Isolation Granularity

The isolation granularity determines the location of the protection domain, and the
objects isolated by the enforcement mechanism. In this section we focus on the high
level, logical granularities of security isolation based on the types of isolated objects
we encountered during our survey. The four levels of isolation object granularity are:
1) guest OS, 2) application group, 3) application, and 4) sub-application.
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While some security isolation techniques may be limited to be enforced at a spe-
cific granularity, some techniques may be enforceable at more than one granularity,
with potential changes to their enforcement location and policy. For example, the
SICE [Azab et al. 2011] framework provides hardware- level security isolation and
protection, at the granularity of an abstract workload, with the objective of protecting
sensitive workloads while also running untrusted workloads on the same hardware.
The isolated workload is a user-defined system, which may be a simple program, a col-
lection of programs or a complete virtual machine running its own guest OS. Thus, as
the object to be isolated is user defined, SICE can be said to operate at the operating
system, multi-application and application granularities.

We now describe each of the aforementioned granularities in detail.

Guest OS: At this granularity, multiple operating systems sharing a resource (e.g.,
hardware) are isolated from each other, often running as guest operating systems on
the shared resource. Such security isolation is most commonly implemented using vir-
tualization techniques. Some approaches, such as Xen [Barham et al. 2003] allow guest
OSes to directly share hardware. The guest OSes may even be run on virtual machines
directly on the host OS, as in UML [Dike et al. 2001]. OpenVZ [Kolyshkin 2006] offers
an interesting middle ground, whereby the guests share the microkernel, but individ-
ually implement all other essential functionality (e.g., file system, network interfaces
and user interfaces).

Application group: At this granularity, groups of applications form the subject that is
isolated from other parts of the operating system. Based on the security isolation goals,
the enforcement may span different areas of the shared operating system, from the
kernel, to the user interfaces. Approaches supporting this granularity often group ap-
plications into containers based on a high-level policy (e.g., separate enterprise applica-
tions from user applications, group by similar functionality, or hierarchical groupings),
which are then isolated using policy controlled sandboxes (e.g., MAPBox [Acharya and
Raje 2000], Linux Container [Helsley 2009]). For instance, MAPBox [Acharya and Raje
2000] classifies applications into functionality-based classes (e.g., reader, compiler),
based on the information (i.e., labels) provided by the application provider. The user
then assigns a sandbox policy for each corresponding label. Other approaches also use
virtualization to build and enforce containers (e.g., Terra [Garfinkel et al. 2003], Pea-
Pod [Potter et al. 2007], FreeBSD Jail [Kamp and Watson 2000]), where one or more
applications are started in a virtual environment isolated from the rest of the system.
For instance, using FreeBSD Jail, a BSD administrator can partition the machine into
several independent jails with their own superuser accounts, as well as protect the
overall environment from the jailed superusers. This is achieved through several lim-
itations on the processes running in the jails, such as access to a subset of the file
system, specific IP addresses, and the ability to make privileged system calls.

It is possible to enforce application granularity security isolation using the tech-
niques developed for application group granularity by simply limiting the containers
to contain exactly one application. On the other hand, extending an application gran-
ularity technique to a multi-application level may require more effort, specifically in
defining and isolating the container abstraction.

Application: At this granularity, individual applications are isolated from the rest of
the system, i.e., other applications, as well as parts of the OS.

Application-level security isolation approaches can be divided along the lines of
the objects they protect. Some approaches protect the application itself from an un-
trusted OS and other untrusted applications (e.g., InkTag [Hofmann et al. 2013], La-
cuna [Dunn et al. 2012], PrivExec [Onarlioglu et al. 2013], Cerium [Chen and Mor-
ris 2003], OverShadow [Chen et al. 2008], BROKULOS [Santos et al. 2012], Ironclad
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apps [Hawblitzel et al. 2014]). For instance, InkTag [Hofmann et al. 2013] provides se-
curity guarantees via a hypervisor to protect trusted applications from the untrusted
underlying operating system. Trusted application code runs in a high-assurance pro-
cess (HAP), and the process context (registers) and address space of HAP are isolated
from the operating system. InkTag also enables sharing data between trusted secure
applications without interference from operating system. Similarly, PrivExec [Onarli-
oglu et al. 2013] provides a private execution mode to protect the secrecy of applica-
tion data on storage. Executing an application process in the private mode ensures
that the application’s data written to storage would not be recoverable after execu-
tion. This guarantee is enforced by encrypting the data written to storage with an
ephemeral private execution key that is bound to the group of processes executing in
private mode; the key is removed from memory after execution. Some approaches, such
as BROKULOS [Santos et al. 2012], protect applications from an untrusted system ad-
ministrator and software running with elevated privileges, by logically separating the
management and information security mechanisms in the OS. BROKULOS uses a set
of trusted programs, known as brokers, to provide the administrator with manage-
ment access, without superuser privileges that could compromise application data. On
the contrary, approaches such as Ironclad Apps [Hawblitzel et al. 2014] use low-level
software verification to ensure that all the software on a server running an ironclad
app behaves in a trusted manner.

Additionally, some approaches isolate untrusted and potentially malicious applica-
tions from the rest of the system, with the goal of protecting the OS, other applications,
and eventually the user (e.g. TxBox [Jana et al. 2011], MBOX [Kim and Zeldovich
2013], Polaris [Stiegler et al. 2006]). For example, TxBox [Jana et al. 2011] confines
untrusted programs via system transactions with the help of a kernel-level security
monitor and a user-level policy manager. Before a transaction of the sandboxed pro-
gram commits, the security monitor inspects the policy and aborts the transaction if a
violation is detected, rolling back the system to a state before the program’s execution.

Finally, approaches such as Minibox [Li et al. 2014] can provide two-way protection,
i.e., protect mutually distrustful applications and the kernel from each other. Mini-
box uses a combination of hypervisor-based memory isolation (i.e., TrustVisor) and a
sandbox (i.e., Native Client). In Minibox, TrustVisor protects security-sensitive appli-
cations by creating separate virtual memory regions for the OS and applications, while
Native Client protects the OS from non-sensitive applications by sandboxing them.

Sub-application: At this granularity, different logical components of an application
may be isolated from the rest of the application and the OS. Sub-application security
isolation approaches secure processes or threads with access to sensitive data for both
integrity and secrecy guarantees (e.g., Capsicum [Watson et al. 2010] and PREC [Ho
et al. 2014]). For example, in PREC [Ho et al. 2014], system calls from untrusted com-
ponents are identified and executed in isolated threads. Others, such as Flicker [Mc-
Cune et al. 2008] and TrustVisor [McCune et al. 2010] protect critical sections of code.
In Flicker, security-sensitive application code is executed in an isolated execution con-
text, while all the other software (e.g., the OS, other application code) is suspended.
Similarly, TrustVisor [McCune et al. 2010] executes selected selected code blocks in
an execution environment isolated from the operating system and other untrusted ap-
plication code, to guarantee data secrecy and integrity, as well as execution integrity.
Another example of sub-application level isolation are application domains, which pro-
vide isolation for Microsoft’s .NET Common Language Runtime [Clayton 2013]. Appli-
cation domains are usually created by default by the runtime host (e.g., ASP.NET,
Microsoft Internet Explorer), which bootstraps the Common Language Runtime into a
process and executes user code within an application domain.
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Sub-application security isolation may also be used to sandbox parts of the applica-
tion that are untrusted, in order to protect the rest of the application and the operating
system [Kiriansky et al. 2002; Wahbe et al. 1994; Pearce et al. 2012; Shekhar et al.
2012; Ford and Cox 2008]. For example, program shepherding [Kiriansky et al. 2002]
monitors control flow transfers to enforce security policy. That is, malicious code is pre-
vented from executing, and libraries are entered only through declared entry points.
Shepherding also leverages sandbox to check program operations with customized se-
curity policies. AdDroid [Pearce et al. 2012] and AdSplit [Shekhar et al. 2012] are
examples that attempt to isolate untrusted third party ad libraries operating in the ap-
plication’s context, thus preventing the libraries from executing with the application’s
authority. Some approaches also target web browsers, wherein web security principals
operate in isolated security contexts [Wang et al. 2009]. Further, approaches such as
STP [Patel et al. 2003] also sandbox application code that must execute in the OS
kernel (e.g., application-specific TCP implementation). Similarly, SPIN [Bershad et al.
1995] provides an extensible microkernel that allows applications to run application-
specific services in the kernel, while sandboxing such services from other applications
and the trusted portions of the kernel.

Finally, some approaches span entire data or untrusted code. For example, Virtual
eXecutable Archive (VXA) is an architecture for data compression. It runs a decoder’s
code in a specialized virtual machine, making the decoder run safely even in the
presence of malicious code inside an archive. Similar examples include Wimpy Ker-
nels [Zhou et al. 2014b] and Embassies [Howell et al. 2013].

Discussion: The granularity of security isolation is directly proportional to the
flexibility provided by the isolation technique, as well as the magnitude of policy-
management needed from the concerned stakeholders. Fine-grained security isolation
(e.g., sub-application) provides more flexibility in terms of enforcing security isolation
policy, but often requires multiple stakeholders (e.g., the user, system administrator,
developer) to specify policies. On the contrary, coarse-grained security isolation (e.g.,
application-level) often has well defined policy, but limited knowledge of higher granu-
larity semantics, and hence limited flexibility. For example, in order to protect against
potentially malicious ad libraries bundled with applications, an application-level pol-
icy defined by the OS may isolate and restrict the entire application, whereas a sub-
application level policy may recognize and isolate only the library, allowing the user to
make full use of the application otherwise. Additionally, the sub-application approach
may require some cooperation from the application developer, such as the use of a
manifest file or other artifacts that clearly specify the location of the library code.

If the isolation technique benefits the security of the application, as in the case of
Capsicum [Watson et al. 2010], it may be acceptable to expect some form of policy spec-
ification from the developer. On the other, if the security isolation does not benefit the
application (e.g., the developer is assumed adversarial), then developer participation
may not be appropriate. Furthermore, requiring recompilation or refactoring of the
application can affect the backward compatibility of the platform. To summarize, the
coarser- grained security isolation approaches are feasible, but often lack the flexibility
of the finer-grained approaches. On the other hand, the finer-grained approaches face
challenges such as of backward compatibility and policy management.

Additionally, while the performance overhead may be connected to the granularity
of isolation, it is largely influenced by how the isolation is achieved. For instance, sub-
application isolation may be achieved through an unoptimized inline reference monitor
approach (high overhead) or a hardware supported approach (e.g., Flicker, low over-
head). Hence, we often observe disparity in the overheads amongst approaches that
fall in the same isolation granularity. For example, some security isolation techniques
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in application and sub-application level incur practical to high overhead [Hofmann
et al. 2013; Onarlioglu et al. 2013; Chen et al. 2008; Kiriansky et al. 2002; Ho et al.
2014; McCamant and Morrisett 2006], while some incur negligible or borderline over-
head [Watson et al. 2010; Howell et al. 2013]. As we described before, overheads within
approaches belonging to a particular isolation granularity may differ based on the ap-
proach used to achieve the isolation, specifically the location of the reference monitor.

Finally, for code modification requirements, the guest OS granularity usually does
not require code changes [Barham et al. 2003; Dike et al. 2001]. One exception is
SICE [Azab et al. 2011], which requires the SMI handler to be modified to include
SICE’s code. The hardware management functions provided by the legacy host must be
modified to use this interface to provide services to the isolated environment. There are
also some cases in application group granularity that need no code modification [Pot-
ter et al. 2007; Acharya and Raje 2000; Kamp and Watson 2000; Garfinkel et al. 2003;
Ammons et al. 2007]. However, in the other isolation granularities, many techniques
require source code or binary code modifications, and a few require no modification.

3.3. Caveats of TCB evaluation

Section 2.3 provides a general description on the implications of TCB size on the at-
tack surface, and eventually the integrity of the reference monitor. In this section, we
discuss the two nuances that must be considered when analyzing the TCB of a system.

1. For a correct evaluation of TCB size, both the shared as well as the private TCB com-
ponents must be considered. The TCB may be divided into two logical sub-areas, the
“shared” and “private” TCB. Parts of the system that are trusted, but shared among
isolated entities, constitute the shared portion of the TCB (e.g., the OS kernel). Parts
of an isolation system that are trusted by individual isolated entities, form the private
TCB (e.g., the application’s code). For instance, Library OSes reduce the size of the
shared TCB, at the cost of increasing the size of the private TCB. At the same time,
the security of a capability system (e.g., Capsicum [Watson et al. 2010]) depends on the
code of the application using capabilities (e.g., the private TCB), as well as the OS ker-
nel that enforces the capabilities (e.g., the shared TCB). Thus, the TCB size increases
with the size of the entity to be protected. If that entity is a complex application with
a large number of components, its overall TCB size will naturally be larger.

To summarize, we observe that in some systems the private TCB size increases in
favor of decreasing the shared TCB size, or vice versa, while in other systems (e.g.,
Capsicum), the two constituent TCBs may grow independently of one another. Regard-
less of the relation between the two constituents, system designers must take care to
consider both the shared as well as the private TCB for a correct evaluation of the
attack surface.

2. The composition of the TCB is only meaningful with respect to the eventual isolation
goals of the system, which in turn influence the threat model. The isolation goals dictate
the subjects and objects that can be trusted, and the ones that cannot. The ones that
can be trusted should form the TCB. For instance, in Xaor [Colp et al. 2011], the
hypervisor as well as the Control VM (domain 0) are trusted, and hence should form
the complete TCB.

Further, a microkernel architecture may not necessarily have a smaller TCB for
the isolation goal of separating applications, if user-level services are shared between
applications. On the contrary, if the goal is to protect kernel services from applications
and the vulnerable user-level daemons, then the microkernel approach may be said to
have a smaller TCB, as only the kernel will be trusted.

Similarly, since Flicker’s goal is to isolate a small critical section of code from the rest
of the software on the system, the said software (i.e., the OS, other applications, other
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components of the same application) may not be trusted, and hence cannot be included
in the TCB. Hence, Flicker makes the TCB smaller for the goal of isolating a critical
section of an application; in comparison to library OS or a VM based approach. At the
same time, since Flicker does not claim to provide application-granularity isolation,
making the TCB of the entire application smaller is irrelevant from its perspective.
Therefore, to accurately describe the composition of the TCB, system designers must
consider the isolation goals and objectives of the desired system.

4. ISOLATION POLICY

A security policy describes the actions or executions that may or may not be permit-
ted [Schneider 2000]. For instance, a security policy used for access control may define
the ability of a subject (i.e., the security principal) to access objects in the system.
Similarly, an information flow control policy may place restrictions on the data flow
between subjects and objects in the system. A policy used for security isolation defines
the separation between the isolated subjects and objects in the system.

For example, the security isolation policy may determine the precision of the restric-
tions placed on isolated entities. An imprecise (i.e., coarse-grained) policy may impose
complete isolation, i.e., may prevent the isolated entities from all external communi-
cation. Isolation policies that demand physical separation (e.g., [Lu et al. 2014]) may
commonly follow this policy. From the policy perspective, policies that allow precision
in terms of the resource accesses are more interesting, but also complex. For example,
the SELinux policy may regulate the resources accessible to a root daemon based on
the policy administrator’s understanding of the least privilege it requires. The policy
provides precision as the daemon may be completely isolated (i.e., no resource access),
or may have access to a subset of all resources, or to all the resources. Additionally,
some policies may not just regulate resource access, but also provide provisions for en-
forcing how the resource is used, and are even more precise. For instance, information
flow control policies protect the secrecy and integrity of data beyond the point of access;
i.e., they control the flow (and hence sharing) of data. Unfortunately, the complexity of
policies increases with precision.

Further, throughout our survey, we encountered numerous examples of how policies
are actually expressed, i.e., the isolation policy may be implicit and programed into
the mechanism itself, or contained in a rule-set describing the constraints on access
to data or code, or defined in terms of an hierarchy of security labels, along with the
assignment of labels to subjects and objects (e.g., for information flow control). This
section discusses various such policy examples, along the three dimensions of (1) policy
generation; (2) policy configurability and (3) policy lifetime.

4.1. Policy generation

There are two broad approaches for policy generation: automatic and manual. While
automatic methods may use static or dynamic analysis to determine the constraints to
place on the subject of isolation, manual methods require human involvement.

Automatic: Security isolation policies can be automatically generated using dynamic
analysis or static analysis of the target application’s code. Automatic generation is
often used when enforcing a least privilege policy, because manually specifying each
access can be tedious. Representative examples for each approach follow.

Dynamic analysis can be used to learn an application’s runtime behavior during a
training session. Systrace [Provos 2003] is an example approach that logs system calls
during a training period. The system calls form a white list that defines the program’s
policy. However, there is a risk of the policy being too restrictive. If there are sections of
code that were not covered during training or trained in wrong environment, they may
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cause false alarms during normal use. This can be addressed by allowing a human to
make policy changes when false alarms are detected. One common problem with its
dynamic analysis is that the policy generation includes malicious functionality. There-
fore special care must be taken to ensure that policy generation is performed in a
sanitized environment. Such techniques may often involve malware detection during
the training phase to weed out applications that exhibit malicious behavior, to prevent
known malicious behavior from being included in the white list.

Static analysis can automatically generate a policy by searching through an appli-
cation’s code for system calls. System calls detected in the application are added to a
white list policy. Static analysis may have high false positives (e.g., the whitelist may
also account for dead code, i.e., code that may never run). Additionally, static analysis
may lack context for system call use, resulting in overly permissive policy. For exam-
ple, runtime conditions may influence the argument to a system call. These cases may
require the automated policy generator make assumptions that reduce its accuracy.
Human experts can augment this technique by removing dead code, reducing ambigu-
ity, and removing any privileges that do not seem justified. [Rajagopalan et al. 2006]
implement this approach to generate policies for system call monitoring.

Manual: Manual policy generation techniques can be discussed in terms of which de-
cisions must be made manually. Manual generation can be done at various levels of
complexity, which allows a trade-off of ease of use and security guarantees. It is also
important to consider which stakeholder must make these decisions.

System calls are a common feature listed in security isolation policies. Selecting
which system calls to regulate and how to regulate them can significantly improve an
application’s security. Some system calls are more likely to be abused than others. They
can also be regulated more effectively if different policies are specified for handling
different types of system calls. MiniBox [Li et al. 2014] uses this approach as part of a
two-way sandbox that protects applications and the operating system from each other.

Sections of program may be easier to protect than isolating an entire program. Such
a section is referred to as a piece of application logic (PAL). When the PAL is executed,
more strict security isolation is enforced than when the rest of the program runs. Iso-
lating only the PAL can significantly reduce the amount of code that must be protected
and trusted. However, it is up to users or developers to determine which sections to
protect and how to protect them. TrustVisor [McCune et al. 2010] use this approach to
reduce the size of their trusted code base and reduce their security isolation system’s
overhead. Capsicum [Watson et al. 2010] allows application processes to use a system
call that limits the privilege of the process. The rest of the application’s processes do
not need the same level of protection and can run normally.

Coarse application-level policies can reduce the complexity of manually generating
a policy. A human must still determine which policy to use for each application, but
the decision is simplified. Due to their coarseness, these policies may be too restrictive
or overly permissive. One example is Android’s permission model, which is described
in detail in [Enck et al. 2009]. Developers choose options such as camera, microphone,
or contacts instead of listing system calls and file accesses. End-users are also more
likely to understand these high-level permissions when they review the application
before installation. Further, Cerium [Chen and Morris 2003] allows three security lev-
els for an application, i.e., a) no protection, b) authentication only, or c) copy-protection
and authentication. Authentication guarantees that the application was not manipu-
lated or forged. Copy protection prevents the application’s code and data from being
accessed by malware. Finally, MAPbox [Acharya and Raje 2000] provides labels (e.g.,
compiler, editor, browser) that represent generic application types. Once an application
is assigned a label it can be placed in a sandbox suitable for that application type.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Study of Security Isolation Techniques A:25

Discussion: The techniques discussed above present several trade-offs in terms of
performance, ease of use, and security.

Policy generation for achieving certain generally applying security principles (e.g.,
least privilege) may be harder to automate than for properties whose semantics may
be defined specific to the program or situation (e.g., intra-program information flow).
That is, policies based on low-level rules such as system call and file access often seek
to approximate least privilege. Unfortunately, ground truth for least privilege is hard
to define and therefore correctness cannot be verified automatically. As least privilege
is subjective, these policies are dependent on the expertise of the human generating
the policy. On the contrary, in systems where security principals define information
flow constraints their own data, reasoning about the allowable flows may be more
tractable. For example, SWIM [Harris et al. 2010] instruments program source code
with the system policy generated from a high-level policy and the program supplied
by the programmer. The input policy specifies both allowed and denied flows within
the program, which are feasible for the developer to define as the flows are particular
to the developer’s application (unlike least privilege, which is a generally applying
principle). For each process in the program, the programmer specifies a “template” (i.e.,
group), and the input policy specifies the flows between templates. SWIM transforms
the input program and policy into logical constraints; a solution to such constraints
would correspond to an instrumented version of the program that satisfies the policy.
SWIM is formally correct, i.e., it only produces an instrumented program if formal
instrumentation conditions that show if one program is a correct instrumentation of
another, are satisfied.

Automated methods are easier to use than manual methods. However, limitations
of static and dynamic analysis impact their accuracy. Dynamic analysis can produce
policies that deny required functionality (i.e. false positives). Static analysis produces
policy that has unnecessary privileges due to dead code or insufficient runtime context
during analysis. These limitations can be mitigated if a skilled administrator checks
the policy and corrects mistakes. However, this process may be time consuming and
likely to suffer from human error. Further, policies may need updating after significant
changes in the system or application.

The developer’s cooperation, e.g., marking sensitive modules/data during develop-
ment, can be effective to determine the security of applications, but such cooperation
is often challenging and impractical. For example, isolating a subsection of a pro-
gram can improve performance and security, but developers must identify the sensitive
PALs. Therefore, this approach is difficult to apply to a large number of applications.
Widespread adoption and backwards compatibility with legacy applications are un-
likely when developer cooperation is required.

Coarse application-level policies may be easier to enforce, but their coarseness re-
duces the security guarantees they can provide. If programs that are too similar use
almost the same list of system calls, they could be isolated with the same coarse sys-
tem call based policy. However, the policy will inevitably be either too permissive or
too restrictive for at least one of the programs due to their different needs.

The performance overhead of policies is influenced by the policy generation ap-
proach. Dynamic analysis may incur a high overhead since applications are executed
and their behaviors are recorded in order to generate policies for them. When a new
system call is encountered, and it is not specified in the policy, a new policy statement
will be added to match this system call [Provos 2003]. Manually generating policies
based on system call may also bring high overhead [Li et al. 2014]. However, manu-
ally specifying a section of programs can reduce overhead to borderline [McCune et al.
2010] or even the negligible [Watson et al. 2010].
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Finally, using dynamic analysis to automatically generate policy commonly requires
no code modification (e.g., Systrace [Provos 2003]). In contrast, manual policy gener-
ation using sections of programs [McCune et al. 2010; Watson et al. 2010] requires
source code modification.

4.2. Policy configurability

Policy configurability captures the ability for the isolation policy to change after the
system is deployed. The ability of the policy to change may allow isolation to dynami-
cally adapt to evolving attack scenarios.

We divide policies into two categories based on their configurability: (1) reconfig-
urable and (2) non-reconfigurable. We further divide the reconfigurable category into
automatic and manual subcategories. Note that we consider the aspect of configura-
bility after the initial isolation is enabled; whereas Section 4.3 discusses the separate
dimension of the policy lifetime.

Reconfigurable: An isolation policy is reconfigurable if it can change after the sys-
tem is deployed. Policies that are defined via a configuration file are inherently re-
configurable. However, a configuration file is not a prerequisite for reconfigurability.
It is useful to describe reconfigurability with respect to how the configuration change
occurs: automatic or manual.

Automatic reconfiguration changes the isolation policy during runtime based on
some pre-defined condition (e.g., event trigger). Prior research on security isolation pol-
icy has limited cases of automatic reconfigurability. One example is Capsicum [Watson
et al. 2010], which extends the file descriptor abstraction by adding capability sup-
port to UNIX system. Further, unlike traditional access control using Access Control
Lists (ACLs), capability systems such as EROS [Shapiro et al. 1999] and its predeces-
sor KeyKOS [Frantz 1988] make isolation dynamic based on the runtime conditions.
For instance, Capsicum supports dynamic delegation of capabilities to subjects, which
changes the privileges (and hence the policy) of the subject automatically at runtime.

Information flow control (IFC) [Denning 1976] systems provide another example.
The goal of IFC is to preserve a certain desired flow of classified data within the
system. Thus, only communication that satisfies the IFC guarantees required by the
policy is allowed. Some IFC systems allow all subjects to read confidential data, but
also propagate the restrictions on the data to the subject (similar to taint tracking).
Hence, a subject’s current isolation policy is automatically configured on the previous
files and processes with which it interacted, and is reconfigured every time it reads
data. More recent decentralized information flow control (DIFC) approaches such as
Asbestos [Vandebogart et al. 2007], HiStar [Zeldovich et al. 2006], Flume [Krohn et al.
2007] and Fabric [Liu et al. 2009] allow security principals to create and apply la-
bels to their own data at runtime. Such security principals may delegate the ability
to read, write or export their data to subjects in the system, automatically configuring
the isolation policies of the subjects (similar to capabilities).

Unlike systems that prefer explicitly defined flows (e.g., Flume, HiStar), Asbestos
uses floating labels (i.e., implicit label propagation) to allow seamless communication.
That is, communication between two subjects results in the caller’s label and its asso-
ciated restrictions propagating to the callee. Such implicit label propagation facilitates
more dynamic communication primitives (e.g., user-directed ad-hoc communication),
but may also lead to data leaks [Denning 1976; Krohn and Tromer 2009] in DIFC op-
erating systems that rely purely on dynamic enforcement (e.g., Asbestos). Finally, the
LoNet architecture [Johansen et al. 2015] describes the use of meta-code attached to
data to enforce various kinds of security or data-use policies. Meta-code is attached to
files, and can not only control use of the data, but also perform other functions such as
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logging. Additionally, in a manner similar to implicit label propagation in IFC systems
such as Asbestos, meta-code is implicitly propagated to derived data by default. This
default may be overridden if needed; i.e., a file’s meta-code may specify new meta-code
for any derived data to inherit.

Manual reconfiguration is the most common type of policy reconfigurability. Fre-
quently, manual policy reconfiguration requires restarting a process, or as in the case
of SELinux [National Security Agency 2009], restarting the operating system.

For some types of manual policy reconfiguration, the policy is specified by the ap-
plication user. For example, Cerium [Chen and Morris 2003] is a trusted computing
architecture that protects a program’s instructions and data with a tamper-resistant
CPU. However, to isolate a program execution, the program needs to specify its protec-
tion policy in its header files so that Cerium can know which level of protection should
be applied to its data and instructions. Another example is Singularity, which provides
Software-Isolated Processes (SIP) for Manifest-Based Programs (MBP). A manifest
describes the resources necessary for an MBP to function, as well as its expected be-
havior. To elaborate, the manifest may include the requirements of the program (i.e.,
system resources, dependencies, capabilities). Additionally, the manifest includes the
configuration parameters affecting the program. Further, the manifest contains infor-
mation about the communication channels required by the SIP, mainly for communi-
cation with other SIPs. As the manifest is declarative and machine-checkable, it can be
used to reason about the MBP’s safety, as well as to ensure that the installation of one
MBP does not break other (already installed) MBPs. SIPs incur low overhead (relative
to most commodity OSes) in terms of creation, termination as well as communica-
tion (between SIPs), primarily due to the isolation being enforced via programming
language type and memory safety instead of hardware support. Singularity has been
extended with sealed processes [Hunt et al. 2007].

In some cases the reconfigurability is more subtle. For example, several isolation
techniques have manual reconfigurability because the application developer specifies
a portion of the application to isolate. Flicker [McCune et al. 2008] offers isolated ex-
ecution environment using the late launch capability in AMD’s Secure Virtual Ma-
chines (SVM). While using hardware support, the application developer must specify
the security- sensitive code for protection as the Piece of Application Logic (PAL). The
isolated environment only lasts for executing PAL. Finally, Inktag [Hofmann et al.
2013], protects isolated high-assurance processes (HAPs) from an untrusted OS. The
HAP developer specifies access control policies on secure files.

Non-reconfigurable: Some of isolation policies are non-reconfigurable. That is, they
are static and immutable. Non-reconfigurable policies occur when the isolation policy
is inherent to the enforcement. For example, SICE [Azab et al. 2011] aims to create iso-
lated environment for security sensitive workload, relying on a minimal TCB including
only the hardware, BIOS, and the System Management Mode (SMM). The processor
saves its current state and switches to the SMM when it receives a System Manage-
ment Interrupt (SMI). The SMM code (i.e., the SMI handler) resides in System Man-
agement RAM (SMRAM), and SICE leverages the capability of locking the SMRAM to
protect the code and data of the SMM. Once the SMRAM is initialized by the BIOS and
then locked, no access is allowed except to the SMM code. The SMI handler provides
memory isolation for isolated environment, and it is also able to initialize the isolated
environment. Each isolated environment has a copy of security manager that prevents
the isolated workload from accessing the memory of the legacy host. That is, the only
policy in this case is to isolate the untrusted workload, which is non-reconfigurable as
it is embedded in the enforcement mechanism.
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Additionally, non-reconfigurable policies are used for the goal of enforcing least priv-
ilege on applications. For instance, some systems restrict (e.g., [Jain et al. 2014]) or
eliminate (e.g., Plan 9 [Pike et al. 1990]) the use of the setuid bit in order to prevent
privilege escalation. Additionally, the System Integrity Protection (SIP) (commonly
known as “rootless”) feature [Apple Inc 2015] included in Mac OS X 10.11 restricts
the privilege of root processes, and only allows code signed by the OS vendor to per-
form certain privileged actions. In both these cases, the policy is non- reconfigurable as
it is a part of the enforcement mechanism. For example, in case of SIP, the code signing
enforcement will have to be turned off in the enforcement to reconfigure the policy.

Discussion: Automatic reconfigurability provides flexibility and customization for se-
curity isolation. However, it also introduces potential for configuration error that im-
pacts the tamperproofness of the system. For example, Linux Discretionary Access
Control (DAC) allows policy on subjects and objects to be reconfigured in a decen-
tralized manner, and is thus vulnerable to trojan horse and confused deputy attacks.
Similarly, some of the DIFC systems discussed previously (e.g., Asbestos [Vandebogart
et al. 2007] allow the policy (i.e., labels) of subjects to automatically be reconfigured
based on their communication. That is, in a mechanism similar to taint tracking, la-
bels “float” or propagate in the direction of the data flow. While such a mechanism may
seem secure as the restrictions propagate along with the data, such implicit propaga-
tion has been shown to leak information [Krohn and Tromer 2009].

On the other hand, manual reconfigurability may have the advantages of being cus-
tomizable, but may not be prone to the limitations of automatically reconfigurable poli-
cies. For example, a mandatory access control (MAC) approach such as SELinux may
provide reconfigurability, but may also ensure that the reconfiguration is performed by
an expert centralized administrator, reducing the potential for incorrect specification.
Note that SELinux does not reconfigure policies at runtime, instead requiring a reboot.
This is due to the “tranquility” property of mandatory protection systems that does not
permit a change to an object’s policy concurrent to its use.

Reconfigurable policies are hard to verify formally, without sacrificing flexibility. For
example, consider the DIFC systems discussed previously. [Harris et al. 2009] use
model checking to verify an application’s secrecy goals and its Flume [Krohn et al.
2007] DIFC policy, but cannot model all DIFC properties. [Yang et al. 2011] show
that verifying Flume [Krohn et al. 2007], Asbestos [Vandebogart et al. 2007] and HiS-
tar [Zeldovich et al. 2006] is NP-hard without the use of model checking. Further, for
Flume in particular, the verification problem complexity is NP-complete if security
principals cannot grant or delegate privileges over their tags (i.e., less flexibility). The
problem falls in P only when Flume gives up the privilege to declassify data (i.e., allow
the owner to export their data contrary to the policy) as well, which severely curtails
the model’s flexibility, but provides support for verification. Note that the verification
of most policies with respect to their goals may require the program’s source code, if
the policy is instrumented in the program.

As configurability does not imply usability, and a highly configurable and flexible
policy may often be unusable for the general user. In fact, most policies governing
mandatory access to low level system resources and daemons may be considered to be
non-trivial, and only usable for power users. There is significant room for improvement
in this area, for access control in general.

Finally, the process of configuring the isolation policy may also have security implica-
tions. Requiring a human to configure the policy potentially leaves the system vulnera-
ble until the reconfiguration occurs. Automatic reconfiguration approaches reduce the
vulnerability time window, although developing software for the identified automatic
reconfiguration approaches is difficult. Capabilities and IFC primitives require care-
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ful consideration of the security guarantees and may be error prone themselves. That
said, enforcing a high-level policy goal (e.g., via a lattice as in DIFC approaches) pro-
vides a stronger security foundation for expressing specific policy goals. For instance,
information secrecy problems arising due to data sharing between applications on An-
droid [Nadkarni and Enck 2013], and the resultant policies to prevent such problems,
can be validated using an IFC lattice.

4.3. Policy lifetime

The lifetime of the isolation policy represents the time that the security isolation policy
is being enforced. More specifically, we want to distinguish between policies that are
always enforced and those that are only enforced for some subset of the duration that
the isolation target (e.g., application) executes. Typically, the subset of time will begin
at some point after execution begins and ends when the execution terminates. That
is, isolation is on-demand and stays on until the program ends. If isolation is not on-
demand (i.e. for some of the execution time), then it is always-on (i.e. for all of the
execution time). Always-on policy configuration may be performance intensive, as we
discuss in the trade-offs for this section. Hence, smart (i.e., adaptive) security isolation
using on-demand policies may be necessary.

We will use the Seatbelt [Miller et al. 2012] sandboxing system used in OS X and iOS
as an example to clarify the distinction between always-on and on-demand. A Seatbelt
sandbox profile represents an isolation policy, and enforcement of that policy begins
when a process calls sandbox init() parameterized with a sandbox profile to use as
a policy. Seatbelt enforcement is only activated after the process calls sandbox init(),
but this can be done in an always-on or on-demand fashion. A parent process that is
not sandboxed can fork itself and cause the forked child to call sandbox init() before
calling exec() to execute a program. This method allows the sandbox to be applied in
an always-on manner, if the system executes all application programs with the sand-
box init() call. However, if an application were allowed to execute for some time then
called sandbox init() on itself, this would be an on-demand use of isolation. That is, the
application would have been isolated for only part of the time that it was executing
with an on-demand policy.

Additionally, as opposed to the process voluntarily isolating itself, an on-demand pol-
icy may include a monitoring phase, e.g., to detect suspicious behavior, which is used to
trigger isolation enforcement. Hence, there may be a detection policy that is always-on
and an isolation policy that is enforced on demand. For example, the anomaly detection
of PREC [Ho et al. 2014] is triggered only after system calls are invoked by third-party
library calls to achieve low false alarms. The isolation mechanisms are then dynami-
cally triggered after an anomaly is detected.

Always-on: Most isolation policies are always-on, and provide isolation throughout
the execution of the isolated subject. That is, the isolation policy is active when an
application process starts and it remains active until the process terminates.

Some security isolation policies are always enabled in application code. For exam-
ple, software-based fault isolation [Wahbe et al. 1994] sandboxes the untrusted mod-
ule. Once the untrusted module is compiled, it is always sandboxed inside the fault
domain. In program shepherding [Kiriansky et al. 2002], policy checks are added to
malicious code such that they are triggered at all times. For example, by adding checks
at the point where the system copies a basic block into code cache, it restricts program
execution to only trusted code origins.

In some cases, security isolation policies are always enabled in the run-time envi-
ronment. In the sealed process architecture [Hunt et al. 2007], processes are prohib-
ited from dynamic code loading, run-time code generation and shared memory. Sealed
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processes are separated with each other and only communicate through explicit mech-
anism. In Singularity [Hunt and Larus 2007], software-isolated processes (SIPs) are
isolated by both static verification and run-time checks. Gazelle [Wang et al. 2009] is
a secure web browser that protects all system resources among website principals. All
principals are isolated into separate protection domains while using Gazelle.

Security isolation techniques taking advantage of hardware may also be always- on.
In SICE [Azab et al. 2011], the workload can only enter or exit the isolated environ-
ment by triggering System Management Interrupt (SMI). Before entering the isolated
environment, SMI handler needs to prepare a new SMRAM layout for security man-
ager and isolated workload. SMI handler also needs to store processor’s state so that it
can resume the execution after the workload exists the isolated environment. Although
it is possible to make SICE dynamic, workloads are made to enter the isolated envi-
ronment and leave the isolated environment when they are forced to exit. Vx32 [Ford
and Cox 2008] is a user-level sandbox that uses x86 protected-mode segmentation for
data sandboxing and dynamic instruction translation for code sandboxing. By default,
before executing guest code, Vx32 sandboxes guest data access by using the x86 pro-
cessor’s segmentation hardware, which loads special data segment into registers such
as ds, es and ss.

On-demand: An isolation policy that programmatically begins enforcing isolation af-
ter some environmental change is termed on-demand. Note that there is a subtle dif-
ference between an isolation policy’s lifetime characteristic of “on demand” and its
configurability characteristic of “automatically reconfigurable.” In many cases, a pol-
icy may be both. However, semantically, the characteristics are different. For example,
a non-reconfigurable or manually reconfigurable policy may be triggered after some
suspicious activity is detected.

On-demand policies can be as simple as turning the policy on (and potentially off)
depending on the context. More complex security isolation policies can continuously
change the degree of security isolation depending on system context. However, devel-
opers must predefine when security isolation should be active or how it should adapt
to the system’s context. There is also a danger of security violation occurring while the
security isolation policy is relaxed or not active.

One option for on-demand security isolation is to allow developers to request security
isolation for specific sections of code. Isolating sections of code removes the overhead
penalty of security isolation for sections that do not need it. This technique also allows
the assignment of different security isolation policies for multiple sections of the same
application. Capsicum [Watson et al. 2010] enforces developer specified security iso-
lation after the process calls cap enter (a Capsicum provided function). This function
and other modifications are added into a process’s code by developers to specify when
it should be isolated. After a process calls cap enter, it enters an isolated environment
called capability mode. In capability mode a process is granted privileges in the form of
capabilities which are also determined by developers. This self-compartmentalization
ability is especially useful when a trusted program isolates itself before processing
untrusted input. If the input caused malicious behavior (e.g. buffer overflow), the pro-
gram would be isolated at this point and exploit’s effects can be confined.

A security isolation system can vary isolation strength in response to subject behav-
ior. As an application starts to behave suspiciously, it will be contained under a proper
security isolation mechanism. For example, PREC [Ho et al. 2014] provides this type
of security isolation lifetime for Android applications. As soon as an application makes
a suspicious system call sequence, the execution of those suspicious system calls will
be delayed. These delays increase exponentially for each additional malicious activity.
Eventually the delays are so severe that malicious activity becomes ineffective. This
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technique is especially useful when defending against attacks that abuse concurrency
bugs such as race conditions. The delays can disrupt the delicate timing required to
trigger these concurrency bugs. Normal sequences of system calls cause decreases in
the delay time allowing the process to regain normal speeds.

Discussion: On-demand policies such as Capsicum [Watson et al. 2010] may improve
performance by only incurring the overhead of isolation enforcement for a subset of
execution time. However, there may also be performance overhead involved in acti-
vating or deactivating the isolation enforcement. If this overhead is large, and if the
on-demand policy is frequently turned on or off, then the overall performance impact
may be even more than an always-on policy. Additionally, evaluating performance for
an on-demand isolation system is difficult. That is, the on-demand policy is dependent
on the runtime context, and an objective evaluation of the runtime context may in-
volve a number of factors that may be hard to simulate realistically, such as the kind
of application (e.g., text editor versus game), aspects of the user scenario (e.g., user-
initiated access, scenario-specific storage access), etc. Additionally, by causing suspi-
cious processes to be delayed, PREC may grant performance gains to other processes
running on the same system. However, the performance overhead of a benign process
experiencing delays due to false positives may be severe.

On-demand policies may also require source code access, especially if the policy is
to be triggered by the application itself. For instance, some DIFC systems (e.g., HiS-
tar [Zeldovich et al. 2006]) require applications to explicitly change their labels to
read/write data. Note that in DIFC systems, while the overarching secrecy and in-
tegrity label checks are always-on, a subject may change its own isolation policy based
on its requirements and capabilities. Further, adding the cap enter sytem call to a pro-
gram to enable on-demand isolation via Capsicum requires access to source code as
well. However, it may be possible to reverse engineer and rewrite binaries to introduce
a cap enter system call as well. Some solutions that do not require the policy to be
triggered in application code, such as PREC, do not have any code requirements and
can be applied to unmodified applications.

In contrast, always-on policies are often simple, and easier to verify. On the contrary,
on-demand isolation policies are difficult to verify due to their dynamic nature. In addi-
tion to verify that the isolation policy is configured correctly, developers of on-demand
policies must also verify that the policy is enforced at the right time. The decision of
when to use cap enter in a program is important, and putting it in the wrong location
may allow a process to become compromised before it is isolated. However, systems
like PREC that tolerate false positives may reduce the cost of a poorly configured pol-
icy that was not verified.

4.4. Possible future work

As mentioned in Section 3 and previous parts of Section 4, most existing security isola-
tion techniques are static. That is, the isolation mechanisms and policies cannot be dy-
namically configured during runtime to adapt to application or environment changes.
However, there are scenarios where the system and users would benefit from a system
that adaptively configures its isolation mechanisms or policies. For example, consider
a scenario where an application initially runs on a local dedicated data center. When
the application workload increases, the resource requirement may exceed the capacity
of the local data center. To accommodate the transient overload condition, the applica-
tion changes its configuration by offloading some tasks into a public cloud. The security
isolation must adapt to this environmental change. For example, the isolation granu-
larity must change from the whole application to individual tasks. While one approach
is to begin with individual task isolation, it would unnecessarily raise the isolation
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cost during normal workloads. However, it is a challenging task to develop such an
adaptive security isolation system, which is part of our future work and beyond the
scope of this survey paper.

5. CONCLUSION

In this article, we performed a study of the different techniques used in security isola-
tion, and proposed a hierarchical classification system. At the top were two broad as-
pects: mechanism and policy. Each aspect was broken into dimensions. For mechanism,
we considered dimensions of enforcement location and isolation granularity. For policy,
we considered dimensions of generation, configurability, and lifetime. Each dimension
was then classified via its categories and subcategories. We applied the classification
system to a representative set of research papers that represent a diverse set of iso-
lation techniques. We then discussed the trade-offs of different technique categories
based on performance overhead, code requirements, and security assurance.
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