
Parallel Ptychographic Reconstruction

Youssef S. G. Nashed,1,∗ David J. Vine,2 Tom Peterka,1 Junjing Deng,3

Rob Ross,1 and Chris Jacobsen2,3

1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
Illinois 60439, USA

2Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
3Applied Physics, Northwestern University, Evanston, Illinois 60208, USA

∗ynashed@anl.gov

Abstract: Ptychography is an imaging method whereby a coherent beam
is scanned across an object, and an image is obtained by iterative phasing
of the set of diffraction patterns. It is able to be used to image extended
objects at a resolution limited by scattering strength of the object and
detector geometry, rather than at an optics-imposed limit. As technical
advances allow larger fields to be imaged, computational challenges arise
for reconstructing the correspondingly larger data volumes, yet at the same
time there is also a need to deliver reconstructed images immediately so
that one can evaluate the next steps to take in an experiment. Here we
present a parallel method for real-time ptychographic phase retrieval. It
uses a hybrid parallel strategy to divide the computation between multiple
graphics processing units (GPUs) and then employs novel techniques to
merge sub-datasets into a single complex phase and amplitude image.
Results are shown on a simulated specimen and a real dataset from an X-ray
experiment conducted at a synchrotron light source.

© 2014 Optical Society of America

OCIS codes: (100.5070) Phase retrieval; (110.3010) Image reconstruction techniques;
(200.4960) Parallel processing; (170.7440) X-ray imaging.

References and links
1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction

of Light (CUP Archive, 1999).
2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-

emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson,

J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,”
Science 313, 1642–1645 (2006).

4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction mi-
croscopy (storm),” Nature Methods 3, 793–796 (2006).

5. S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
6. A. Huiser and P. Van Toorn, “Ambiguity of the phase-reconstruction problem,” Opt. Lett. 5, 499–501 (1980).
7. W. Hoppe, “Beugung im inhomogenen primarstrahlwellenfeld. i. prinzip einer phasenmessung von elektronen-

beungungsinterferenzen,” Acta Crystallogr., Sect. A 25, 495–501 (1969).
8. H. Faulkner and J. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval

algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
9. J. Rodenburg, A. Hurst, A. Cullis, B. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson,

“Hard-x-ray lensless imaging of extended objects,” Phys. Rev. Lett. 98, 034801 (2007).
10. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffrac-

tion microscopy,” Science 321, 379–382 (2008).
11. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive

imaging,” Ultramicroscopy 109, 338–343 (2009).

12. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
13. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow

imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
14. H. N. Chapman, A. Barty, S. Marchesini, A. Noy, S. P. Hau-Riege, C. Cui, M. R. Howells, R. Rosen, H. He,

J. C. H. Spence, U. Weierstall, T. Beetz, C. Jacobsen, and D. Shapiro, “High-resolution ab initio three-
dimensional x-ray diffraction microscopy,” J. Opt. Soc. Am. A 23, 1179–1200 (2006).

15. B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. De Jonge, and I. McNulty,
“Keyhole coherent diffractive imaging,” Nature Phys. 4, 394–398 (2008).

16. F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane
modulation,” Phys. Rev. A 75, 043805 (2007).

17. P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett.
33, 309–311 (2008).

18. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffrac-
tion microscopy,” Science 321, 379–382 (2008).

19. J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett.
85, 4795–4797 (2004).

20. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive
imaging,” Ultramicroscopy 109, 1256–1262 (2009).

21. P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494, 68–71
(2013).

22. nVIDIA Corporation, CUDA C Programming Guide v. 6.0 (2014).
23. T. Peterka, R. Ross, A. Gyulassy, V. Pascucci, W. Kendall, H.-W. Shen, T.-Y. Lee, and A. Chaudhuri, “Scalable

parallel building blocks for custom data analysis,” in “Large Data Analysis and Visualization (LDAV), 2011
IEEE Symposium on,” (IEEE, 2011), pp. 105–112.

24. S. Lantinga, “The simple directmedia layer library,” http://www.libsdl.org.
25. nVIDIA Corporation, CUDA C Best Practices Guide v. 6.0 (2014).
26. nVIDIA Corporation, CUFFT Library User’s Guide v. 6.0 (2014).
27. M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic

x-ray computed tomography at the nanoscale,” Nature 467, 436–439 (2010).
28. M. Holler, A. Diaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe,

and O. Bunk, “X-ray ptychographic computed tomography at 16nm isotropic 3D resolution,” Sci. Rep. 4, 3857
(2014).

29. M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. Von Koenig, O. Bunk, and
F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12,
035017 (2010).

30. X. Huang, H. Yan, R. Harder, Y. Hwu, I. K. Robinson, and Y. S. Chu, “Optimization of overlap uniformness for
ptychography,” Opt. Express 22, 12634–12644 (2014).

31. T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and R. Thakur, “A configurable algorithm for parallel image-
compositing applications,” in “Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis,” (ACM, 2009), p. 4.

32. O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the
convergence of the ptychographical iterative engine,” Ultramicroscopy 108, 481–487 (2008).

33. C. Kuglin, “The phase correlation image alignment method,” in “Proc. Int. Conf. on Cybernetics and Society,
1975,” (1975).

34. V. Argyriou and T. Vlachos, “Using gradient correlation for sub-pixel motion estimation of video sequences,”
in “Acoustics, Speech, and Signal Processing, 2004. Proceedings.(ICASSP’04). IEEE International Conference
on,” , vol. 3 (IEEE, 2004), vol. 3, pp. iii–329.

35. M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” International J.
Comp. Vis. 74, 59–73 (2007).

36. M. Guizar-Sicairos, I. Johnson, A. Diaz, M. Holler, P. Karvinen, H.-C. Stadler, R. Dinapoli, O. Bunk, and A. Men-
zel, “High-throughput ptychography using eiger: scanning x-ray nano-imaging of extended regions,” Opt. Ex-
press 22, 14859–14870 (2014).

37. T. L. Falch, J. B. Fløystad, A. C. Elster, and D. W. Breiby, “Optimization and parallelization of ptychography
reconstruction code,” Norsk informatikkonferanse 2012 (2012).

38. T. L. Falch, “3D visualization of x-ray diffraction data,” NTNU (2012).
39. A. M. Maiden, M. J. Humphry, and J. Rodenburg, “Ptychographic transmission microscopy in three dimensions

using a multi-slice approach,” J. Opt. Soc. Am. A 29, 1606–1614 (2012).
40. D. Claus, A. M. Maiden, F. Zhang, F. G. Sweeney, M. J. Humphry, H. Schluesener, and J. M. Rodenburg,

“Quantitative phase contrast optimised cancerous cell differentiation via ptychography,” Opt. Express 20, 9911–
9918 (2012).

41. C. G. Schroer, S. Hnig, A. Goldschmidt, R. Hoppe, J. Patommel, D. Samberg, A. Schropp, F. Seiboth, S. Stephan,
S. Schder, M. Burghammer, M. Denecke, G. Wellenreuther, and G. Falkenberg, “Hard x-ray nano-beam charac-

terization by ptychographic imaging,” in “SPIE Optical Engineering+ Applications,” (International Society for
Optics and Photonics, 2011), pp. 814103–814103.

42. F. R. Maia, T. Ekeberg, D. Van Der Spoel, and J. Hajdu, “Hawk: the image reconstruction package for coherent
x-ray diffractive imaging,” J. Appl. Crystallogr. 43, 1535–1539 (2010).

43. S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig,
T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp,
J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The bionanoprobe: hard x-ray
fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75 (2014).

44. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt.
Lett. 33, 156–158 (2008).

45. W. Saxton and W. Baumeister, “The correlation averaging of a regularly arranged bacterial cell envelope protein,”
J. Microsc. 127, 127–138 (1982).

46. M. van Heel and M. Schatz, “Fourier shell correlation threshold criteria,” J. Struct. Biol. 151, 250–262 (2005).
47. M. Guizar-Sicairos, A. Diaz, M. Holler, M. S. Lucas, A. Menzel, R. A. Wepf, and O. Bunk, “Phase tomography

from x-ray coherent diffractive imaging projections,” Opt. Express 19, 21345–21357 (2011).
48. F. Zhang, I. Peterson, J. Vila-Comamala, A. Diaz, F. Berenguer, R. Bean, B. Chen, A. Menzel, I. K. Robinson,

and J. M. Rodenburg, “Translation position determination in ptychographic coherent diffraction imaging,” Opt.
Express 21, 13592–13606 (2013).

49. A. Maiden, M. Humphry, M. Sarahan, B. Kraus, and J. Rodenburg, “An annealing algorithm to correct positioning
errors in ptychography,” Ultramicroscopy 120, 64–72 (2012).

50. P. Thibault and M. Guizar-Sicairos, “Maximum-likelihood refinement for coherent diffractive imaging,” New J.
Phys. 14, 063004 (2012).

1. Introduction

Traditional microscopes measure changes in specimen optical response via a lens-based direct
mapping to pixels in a detector. Such microscopes have a resolution limited by the numerical
aperture of the lens used according to the Abbe diffraction limit [1]. While one can exceed
this limit by using special properties of certain fluorophores in visible light microscopy [2–5],
another approach is to record far-field diffraction patterns without optics-imposed resolution
limits and use them to recover the structure of the specimen. Coherent diffractive imaging
(CDI) is a technique using a highly coherent beam to image interesting specimens, ranging
from inorganic materials such as metals and polymers to organic ones such as cells, protein
molecules, and viruses. The process of determining structure from diffraction patterns is not
straightforward. In practice, far-field diffraction data are the squared modulus of the Fourier
transform of the sample’s exit wave function. This gives rise to the well-known phase problem,
in that the (unmeasured) Fourier phases are also needed for direct Fourier inversion to produce
an image. The phase problem is considered an ill-posed inverse problem, meaning its solution
is non unique [6]. There are an infinite number of functions whose Fourier transforms have the
same modulus. Phase retrieval algorithms are designed to solve the phase problem by iteratively
trying to find phases for the measured amplitudes that satisfy a set of constraints. Once the
phases are correctly estimated, the object’s complex wave function can be obtained using an
inverse Fourier transform.

This paper focuses on ptychography [7–9] as a coherent diffraction imaging method that is
able to image extended, non-isolated samples. Ptychography involves recording a set of diffrac-
tion patterns recorded from multiple overlapping coherent probe locations. Because of the re-
dundancy of information in the object among many diffraction patterns, iterative methods are
able to converge quickly on a robust solution for the object, and one can also recover one or
more probe distributions [10, 11] (such as for imaging with partially coherent illumination).
Because there are no optics-imposed limits to collecting large scatter angle diffraction patterns,
ptychography can be used for imaging at a spatial resolution limited only by the scattering
strength of the optic and detector geometry.

The majority of phase retrieval algorithms resemble iterative optimization methods, where
the objective error function to be minimized combines candidate phase values with the meas-

ured intensities of the diffraction pattern. Applying a set of constraints in both real and recipro-
cal spaces typically leads to a convergence to a solution that aligns the acquired data with the
a priori constraints [12]. In this regard, the reciprocal space is the domain in which the Fourier
transform of the specimen’s two-dimensional spatial function (real space) is represented.

Faster area detectors, brighter X-ray sources, increasingly higher resolution nanofocusing
condenser optics, and larger scan fields are leading to a rapid increase in the size of ptychogra-
phy datasets. In practice these large ptychography datasets must be reconstructed in near real-
time in order to inform the progress of the experiment. As stated earlier, phase retrieval methods
involve the computation of multiple Fast Fourier Transforms (FFTs) over thousands of diffrac-
tion patterns, making them suitable for parallel analysis. Moreover, extending ptychography to
3D comes at the expense of an increase in the computational and memory requirements of the
phase retrieval software.

2. Phase retrieval

In order to make the phase problem uniquely solvable, a set of constraints can be iteratively
enforced [12]. Most practical implementations of phase retrieval algorithms use a finite support
constraint that corresponds to a finite region bounding the specimen in the physical experiment
where the reconstructed image should be zero-valued. Support-based phase retrieval has been
used in many X-ray microscopy experiments [13–15]. Ptychography has recently gained popu-
larity because it removes the need for a finite object support, has been shown to be more robust,
and has faster convergence rates than traditional finite support based methods [16, 17].

2.1. Ptychography

Ptychography was first introduced by Hoppe [7] to solve the phase problem using a set of in-
terfering diffraction patterns. Thus, the finite support constraint is replaced by the redundancy
resulting from overlapping an illumination function at different positions across a sample. This
redundancy helps solve the phase problem by changing the relative position of the illumination
with regard to the sample position. In an actual experiment, this scanning is often achieved by
moving the sample relative to the incident beam in a predefined pattern as in Fig. 1. There are
many alternative ptychography reconstruction algorithms in the literature. The difference map
(DM) method [11, 18], which is similar to the HIO method by Fienup [12], can process all the
diffraction patterns in parallel to retrieve the sample transmission function. The ptychographi-
cal iterative engine (PIE) [19], later extended by Maiden and named ePIE [20], requires fewer
iterations to converge and is robust to noise. Ptychography, and CDI in general, originally re-
quired highly coherent beams, which are experimentally difficult to obtain and often lead to flux
reduction. Relaxing the strict coherence requirements for ptychography, Thibault and Menzel
recently demonstrated that one can reconstruct an illumination function from multiple mixed
states or modes to compensate for and capture decoherence of the incident beam [21].

The DM algorithm is suitable for a parallel implementation, but since it calculates the exit
wavefronts of all scan points at once, while keeping a copy of the previous iteration calculations
in memory, DM has about five times the memory footprint of ePIE. For example, if a dataset
consists of 1 GB of raw floating point diffraction pattern intensities, DM will require two buffers
to hold current and previous iteration exit wavefronts, each amounting to 2 GB of complex
valued data. In this case, the minimum memory footprint of DM is 5 GB, whereas ePIE only
needs to store the actual dataset plus two small buffers each of the same size as one diffraction
pattern in complex format (∼1 GB). Memory footprint is the main reason why we chose to
implement ePIE first, with DM left for future work. The implementation also employs multiple
illumination modes in the reconstruction to allow the use of partially coherent beams with
higher flux.

Sample

Optic or
Pinhole

Detector

Diffraction Pattern

Raster Scan
Direction

Beam

Fig. 1. Simplified ptychography experiment setup showing a Cartesian grid used for the
overlapping raster scan positions.

2.1.1. ePIE

The ePIE algorithm tries to recover two distinct quantities:

• the illuminating “probe” wavefront P(r), which is the complex-valued scalar wave func-
tion describing the beam incident on a sample over a set of real space coordinates r;
and

• the object transmission function O(r) describing the actual sample under investigation.

Before the reconstruction starts, the only given data is the far-field diffraction pattern set
denoted by I(u), where u is a vector in reciprocal space coordinates. I(u) is composed of a
collection of J diffraction patterns formed from the product of the object transmission function
and the probe function. Each exit wavefront at a given raster scan position j is termed ψ j. The
interaction of the probe and object wavefronts can be given as their complex Hadamard product;
this exit wave is propagated to the detector plane through a Fourier transform and recorded by
the detector as the squared magnitude of the Fourier transform. This can be written as:

ψ j(r) = P(r−Rj)O(r) (1)

I j(u) = |F [ψ j(r)]|2, (2)

where R is a vector of size J listing all the relative shifts between the probe and the object.
The ePIE algorithm starts with an initial guess for the probe and object wavefronts. It is also
desirable to process the diffraction patterns in random order, to remove any starting position bias
(this random order is recomputed at the beginning of every ePIE iteration). The algorithm then
proceeds with calculating the exit wave function using the current object and probe guesses, as
in Eq. (1). The estimate Ψ j is then updated by replacing the modulus of the Fourier transform
of the current exit wave with the square root of the measured diffraction pattern intensity, such
that

Ψ j(u) =
√

I j(u)
F [ψ j(r)]

|F [ψ j(r)]| . (3)

The exit wave can be updated by means of an inverse Fourier transform, as in

ψ ′
j(r) = F−1[Ψ j(u)]. (4)

Finally, the object and probe wavefront guesses can be updated using the following functions:

O′
j(r) = Oj(r)+

P∗
j (r−Rj)[ψ ′

j(r)−ψ j(r)]

max(|Pj(r−Rj)|2) (5)

P′
j(r) = Pj(r)+

O∗
j(r+Rj)[ψ ′

j(r)−ψ j(r)]

max(|Oj(r+Rj)|2) , (6)

where ∗ denotes the complex conjugate operation. The update of the object function is normal-
ized by the maximum squared magnitude of the probe wave function while the probe function
is normalized by the maximum object function intensity in order to keep the values in a pro-
portional range between both functions. These steps are repeated for every diffraction pattern
j, and for a number of predefined ePIE iterations, or until a certain convergence criterion is
reached.

2.1.2. Probe modes

In the fully coherent case, a single mode probe function is adequate to converge to a faithful
reconstruction of the sample. A perfectly coherent incident beam can be described by a single
pure state, while, to account for the partial coherence of the light source, P(r) can be modeled
as a mixture of K independently coherent but mutually incoherent probe modes. Amending the
ePIE algorithm with a probe function consisting of multiple modes entails adjusting Eq. (1) such

that for every probe mode k a separate ψ(k)
j (r) exit wave is generated. The modulus constraint

calculation in Eqs. (3) and (4) is subsequently transformed into

ψ ′(k)
j (r) = F−1

[√
I j(u)

F [ψ(k)
j (r)]√

∑
k

|F [ψ(k)
j (r)]|2

]
, (7)

where the summation operation here is the incoherent sum over all modes. The update functions
in Eq. (6) are also changed to account for the multiple modes

O′
j(r) = Oj(r)+

∑
k

P(k)∗
j (r−Rj)[ψ

′(k)
j (r)−ψ(k)

j (r)]

max(∑
k

|P(k)
j (r−Rj)|2)

(8)

P′(k)
j (r) = P(k)

j +
O∗

j(r+Rj)[ψ
′(k)
j (r)−ψ(k)

j (r)]

max(|Oj(r+Rj)|2) . (9)

For all the reconstructions presented, each secondary probe mode was initialized to 5% of
the primary mode illumination, and made orthogonal to all other modes using a GPU imple-
mentation of the Gram-Schmidt process.

3. Parallel implementation

Our parallel phase retrieval software is written entirely in C++ using the CUDA platform [22]
by nVIDIA. It also uses the DIY [23] data-parallel programming library for the multi-GPU
extension, the HDF5 library for data I/O, and the Simple DirectMedia Layer (SDL) [24] library
for OpenGL visualization.

M

N

a =align(N,W)

s

Fig. 2. GPU memory layout of a 2D M×N matrix. The gray area represents the aligned
matrix zero padding, where W = warp size (32 threads on most devices). The padded area
is always ignored in matrix operations. CUDA blocks operate on matrix slices of size s
such as the region outlined by the dashed red line. Memory requests for a row of the padded
matrix are served by a single cache line.

The programming language used within CUDA (CUDA-C) is an extension of the C program-
ming language which allows one to implement GPU-based parallel functions, called kernels,
which, when called, are executed n times in parallel by n different CUDA threads. The CUDA
programming model requires the problem to be partitioned into subproblems that are solved
independently in parallel by blocks of threads. In turn, each subproblem is also partitioned into
finer pieces that can be solved cooperatively in parallel by all threads within the same block.
Blocks are organized into a one-, two-, or three-dimensional grids of thread blocks. Kernel
thread configuration is an important factor affecting the performance of a CUDA implementa-
tion.

According to nVIDIA’s best practices guide [25], global memory accesses should be coa-
lesced to achieve maximum cache utilization, and to perform memory read/write operations
in as few transactions as possible. Memory requests by threads of a warp are grouped by the
hardware to a single instruction, if one cache line is enough to serve these concurrent requests.
Since different devices have different cache architectures, it is useful to align matrix memory to
a multiple of the specific device’s warp size (Fig. 2). Ensuring that each warp performing matrix
operations will request adjacent memory addresses also significantly reduces cache misses.

Ptychography relies on complex-valued matrix operations and Fourier transforms. Im-
plementing each ptychography algorithm using large, method specific, GPU kernels would
markedly increase development and debugging efforts, while also sacrificing customization
and extensibility. For this reason, we rely on compact efficient kernels for matrix operations,
such as complex multiplication, addition, normalization, phase and magnitude calculation, and
so forth. As for CUDA kernels thread configuration, we refer once more to Fig. 2. A kernel
operating on an M×N matrix will be launched with a one-dimensional grid, of size �M ÷ s�,
where s = �maxThreads÷ a�, a = (N aligned to the GPU warp size), and maxThreads is the
maximum number of threads supported by the GPU to run concurrently within a block. The
blocks are configured as two-dimensional thread grids having a threads in the first dimension,
and s threads in the second. This configuration automatically balances the computation load
so that each block is using the maximum allowed number of threads, with the fewest possi-
ble idle threads given the memory coalescing constraint. Although the kernels are limited by
N ≤ maxThreads, with the multi-GPU implementation, the theoretical reconstruction size can
reach (maxThreads×G)2, where G is the number of GPUs available. For the FFT computation,
we use nVIDIA’s CUFFT library [26] provided with the CUDA platform.

3.1. Multi-GPU algorithm

New multimodal imaging techniques and devices are generating large amounts of data at high
rates. For instance, experiments are now combining ptychography with fluorescence detectors
to deduce a specimen’s structure and elemental composition at the same time. Such experi-
ments typically require smaller beams and therefore more raster scan points than single mode
experiments. Furthermore, tomographic datasets composed of multiple two-dimensional scans
at different angles around the specimen’s axis of rotation can easily exceed hundreds of giga-
bytes of raw data [27,28]. To date, the maximum amount of device memory on a single nVIDIA
GPU is 12 GB of RAM. In order to keep all raw data on the device memory without the need
for swapping from disk or host RAM, a dataset can be subdivided and processed on multiple
GPUs.

In an experiment setup, the overlapping probe raster scan points can be arranged in a variety
of configurations, such as Cartesian grids, concentric circles [29], Fermat spirals [30], or any
other arbitrarily shaped pattern. Given any of these patterns, spatially contiguous scan subre-
gions can be defined such that the degree of overlap between adjacent scan points is preserved.
Data partitioning is achieved using the DIY parallel programming library [23] that is written
on top of MPI to facilitate communication between parallel processes. In DIY terminology, we
assign a DIY block (not to be confused with CUDA blocks) to each GPU. The 2D domain size
here is the number of scan points in each dimension. The DIY block extents are mapped to the
subset of file names from which the block can read its own portion of diffraction patterns. The
raw data of each subregion is then loaded from disk, transfered to GPU memory, and processed
separately from the other subregions residing on other GPU memory spaces. Sub-dataset re-
constructions can either be merged to form a final reconstruction after phase retrieval, or shared
between separate GPUs every iteration or every few iterations of the phase retrieval method.

3.1.1. Asynchronous parallel ptychography

The fastest approach to parallel ptychography is to subdivide the dataset and phase sub-datasets
asynchronously, then merge the results to form a final reconstruction, without the need for
data sharing or synchronization. The final reconstructions from the phase retrieval algorithm
running on separate GPUs are stitched back in parallel, between pairwise subsets because their
relative orientation is already known. A parallel reduction-with-merge algorithm [31] is utilized
to achieve the stitched mosaic of the whole sample final reconstruction, as shown in Fig. 3.

Stitching independent phase retrieval reconstructions has two main difficulties. First, the re-
constructed wavefronts exhibit arbitrary phase shifts, which is an inherent problem with all
phase retrieval algorithms [32]. Second, the probe and object functions are usually not centered
within their respective arrays because they are not constrained in real space coordinates. In or-
der to address these problems, normalization must compensate for the different overall phase
shifts of the reconstructions. In addition, a registration method is required to find the relative
translation between reconstructed wavefronts. In order to solve for phase shifts between two
object wavefronts, phase values from a common area present in both wavefronts can be used. It
is not, however, straightforward to calculate the amount of overlap between the resulting recon-
structed wavefronts in real 2D image space. An extension to phase correlation [33] is employed
for rigid registration, and once a translative offset is found, a modulation factor can be calcu-
lated from the common part. This modulation factor can be subsequently used to normalize the
participating complex wavefronts into one coherent reconstruction.

Phase correlation is based on the Fourier shift theorem, which states that a relative translation
between two images is represented as a linear phase difference in reciprocal space. We adopt
phase correlation because it is an accurate rigid registration method, and because a GPU FFT
implementation is available through CUFFT. Phase correlation, like all Fourier based methods,

Fig. 3. The diffraction patterns are subdivided and distributed among available GPUs. Pair-
wise stitching is performed on the separate reconstructions attained by phase retrieval.

suffers from jump discontinuities caused by image boundaries. A tapering function, such as the
Hamming window, can be used to reduce edge artifacts from the Fourier domain. In most cases,
however, the features required for an effective registration reside near the edges, especially with
finer data partitions. An alternative solution is to use the gradient of the original images, as
suggested by Argyriou and Vlachos [34].

The mathematical formulation of the registration method used begins with computing the
horizontal and vertical gradients, gh(x,y) and gv(x,y) respectively, using central differencing,
such that

gh(x,y) = f (x+1,y)− f (x−1,y) (10)

gv(x,y) = f (x,y+1)− f (x,y−1), (11)

where f (x,y) is the phase of the reconstructed wavefront. The gradients are then put into a
complex representation in the form

g(x,y) = gh(x,y)+ jgv(x,y). (12)

Using the magnitudes of the complex gradients g1(x,y) and g2(x,y) of reconstructed waves, the
cross-power spectrum S(r) is calculated by

g1(r) = F [|g1(x,y)|] (13)

g2(r) = F [|g2(x,y)|] (14)

S(r) =
g1(r)◦g∗2(r)
|g1(r)||g∗2(r)|

, (15)

where ◦ is the element-wise matrix multiplication operation. The inverse Fourier transform of
the cross-power spectrum is the cross-correlation function that peaks at the registration point
Δx,Δy, defined as

Δx,Δy = argmaxx.y(|F−1[S(r)]|). (16)

The registration point can then be used to find the exact overlapping regions, R1(x,y){x ∈
[Δx,M], y∈ [Δy,N]} and R2(x,y){x∈]0,M−Δx], y∈]0,N−Δy]}, of the two reconstructed wave-
fronts of equal sizes M×N. Employing a method similar to the gain compensation technique
used for photographic image stitching [35], the overlapping regions are approximated by their
respective complex-valued means μ1 and μ2. Then a ratio of the calculated means is used to
modulate one of the retrieved object functions to match the other, giving

O′
2(x,y) =

μ1O2(x,y)
μ2

, (17)

where Oi(x,y) is the ith partial reconstruction of the 2D object wavefront. Finally, a stitched
object wavefront O(x,y) is formed from the two partial reconstructions O1(x,y) and O′

2(x,y) in
the form

O(x,y) =

⎧
⎪⎪⎨
⎪⎪⎩

O1(x,y) if x < Δx + �(M−Δx)/2�,
y < Δy + �(N −Δy)/2�

O′
2(x,y) otherwise.

(18)

Here each partial reconstruction contributes to the stitching with its own distinct features in
addition to half of the overlapping region. Therefore, the output O(x,y) has a new size of (M+
Δx)×(N +Δy). Subsequently, the stitched wavefront O(x,y) can, in turn, be considered a partial
reconstruction input for another pairwise stitching as shown in Fig. 3.

3.1.2. Synchronous parallel ptychography

The synchronous variant of our multi-GPU parallel ptychography method is inspired by the
work done by Guizar-Sicairos et al. [36]. There, multiple datasets were acquired from a single
extended sample by tiling a 7×4 rectangular grid with concentric circles pattern scans and some
amount of overlap between individual datasets. The final reconstruction of the entire sample is
achieved by sharing the object function array among the datasets, while solving a separate
probe function for each scan. In so doing, the phase retrieval method should converge to a
common object transmission function, benefiting from the increased statistics found where the
scan regions overlap. In our work, instead of acquiring multiple datasets, a single dataset is split
into multiple sub-datasets, and their respective reconstructions, residing on separate GPUs, are
synchronized during the course of the phase retrieval algorithm.

Fig. 4. Object array sharing through neighborhood exchange between 16 GPUs. The over-
lap (halo), highlighted in blue, is defined in terms of additional scan points assigned to each
GPU sub-dataset.

Sharing the whole object array among multiple GPUs would incur a significant overhead
from broadcasting a large amount of data across the network interface every single iteration,
or few iterations, of the phase retrieval algorithm. For this reason, a local sharing method is
utilized, where each GPU shares the current reconstruction only with its immediate neighbors
as depicted in Fig. 4. This effectively decreases the message size sent at every synchronization
point without sacrificing reconstruction quality. At a synchronization step t, each GPU replaces

its object function array O(r) with an averaged array Ot(r), such that

Ot(r) =

O(r)+
L

∑
l=1

Nl(r)

L+1
, (19)

where L is the size of neighboring reconstructions set, N(r) = {N1(r), . . . , NL(r)}, found in
the immediate local neighborhood of a sub-dataset.

The multi-GPU implementation that relies on splitting the scan dataset into a number of sub-
datasets has a drawback of creating artificial scan borders with less overlap at the outermost scan
points. The asynchronous version of the implementation overcomes artificial border artifacts by
using half of the common region from each of the stitched reconstructions, thus avoiding the
areas near the artificial borders where the reconstruction is unreliable. The synchronous ver-
sion is essentially working with a single dataset; the object array sharing forces the sub-dataset
reconstructions to agree on common phase and spatial offsets. Hence, it increases the informa-
tion around the subdivision borders to overcome the artificial borders problem. Both versions
retrieve separate probe functions for each GPU, which is useful when the beam properties are
not constant during a scan, especially for longer exposures. Solving a separate illumination
function for each GPU has the potential to compensate for fluctuations in the motorized stage
positions, beam intensity, and sample temperature, particularly when these changes happen on
a longer timescale than the data subset scan time.

3.2. Related work

Several authors have been trying to parallelize CDI reconstruction algorithms to run near real-
time. In the work of Falch et al. [37], an optimized parallel difference map algorithm was
implemented using thread pools and SIMD instructions. The code optimizations were based
on array merging, expression rewriting, and loop unrolling. Python and C serial versions were
developed for comparison; the parallel implementation achieved approximately one order of
magnitude speedup over those sequential implementations. A GPU implementation was left
as future work, although the same authors used multiple GPUs for visualizing diffraction data
based on a parallel volume ray casting technique [38].

The authors of the ePIE algorithm present another extension to the ptychographical iterative
engine method called 3PIE [39], providing a three-dimensional ptychographical reconstruction
without the need for multiple tomographic measurements, but rather by modeling the sample in
terms of layers or slices, propagating exit waves of one slice as the incident illumination on the
next. 3PIE was demonstrated experimentally with a MATLAB implementation making use of
the GPU-based acceleration offered by MATLAB. However, no speedup or scaling information
was provided. Similarly, Claus et al. [40] show the use of visible-light ptychography to dis-
tinguish between healthy and tumorous unstained cells in a MATLAB implementation. In that
work, CUDA is used solely to compute 2D FFT and Fourier shift functions, essentially trans-
ferring data back and forth between CPU memory and GPU memory, which is very expensive.

Schroer et al. used a complete ePIE GPU implementation for the purpose of deducing X-
ray beam characteristics, such as shape and size [41]. Their parallel implementation achieved
two orders of magnitude speedup over a serial one but only used a single GPU (nVIDIA Tesla
C2050) for the beam focus reconstruction. The Hawk package [42] focuses on finite support
based methods relying on a single diffraction pattern for phase retrieval. Hawk is a publicly
available open-source software toolkit that uses CUDA to implement numerous phasing algo-
rithms.

4. Testing

Our parallel methods were evaluated on two datasets: a synthetic sample simulating the diffrac-
tion patterns from known images, and on real data acquired using the Bionanoprobe [43] at
beamline 21-ID-D of the Advanced Photon Source at Argonne National Laboratory. Experi-
ments were run on the Tukey cluster at the Argonne Leadership Computing Facility (ALCF).
Tukey is a visualization platform consisting of 96 compute nodes; each node has two 2 GHz
AMD Opteron 6128 processors (8 cores per CPU, 16 cores total), and two nVIDIA Tesla
M2070 GPUs. Each GPU has 6 GB of memory and a CUDA compute capability of 2.0; the
code was built and run with CUDA v6.0.

4.1. Synthetic sample

A simulated dataset was generated to assess both the accuracy and performance of the parallel
phase retrieval reconstructions. Two known images (Baboon and Lena) were used to represent
the object phase and magnitude profiles. The magnitude image was scaled to values in the
[0.1,1] range, and the phase to values in the [0, π

3] range. A regular 175×120 Cartesian grid
was used for the probe positions, generating 21,000 far-field diffraction patterns, totaling 5.12
GB of single precision floating point raw data. The diffraction patterns were generated with a
single-pixel detector point-spread function, with no added noise. A randomized Gaussian kernel
was used to represent the probe function, simulating a 5 keV X-ray beam having a theoretical
width of 110 nm and a step size (the distance between scan points on the raster grid) of 50 nm,
providing 54% overlap between adjacent scan points in the horizontal and vertical directions.
The synthetic sample was 1 m away from the detector, which had 256×256 pixels of size
172 µm. Results were obtained for different numbers of GPUs after 200 iterations of the ePIE
algorithm. The probe estimate was not updated for the first 10 iterations, as recommended in
the literature.

Since the actual object wavefront, O(r), is known in the synthetic sample case, the conver-
gence of a reconstructed result On(r) can be measured directly employing the normalized RMS
error [20]

E0(n) =
∑
r
|O(r)− γOn(r)|2

∑
r
|O(r)|2 (20)

γ =
∑
r
|O(r)O∗

n(r)|2

∑
r
|On(r)|2

, (21)

where γ is a modulation factor compensating for a constant phase offset between O(r) and
On(r), and n is the number of GPUs used for the reconstruction. Values of n were only set
to multiples of 2. Therefore tests were run taking advantage of up to 128 GPUs, to evaluate
the asynchronous and synchronous implementations performance and convergence. Object ar-
ray sharing was carried out at every iteration of the phase retrieval method. The error between
the final reconstructions and the ground truth was calculated using Eq. (21) over the central
200×200 pixel area of the reconstruction to avoid border artifacts and using a subpixel regis-
tration method [44] to align the reconstruction with the ground truth. The plot in Fig. 5 shows
the normalized RMS error comparing the asynchronous and synchronous versions of the multi-
GPU implementation. Clearly, the asynchronous variant is superior to the synchronous one in
terms of reconstruction error. This is mainly attributed to two reasons: first, the additional statis-
tics introduced to a GPU object array at any given synchronization step do not directly relate to

(b)

(a)
(c)

(d)

Fig. 5. (a) Normalized RMS error of final reconstructions achieved by different GPU con-
figurations using the asynchronous, synchronous, and synchronous with halo=2 implemen-
tations. (b) Magnitude and phase of the object wavefront retrieved from simulated data
using the asynchronous version and 128 GPUs. (c) Magnitude and phase of the object
wavefront retrieved from simulated data using the synchronous version and 32 GPUs. (d)
Magnitude and phase of the object wavefront retrieved from simulated data using the syn-
chronous version, 32 GPUs, and a halo region of 2 additional scan point rows and columns.

any scan point of this GPU’s sub-dataset, but rather slow its convergence. Second, our simple
averaging method of the shared arrays results in linear phase ramps that arise when the phase
retrieval algorithm tries to reconcile phase offsets of multiple object functions. Figure 5 shows
the worst performing GPU configurations: the 128 GPU configuration for the asynchronous
implementation, and 32 GPUs for the synchronous. Another 32 GPU reconstruction of the syn-
chronous implementation (Synchronous2) is also shown in the figure, where the sub-dataset
scan region overlap has been set to 2 rows and columns of diffraction pattern data (halo=2). In-
creasing the halo region helps counter the effects of object array sharing, which is evident from
the quality of the shown reconstruction. This reconstruction, however, still exhibits an overall
phase gradient and thus a higher RMS error than the asynchronous implementation. Stitching
artifacts can be seen in the magnitude image of the asynchronous reconstruction, also some
artifacts from the phase profile are also visible. Image contrasts were not equalized; therefore
the phase image has overall low contrast because of the outliers caused by interference from
the magnitude profile of the simulated sample wavefront.

To evaluate the performance and scalability of our algorithms, the total running time of dif-
ferent GPU configurations is reported in Fig. 6. The first plot shows that scaling of the three
multi-GPU variants is almost linear for configurations of more than 2 GPUs. The simulated
problem size was chosen carefully to be able to fit all the raw data on one GPU, in order to
study how well the code scales when adding more GPUs to process the same amount of raw

Fig. 6. Performance plots on synthetic data. Left: Total running time (in seconds) of dif-
ferent GPU configurations. Right: The scaling efficiency plotted as a percentage of linear
scaling.

data. Suboptimal GPU occupancy may be the cause of the deviation from linear scaling that is
found when the number of GPUs is increased from one to two. Occupancy is the percentage of
active thread warps of a given device at a one time. Changes in the problem size can lead to
divergence in the code path and different kernel scheduling, that in turn increase thread idling
time and lead to suboptimal GPU occupancy. The second plot of Fig. 6 outlines the strong
scaling efficiency with respect to the phase retrieval algorithm run time on one GPU. The asyn-
chronous version, by definition, does not require communication among the running GPUs,
except at the end of reconstruction in the stitching step. The effect of synchronization becomes
more prominent when a higher number of GPUs is used, due to increased network latencies
and data copying overhead.

4.2. Real sample

In addition to the simulated test case, we evaluate the performance on real data acquired at
a synchrotron radiation facility; not only to validate the applicability and performance with
domain scientists, but also because such data is usually compromised with noise resulting from
thermal drifts in the motorized stages, fluctuations in the beam intensity, and distortions in the
diffraction patterns caused by air scattering, changes in sample temperature, and bad or missing
detector pixels.

The experiment was carried out at the Bionanoprobe [43] at the 21-ID-D beamline of the
Advanced Photon Source. A 5.2 keV X-ray beam was focused by a Fresnel zone plate with
85 nm theoretical Rayleigh resolution onto a gold test pattern with 30 nm finest feature. The
test pattern was raster scanned through a 26×26 grid using a step size of 40 nm. A photon
counting hybrid pixel array detector (PILATUS 100K, 195×487 pixels with 172 µm pixel size)
was placed 2.2 m downstream of the sample to record coherent diffraction patterns with an
exposure time of 0.6 s per scan point. The central 195×256 pixels of each diffraction pattern
were cropped and zero padded in a 256×256 array for reconstructions. The total measure-
ment time was about 20 minutes, including positioning and computer overheads. Two indepen-
dent datasets were acquired and reconstructed respectively. After subpixel image registration
of the two independent reconstructed phase images, the quality and the spatial resolution of the
measurements were evaluated by Fourier ring correlation (FRC) [45]. Figure 7 shows an esti-
mated half-period resolution of 16 nm given by the intersection of the FRC curve and 1/2-bit
threshold curve [46]. The reconstructed phase of the transmission function was retrieved using
200 iterations, on one nVIDIA Tesla M2070 GPU, using two probe modes. The primary probe

(c) (d)

(b)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Spatial frequency/Nyquist

FRC
1/2 bit threshold

120 60 40 30 24 20 17 15 13 12

Half period (nm)

16
nm

Fo
ur

ie
rR

in
g

C
or

re
la

tio
n

Fig. 7. (a) Phase image of the reconstructed object transmission function, with the
1 µm×1 µm scan region highlighted in red. (b) Fourier ring correlation (FRC) plot show-
ing a spatial resolution of 16 nm in the phase of the exit surface wave. (c,d) The recovered
illumination function of two probe modes.

Fig. 8. Performance plots on real data. Left: Total running time (in seconds) of different
GPU configurations. Right: The scaling efficiency plotted as a percentage of linear scaling.

mode was updated after 10 iterations of the phase retrieval method, while the second mode was
initialized and updated after 20 iterations. Multi-GPU reconstructions were also run employing
the asynchronous implementation on 2, 4, 8, and 16 GPUs with little quality degradation in the
phase image. An overview of the different GPU configurations’ performance on real experiment
data is shown in Fig. 8. For the 16 GPU configuration, data blocks had to be expanded with a
halo along the data subdivision boundaries to increase sub-dataset reconstruction accuracies.
However, this redundancy led to an overall performance drop resulting from the additional load
for each GPU to process its halo of diffraction patterns. The point at which the overhead of data
distribution among multiple GPUs outweighs the performance gain depends on the dataset size
and hardware used and is currently found empirically.

Prior to the development of the parallel methods presented here, scientists at the APS used
an unoptimized sequential implementation for phase retrieval. The running time of our asyn-

chronous algorithm using one GPU on the data set presented here is 106.37 seconds, which is
an order of magnitude faster than the data acquisition time. This marks the first time that our
users have been able to reconstruct results while their imaging experiments were still running.

5. Conclusions and future work

In this paper we presented a parallel multi-GPU software for ptychographic reconstruction
through iterative phase retrieval. It provides a generalized platform enabling ptychographic
dataset analysis in real-time. In order to overcome the hardware memory limitation of GPUs,
the code follows a hybrid approach where the raw data is divided and analyzed on separate
GPUs, and each GPU in turn is managed by one MPI process. The results are merged into a
coherent specimen complex transmission function, either at the end of the reconstruction, or
by information sharing during the reconstruction, solving for discontinuities caused by relative
phase and spatial shifts in the sub-dataset reconstructions. Our methods were evaluated on
synthetic and real data to assess their accuracy and performance, and are currently being used
by the physicists conducting ptychography experiments at the APS.

The asynchronous multi-GPU implementation has better running time and scalability per-
formance than the synchronous one. Also, in our simulations, the stitching approach was more
accurate than the object array sharing method. This may be due to the high contrast features
present in the sub-dataset reconstructions, which facilitated correct registration and modulation
of a final reconstruction. Moreover, linear phase ramps in the reconstructed transmission func-
tion phase profile resulted in higher calculated RMS error, despite the reconstructions being of
better visual quality when increasing the sub-dataset halo size. With the addition of linear phase
ramp corrections [47], we expect the synchronous implementation to be robust and applicable to
samples of varying materials, regardless of their scattering strength and feature contrast. More
desirable features to be included in the future are: correcting for positioning errors caused by
temperature changes or motor drifts [48, 49], the maximum-likelihood refinement method for
post-processing the results [50], and additional phase retrieval algorithms such as the difference
map method.

Acknowledgments

We gratefully acknowledge the use of the resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory. We also would like to thank our reviewers for their
constructive comments. This work was supported by Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. Work
is also supported by DOE with agreement No. DE-FC02-06ER25777. The Bionanoprobe is
funded by NIH/NCRR High End Instrumentation (HEI) grant (1S10RR029272-01) as part of
the American Recovery and Reinvestment Act (ARRA). Use of the Advanced Photon Source,
an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office
of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract
No. DE-AC02-06CH11357. Development of ptychography for cryo microscopy applications is
supported by NIH under grant R01 1GM104530.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government re-
tains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

