
Whole-System Persistence

Dushyanth Narayanan Orion Hodson
Microsoft Research, Cambridge

{dnarayan,ohodson}@microsoft.com

Abstract
Today’s databases and key-value stores commonly keep all their
data in main memory. A single server can have over 100 GB of
memory, and a cluster of such servers can have 10s to 100s of TB.
However, a storage back end is still required for recovery from fail-
ures. Recovery can last for minutes for a single server or hours
for a whole cluster, causing heavy load on the back end. Non-
volatile main memory (NVRAM) technologies can help by allow-
ing near-instantaneous recovery of in-memory state. However, to-
day’s software does not support this well. Block-based approaches
such as persistent buffer caches suffer from data duplication and
block transfer overheads. Recently, user-level persistent heaps have
been shown to have much better performance than these. However
they require substantial application modification and still have sig-
nificant runtime overheads.

This paper proposes whole-system persistence (WSP) as an al-
ternative. WSP is aimed at systems where all memory is non-
volatile. It transparently recovers an application’s entire state, mak-
ing a failure appear as a suspend/resume event. Runtime overheads
are eliminated by using “flush on fail”: transient state in processor
registers and caches is flushed to NVRAM only on failure, using
the residual energy from the system power supply. Our evaluation
shows that this approach has 1.6–13 times better runtime perfor-
mance than a persistent heap, and that flush-on-fail can complete
safely within 2–35% of the residual energy window provided by
standard power supplies.

Categories and Subject Descriptors D.4.2 [Storage Manage-
ment]: Main memory

General Terms Design

Keywords NVRAM, persistence

1. Introduction
Databases and key-value stores today commonly keep their work-
ing sets entirely in main memory. In-memory operation gives high
throughput and low latency by removing I/O bottlenecks and hence
is used even for large datasets. Today’s servers can hold hundreds
of gigabytes of main memory, and larger datasets are partitioned
across multiple such servers. These servers might be viewed as
caches for a back-end storage layer [5, 9, 19] or as main-memory
databases that integrate in-memory operation with back-end stor-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’12, March 3–7, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

age [18, 30, 34]. In both cases, their key feature is that they hold a
copy of the entire data set in main memory.

Recovery is a concern for these large main-memory deploy-
ments. After a power outage or any failure that causes loss of in-
memory state, the entire state must be read or reconstructed from
the storage back end. Typically this involves reading a recent check-
point of the state and then replaying a log of recent updates. Re-
covering several terabytes of state in this manner is slow and puts
a heavy load on the back end. For example, a Facebook outage
in September 2010 [13] caused the service to be unavailable for
2.5 hours while in-memory cache servers refreshed their state from
servers. The problem is that while in-memory operation and scale-
out now allow the service to sustain very high levels of load during
normal operation, the recovery mechanisms are I/O bound and they
are not provisioned to deal with such spikes in load.

What if servers could recover their in-memory state locally and
near-instantaneously after a failure? This would significantly speed
up recovery and reduce back end load, especially after a correlated
failure such as a power outage. This is possible if the server state is
stored in non-volatile memory (NVRAM). Of course, servers can
also fail due to application software errors. In this case, we must
rely on the server application to handle the error locally (e.g. by
rolling back a recent update) and/or to refresh its state from the
back end. However NVRAM offers significant benefits for transient
crash failures, specifically power outages or UPS failures that are
correlated across a large number of servers.

In this paper we argue that it is feasible to use NVRAM in
servers for recovery from transient crash failures. We further argue
that current models for using NVRAM have significant limitations.
Persistent buffer caches [6] and RAMdisks duplicate state, dou-
bling the memory footprint of an in-memory application. They also
suffer from block transfer and system call overheads. NVRAM-
based persistent heaps [7, 33] achieve better performance than these
block-based approaches by allowing in-place, user-space updates
of persistent state. However, they still have substantial runtime
overheads and require non-trivial changes to application code.

We propose whole-system persistence (WSP) as an alterna-
tive. WSP relies on all system main memory being non-volatile.
It presents the application with the simple abstraction that all state
is recovered after a power failure. In other words, a power outage
is converted into a “suspend/resume” event with heap, stack, and
thread context state all being restored. This is done transparently
and does not impose any runtime overheads on the application.
The key idea behind WSP is flush-on-fail: transient state held in
processor registers and cache lines is only flushed to NVRAM on
a failure, using a small residual energy window provided by the
system power supply (PSU). This is the period of time for which
the power supply continues to maintain output DC voltages after
signaling a power failure. The residual energy window is a result
of the internal capacitance of the PSU. Flush-on-fail eliminates the
runtime overhead of flushing cache lines on each update.

This paper makes three contributions. First, we propose whole-
system persistence as the best programming model for using
NVRAM, and discuss its advantages, especially with respect to
the persistent heap model. Second, we describe an efficient de-
sign and implementation of flush-on-fail: saving transient state to
NVRAM on failure rather than during program execution. Third,
we show both the performance advantages and feasibility of the
flush-on-fail approach through an empirical evaluation. Our results
show that flush-on-fail performs 13x better than a user-level persis-
tent heap [33] for an update-intensive workload, and 6x better for
a read-only workload. They also show that saving transient state
takes less than 5 ms across a range of platforms. By comparison,
measurements of standard PC power supplies show that they can
supply power to the system for 10–300 ms after raising a power
failure signal.

Section 2 provides some background for this work: the increas-
ing importance of in-memory operation, and the feasibility of us-
ing NVRAM in servers. Section 3 describes the design considera-
tions that led us to the WSP model, including performance consid-
erations, programming models, and failure assumptions. Section 5
presents the experimental evaluation that validates our key claims.
Section 6 discusses the implications of our results, shortcomings
of NVRAM-based recovery, and directions for future work. Sec-
tion 7 describes related work and Section 8 concludes with a brief
summary of the key contributions of this paper.

2. Motivation and background
Main-memory servers The main motivation for this work is the
increasing prevalence of main-memory operation for databases.
Servers with 100s of gigabytes of DRAM are easily available, go-
ing up to 1 TB [10] at the high end. This means that many previ-
ously disk-based data sets can now reside entirely in memory, fun-
damentally changing the system design assumptions. This is driv-
ing main-memory designs for both traditional SQL databases [18,
25, 30] as well as the ubiquitous “no SQL” databases or key-value
stores [5, 9, 19, 34]. The latter typically use a “share-nothing” ar-
chitecture, which means that they can scale out to 100s or 1000s
of main-memory servers. This means that they can potentially ap-
proach petabyte scale with all data stored in main memory.

Main-memory operation gives high throughput and low latency
by removing I/O bottlenecks. However, large memories give rise to
a new problem: recovery times. After a crash or reboot, a server
must recover its state, typically from back end storage. This is
limited by I/O bandwidth, which has not scaled with memory
sizes. Reading 256 GB at 0.5 GB/s from a high-end storage array
will take more than 8 min, even if all the storage resources were
dedicated to that single recovering machine. Correlated failures
such as rack-level power outages will cause 10s to 100s of servers
to concurrently recover their state from a shared back end.

Ideally, servers would recover locally and near-instantaneously
from such failures, without causing “recovery storms” on the back
end. We briefly examine current approaches to surviving transient
power failures and some trends that motivate the use of NVRAM.

Power failures and NVRAMs Power outages are particularly rel-
evant because (without NVRAM) it is not possible today to recover
in-memory state locally after a power failure; and because power
failures can be correlated across a large number of machines. This
means that power outages are a problematic case for recovery load,
causing large correlated spikes in load on the recovery subsystem.

Hardware solutions for power outages today mainly consist of
uninterrupted power supplies (UPS). These use large lead-acid bat-
teries to maintain power to the entire system for up to several hours
after a power failure. An UPS allows the system to continue oper-
ation until the battery is almost completely discharged. UPSes are

%
 C

ap
ac

it
an

ce

Cycles at elevated temp & voltage 100,000

Best case

Worst case

Data Sheet Value

Source: AgigA Tech

100

90

Battery

Figure 1. Effect of charge-discharge cycles on ultracapacitors

bulky, adding to data center space requirements, and environmen-
tally unfriendly. Additionally, UPS failures can lead to hundreds of
machines suffering power outages simultaneously. Alternative de-
signs, such as a “distributed UPS” [15], avoid some of these prob-
lems by including a small lead-acid battery in each server. How-
ever, this still retains the space, cost, environmental problems, and
unreliability of lead-acid batteries.

Battery-backed NVRAMs such as those used in RAID con-
trollers typically augment DRAM (or sometimes SRAM) with
rechargeable Lithium-ion batteries. When power fails the batter-
ies maintain the memory contents while their charge lasts, up
to a few hours. These batteries require frequent monitoring and
replacement. Additionally they can only sustain a few hundred
charge/discharge cycles before their performance degrades signif-
icantly. These disadvantages mean that battery-backed NVRAMs
have been restricted to niche uses such as RAID controllers.

In the long term, storage class memories (SCMs) promise large
capacities, low idle power consumptions, and non-volatility. Hence
they seem ideal for in-memory server applications. However, they
do not seem likely to replace DRAM in the near term (2–5 years).
The most promising SCM candidate — phase-change memory
(PCM) — requires additional additional hardware support such
as fine-grained wear leveling [28] to be usable as a main mem-
ory alternative. This has only recently been proposed by the re-
search community and it will be several years before PCM be-
comes commercially available as main memory. Additionally, PCM
is expected to be significantly slower than DRAM, especially for
writes [21] and hence will become competitive with DRAM only
when the capacity benefits outweigh this disadvantage.

Battery-free NVDIMMs offer a practical and performant NVRAM
option today. They are based on commodity components: DRAM,
ultracapacitors and NAND flash integrated into a single module.
The amount of NAND flash is equal to the amount of DRAM. The
flash is not visible to the host system; it exists only as a backup
and is not read or written during normal operation. When signaled
by the host, the NVDIMM saves or restores the DRAM contents
to/from the flash. Thus the NVDIMM gives the illusion of a non-
volatile memory to the host system. The host is only responsible for
flushing transient state to the NVDIMM over the memory bus and
signaling the start of a save operation. After this, the NVDIMM’s
contents are preserved even if the system PSU and host lose power.

At least two recently developed products — AgigaRAM [1] and
ArxCis-NV [32] — uses this approach to make NVDIMMs that are
drop-in replacements for standard (volatile) DIMMs. The DRAM,
flash, and controllers are all integrated onto the NVDIMM, which
fits in a standard DDR2 or DDR3 DIMM slot. The ultracapacitor
module charges from the system’s 12 V DC power supply, and dis-
charges to provide power to the NVDIMM when the system power
fails. Unlike Lithium-ion batteries, ultracapacitors can tolerate hun-
dreds of thousands of charge/discharge cycles with only a 10% loss
in usable capacitance (Figure 1). Although they store much less to-

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20

P
o

w
e

r
o

u
tp

u
t

(W
)

V
o

lt
ag

e
 (

V
)

Time (s)

Voltage

Power output

Save completed

Figure 2. Voltage and power draw on ultracapacitors during
NVDIMM save

tal charge than batteries, they can discharge it at a much higher rate
to power the saving of DRAM contents to flash. Figure 2 shows the
voltage delay and power output for a 1 GB NVDIMM. The save
time is under 10 s for NVDIMMs of up to 8 GB and the ultracapac-
itor is able to supply power to the NVDIMM for at least twice as
long1.

Using flash-based NVDIMMs is not the same as saving system
state (“hibernating”) to a flash-based SSD. The latter requires the
OS to suspend processes and devices, and to write out the state to
a file on the SSD. This adds a long and variable latency, during
which the entire system must be kept powered up. Additionally,
the entire state must be written through a single shared memory
bus and I/O channel. NVDIMMs by contrast save their contents
off the critical path; there is no interaction with the host system
during the save process, and the ultracapacitor backups ensure that
the save does not rely on system power. Additionally, NVDIMMs
can be saved/restored in parallel, since they do not use any shared
resources.

This approach creates main-memory NVRAMs based entirely
on cheap commodity components: DRAM, NAND flash, and ultra-
capacitors. Ultracapacitors (or supercapacitors) have achieved large
economies of scale in recent years due to demand in the automotive
industry, and costs are below $0.01/F and $2.85/kJ [14]. For com-
parison, the Agiga NVDIMMs require 5–50 F of capacitance and
0.1–1 kJ of energy, depending on size.

Thus the availability of commodity component based NVDIMMs
today, and projected trends for storage class memories, make it
likely that large main memory NVRAMs will be a viable option
for servers. In the rest of this paper we assume servers where all
main memory is NVRAM made up of NVDIMMs, i.e., non-volatile
memory with DRAM performance.

3. Design rationale
This section gives the detailed design rationale for WSP. First, we
distinguish failures that are recoverable using NVRAM from those
that are not. Next we examine different programming models for
using NVRAM. Finally we examine the performance implications
of flushing transient state in processor caches on each update. We
use these comparisons to motivate the two key features of WSP: to
recover all application state rather than selected subsets of it; and
to flush transient state on a failure rather than during execution.

1 The internal voltage required by the NVDIMM is only 3.3 V, and hence a
power input of 6 V is still usable.

3.1 Failure models
NVRAM is useful for recovery from crash failures, such as power
outages. It cannot be used to recover from errors that corrupt state,
such as software bugs. Other, software-based mechanisms exist
for failures such as kernel panics [11] or application component
failures [4]. Generic mechanisms, e.g. rolling back state on failure
using checkpoints or software transactions, might also help in the
case of software bugs.

These mechanisms work equally whether memory is volatile or
non-volatile. This observation favors a design where recovery from
crash failures using NVRAM is decoupled from other types of fail-
ure recovery. For the purposes of this paper we use “persistence” to
mean survival of state after a crash failure rather than any other kind
of failure. By decoupling persistence from other forms of recovery,
it should be possible to support a wide range of programming mod-
els and recovery mechanisms, while at the same time providing
resilience to crash failures.

In our model, NVRAM is the first but not the last resort for
recovery after a crash failure. Recovery from a back-end storage
layer such as a file system or database will always be necessary in
some cases, e.g., if an entire server fails. The in-memory server is
a cache, but one with a high refresh cost. Our aim is to reduce this
cost by enabling local recovery in the case of power outages.

3.2 Models for persistence
There is a variety of ways in which applications can persist and
recover state after a failure. We can broadly categorize them as:
1. Block-based: Applications propagate updates from the in-

memory representation to a file, block device, or database.
Typically the in-memory objects are first converted to a more
suitable representation such as database records or serialized
objects. On recovery, these are read back and deserialized to
recreate the in-memory state.

2. Persistent heaps: Applications use a transactional API to allo-
cate, deallocate, and modify persistent objects. On recovery, the
application retrieves a special “root” object from which it can
reach the others.

3. Whole-system: The application uses only in-memory objects,
and does not distinguish between persistent and volatile objects.
On recovery, all state is restored transparently.

In any of these cases, the state to be persisted can be stored in
NVRAM, or on a disk or other back-end storage.

Block-based persistence on local NVRAM could be imple-
mented as a persistent buffer cache [6], an NVRAM-based file
system [8], or simply as a non-volatile RAMdisk. Regardless of the
implementation, block-based persistence suffers from three disad-
vantages. First, it doubles the application’s memory footprint by
storing data in two locations. Second, the application must convert
data between the two representations on each update and during re-
covery. Third, the application pays the overhead of block transfers
and system calls to transfer data to the NVRAM.

NV-RAM based persistent heaps, or NV-heaps [7, 33] avoid
these problems. Persistent objects are stored in NVRAM and
mapped directly into the application’s address space, and updated
in-place. A transactional mechanism ensures that the persistent
heap is always recovered to a consistent state after a failure. NV-
Heaps thus combine three key features. First, they use selective
persistence: the persistent heap is recovered after a failure but not
volatile heap objects, stack objects, or thread contexts. Second, they
use flush-on-commit of updates and transactional logs to NVRAM
to ensure that updates are not lost after a power failure. Third,
they use software transactional memory (STM) for isolation across
threads and consistency of the persistent heap. Selective persistence
is problematic for legacy applications; flush-on-commit causes sig-

nificant runtime overheads; and STM, while potentially useful, is
not used by all applications.

Whole-system persistence (WSP) relies on all application mem-
ory being mapped to NVRAM. With NVDIMMs, we believe this
is feasible simply by replacing all server memory with NVDIMMs.
Thus with WSP only transient state (processor registers and cache
contents) needs to be captured when a failure occurs; we address
this through a flush-on-fail mechanism that writes this state to
memory when a failure occurs.

We claim that the best use of NVRAM is for whole-system per-
sistence (WSP). This can then be combined with a block-based
model for the back end storage, e.g., applications can periodically
checkpoint their state to a file. This allows instantaneous local re-
covery of state after a power failure, with more expensive recovery
from the back end for more severe failures. With WSP and flush-
on-fail, we eliminate the first two disadvantages of NV-heaps and
make the third (use of STM) optional. WSP can be used transpar-
ently with single-threaded, lock-based, or STM-based applications.
In the rest of this section we compare WSP with NV-heaps in more
detail.

Selective vs. whole-system persistence Designating only certain
objects as persistent opens the door to “dangling references”: per-
sistent objects that refer to volatile ones. After a crash/recovery,
such references become unsafe, since the volatile objects have dis-
appeared.

Such dangling references are hard to avoid when porting a
large legacy application and even when writing an application from
scratch. They include not just pointers from persistent to volatile
objects but also indirect references, e.g., array indexes or hash table
keys where the array or hash table is part of the volatile state.
They also include handles to OS objects. The application code
must ensure that such references are never stored in a persistent
object. This makes transparent persistence — re-using existing data
structures as persistent ones — difficult.

Legacy applications are particularly problematic, since their
state needs to be cleanly partitioned between persistent and volatile.
If the original application was not written with such a separation in
mind, this can involve substantial rewriting, assuming that source
code is available. Any code that might obtain a reference to a
persistent object must be checked to ensure that it does not then
create an unsafe reference. This includes third-party libraries, for
which source is often unavailable.

Even if all source code is available, aliasing in C/C++ means
that dangling references cannot always be found through static
analysis. Since it is impractical to check all code by hand, there
is always the risk of following a unsafe pointer. Although careful
restrictions on persistent object types can reduce the probability of
“programmers getting it wrong” [7], selective persistence still adds
to the challenges of writing (or porting) programs correctly.

The “dangling reference” problem is avoided in models that
use transitive persistence [3, 26]: objects are dynamically made
persistent whenever a reference is created to them from a persistent
object. However this requires a garbage-collected language such
as Java [3] or SML [26] and is not suitable for the many server
applications that are written in C or C++.

Flush-on-commit vs. flush-on-fail Flush-on-commit refers to
the fact that persistent heap updates must be propagated to the
NVRAM before the update is considered persistent. Transaction
logs must be similarly written to the NVRAM rather than remain
in processor caches.

Transaction logs can be either redo or undo logs. We evaluated
an existing NV-Heap implementation, Mnemosyne [33] which uses
redo logs; in addition it also uses STM for concurrency control.
As a result, each write to the persistent heap is recorded in the

Controller

Processor(s)

PWR_OK

Power
supply

WSP OS
code

Memory bus

DC Power

Power fail interrupt
Save/restore commands

Loads/stores

NVDIMM

Figure 3. WSP hardware prototype

transaction’s write set at write time; generates a redo log record
which is written to NVRAM at commit time; and requires a cache
line flush at log truncation time to ensure that updates are not
lost. In addition reads must be instrumented to check the writeset
for local uncommitted writes. Finally, using STM for concurrency
control adds additional overheads in the form of conflict detection
at commit time.

Not all the above operations are necessary for persistence;
in fact Mnemosyne has significant overheads even for a read-
dominated workload due to the instrumentation of reads. To remove
these overheads, we implemented a minimal NV-Heap, which pro-
vides persistence (i.e. crash consistency) but not isolation (concur-
rency control). It uses an undo log rather than a redo log. Undo
log records are written efficiently to a torn-bit raw log using non-
temporal stores, as in Mnemosyne. For single-threaded operation,
this performs significantly better than Mnemosyne; however, flush-
ing of updates and log records still impose a high overhead.

The high overheads of runtime flushing motivated our “flush-
on-fail” approach. Section 5.1 describes our experimental evalua-
tion of NV-heaps in detail.

Summary Persistent heaps are an inappropriate mechanism for
using NVRAM. They impose a problematic programming model
and require substantial changes to legacy applications. They offer
transactional consistency, which might be useful for recovery from
a specific class of software failures. However, if this is desired, ex-
actly the same recovery semantics can be enabled, with better per-
formance, by using a non-persistent transactional heap combined
with WSP. Alternatively, legacy applications can use WSP to re-
cover from power and hardware failures, with no change in their
behavior after software failures.

PWR_OK FAILS
1. Interrupt control processor

2. Interrupt all processors
3. Flush caches

4. Halt N-1 processors
5. Set up resume block
6. Mark image as valid

7. Initiate NVDIMM save
8. Halt

POWER FAILS
9. NVDIMM save completes

SYSTEM IS UP
14. Restore CPU contexts
13. Re-initialize devices
12. Jump to resume block
11. Check image validity
10. Restore NVDIMM contents
POWER UP

WSP save WSP restore

Figure 4. Save and restore steps for WSP

4. Design and Implementation
Implementing WSP requires four components. A hardware power
monitor signals the system when a power failure is detected. A soft-
ware save routine saves and flushes all transient state to RAM, and
halts all processors, before power is actually lost. A correspond-
ing recovery routine restores the saved state when power is next
restored. Finally, one or more hardware NVDIMMs are required to
implement the NVRAM functionality. Figure 3 shows a schematic
of our hardware prototype. The software components are imple-
mented on the Windows Server 2008 R2 OS running on a 64-bit
PC platform.

Power monitor The power monitor is implemented using a Net-
Duino programmable microcontroller. It monitors the ATX power
supply’s PWR OK signal [16]; the power supply drops this signal
as soon as it detects an input power failure. The microcontroller
then triggers an interrupt on one of the host processors via a serial
line.

Save and restore routines The save routine is invoked by the
interrupt handler corresponding to the serial line connected to the
power monitor. The key functionality of the save routine is to
implement “flush-on-fail”. One of the processors — the control
processor — co-ordinates the flush process. It issues an “inter-
processor interrupt” —- essentially a task that executes at high
priority — to all the other processors. In parallel, all processors save
their processor context to memory and flush their caches using the
x86 wbinvd (Write Back and Invalidate Cache) instruction. All
processors other than the control processor then halt. The control
processor waits for all the tasks to complete, sets up a resume
context, writes and flushes a “valid” marker to memory, signals the
power failure to the NVDIMM(s), and halts. The valid marker is
cleared on system startup and after a successful resume; it ensures
that any failure during the save step is correctly detected.

The restore process is the inverse of the save routine, and is
invoked on the next boot-up after a power failure. A modified boot
loader signals the NVDIMMs to restore their saved contents. When
the restore is complete it checks the valid image marker, and jumps
to a resume context that is set up in a well-known location. This
code in turn restores the saved contexts on other processors, and
resumes normal scheduling. Figure 4 shows the save and restore
steps.

Device restart The save/restore routines ensure that application
and OS state (i.e. processor contexts and memory) are retained
across a power failure. This means that, after a restore, the in-
memory state of device drivers will be inconsistent with that of
the devices, since the latter have been power-cycled. Also, kernel
and/or user threads might be blocked waiting for a device operation
to complete. To restore the system to a fully working state, devices

and device drivers must be re-initialized, and device I/Os that were
in flight at the time of failure canceled and either failed or retried.

There are multiple ways to do device restart. We have imple-
mented and evaluated a simple strawman approach, which is to
save all device state on failure using the existing support for putting
the system in a sleep (S3) power state. In other words, we sim-
ply use the system’s ACPI suspend/resume functionality to save
and restore system and device context to memory, while relying
on the NVDIMM support to retain the in-memory saved state.
This approach is simple and transparent but can require significant
amounts of additional time on the save path. Putting devices in a
sleep state usually involves allowing all outstanding I/O to com-
plete, which could take 100s of milliseconds or more on a heavily
loaded and slow device such as a disk. Section 5, we show that
the latency of using ACPI suspend significantly exceeds the resid-
ual energy window on our test systems, thus making this approach
infeasible without adding a large amount of additional capacitance.

A better approach is to avoid any additional work on the save
path, but instead to clean up device state on the restore path. We
have investigated several ways of doing this, e.g., using plug-and-
play support to “reboot” the device stack during restore. Although
conceptually straightforward, this is complex to implement in a
large OS such as Windows, and cannot handle all devices: e.g.,
legacy non plug-and-play devices, or the disk device holding the
paging file which cannot be “unplugged”.

A more practical approach to device restart might be to virtu-
alize the devices, e.g. by using a virtual machine (VM) hypervisor.
Virtualized server environments are common and increasingly so.
In this approach, a fresh instance of the entire “host OS” and its
physical device stack is booted after a failure. Individual VMs have
their state restored from NVRAM, and the hypervisor transparently
retries or fails outstanding operations on the virtualized devices. We
are currently looking at implementing such I/O replay support in a
VM hypervisor such as Hyper-V.

NVDIMMs The save and restore routines rely on main memory
contents being preserved by the memory, i.e., the NVRAM. Our
design uses AgigaRAM NVDIMMs [1], which use their own ultra-
capacitor charge to save their contents to on-board flash on a power
failure. Thus it is sufficient to initiate the NVDIMM save within the
residual energy window; the save will be completed without system
power using energy from the ultracapacitors.

In our prototype, the microcontroller communicates with Agiga
NVDIMM(s) over an I2C bus. It translates commands sent from
the host processor over the serial line to NVDIMM commands,
i.e. “save” and “restore”. The current version of the AgigaRAM
NVDIMM requires the DRAM module to be put into “self-refresh”
mode before the save or the restore operation can begin. In the
case of “restore”, the host processor also has to bring the mem-
ory out of self-refresh, and re-initialize the memory parameters.
These steps require firmware (BIOS) support not provided by stan-
dard BIOS implementations (AgigaRAM is targeted at embedded
systems with custom firmware). We are currently working on mod-
ifying a standard BIOS to support this.

5. Evaluation
In this section we present experiments that answer three questions.
First, what is the performance benefit of WSP’s “flush-on-fail”
approach over the “flush-on-commit” approach of NV-heaps, i.e.,
what is the performance gained from moving cache flushes out of
the performance path? Second, how long is the residual energy
window on typical PC power supplies? Third, how long is the
“flush-on-fail” save time?

The testbed for our performance experiments was a 2.13 GHz
2-socket Intel C5528 system with 4 cores per socket and 2 hyper-

Configuration Updates/s
Mnemosyne 2160 (77)
WSP 5274 (139)

Means of 5 runs, with standard deviations shown in brackets.

Table 1. Update throughput for OpenLDAP

FoC + STM

FoC + UL

FoF + STM

FoF + UL

FoF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ti
m

e
 p

e
r

o
p

e
ra

ti
o

n
 (
μ

s)

Update probability

Each point is the mean of 10 runs, with min-max error bars.

Figure 5. Hash table microbenchmark performance

threads per core. The testbed has 48 GB of DDR3 DRAM (1333
MT/s). For the measurements of residual energy and save time, we
measured this platform as well as a lower-powered AMD platform.
This had a single 6-core AMD 4180 processor and 8 GB of DDR3
DRAM.

5.1 Performance
In our first experiment we compare the performance of an NV-heap
implementation, Mnemosyne [33], with the WSP approach. We use
the OpenLDAP benchmark reported by Volos et. al [33] with the
same configuration parameters, on our hardware testbed running
Linux 2.6.35. The benchmark inserts 100,000 randomly generated
entries into an empty directory. The workload is processed by an
OpenLDAP server that uses an AVL tree stored in the Mnemosyne
NV-heap, rather than the default Berkeley DB, as the persistent
store.

Mnemosyne ensures durability and consistency of the AVL tree
by wrapping updates in transactions and logging updates in an effi-
cient in-memory log structure. This log is written directly to mem-
ory, bypassing the processor caches, using non-temporal stores.
We compared this with a WSP “flush-on-fail” version in which all
transactional instrumentation and logging was disabled, i.e., a nor-
mal in-memory AVL tree. We did not undo the other modifications
made to OpenLDAP to avoid dangling references; although these
modifications are unnecessary with WSP, they do not add much
performance overhead.

Table 1 shows the results of these experiments in terms of up-
date throughput. This is a single-threaded, closed-loop experiment
and hence operation latency is simply the inverse of throughput.
We see that the WSP version is 2.4x faster than the Mnemosyne
version. The overheads of Mnemosyne are partially due to the per-
sistent log and flushing of updates; and partially due to other STM-
related overheads such as tracking readsets, instrumenting reads,
etc. These are not required for persistence, and since OpenLDAP is
lock-based, they are not needed for concurrency control either.

To separate out these sources of overhead, we evaluated and
compared five configurations using a simple hash table benchmark.
The configurations are:
• FoC + STM (Flush-on-commit with STM): this is the default

Mnemosyne configuration.
• FoC + UL (Flush-on-commit with undo logging): this uses

flush-on-commit with an undo log (Section 3), and does not use
STM.
• FoF + STM (Flush-on-fail with STM): uses the default Intel

STM library, which instruments and logs transactional reads
and writes, but does not flush logs or updates from the processor
caches.
• FoF + UL (Flush-on-fail with undo logging): Undo logging is

enabled but log appends and data writes are in-cache; they are
not flushed synchronously to memory.
• FoF (Flush-on-fail with no transactions or logging).

As the non-STM configurations do not provide concurrency
control, we ran the benchmark single-threaded: our purpose is
not to compare different concurrency control mechanisms, but to
measure the overheads of logging and flushing. The undo log was
implemented on a Windows platform and relies on the Phoenix
compiler framework [23] to instrument writes to the persistent
heap, whereas the STM-based configurations use the Intel STM
compiler [17] on Linux. The FoF configuration works on both
platforms; we found that the Phoenix-based version was 11–17%
slower, and we report this slower performance.

Each benchmark run pre-populated an in-memory hash ta-
ble with 100,000 entries, and then measured the performance of
1,000,000 random operations on it. Each operation was either a key
lookup or an update (with equal numbers of inserts and deletes).
Figure 5 shows the results as the average time per operation as a
function of the proportion of updates in the workload.

We can observe several things. First, the FoC + STM config-
uration is 6–13x slower than FoF. The penalty increases linearly
with the update ratio, reflecting the cost of flushing updates and log
records. By using undo logs (FoC + UL), the STM overheads are
removed. For a read-only workload the remaining overhead (60%)
is that of creating a transactional context for each operation, which
is significant for short operations. For a write-intensive workload,
FoC + UL is still almost 10x slower than FoF. This shows that it
is synchronous flushing to memory that dominates performance,
rather than other transaction-related costs.

This is confirmed if we examine the FoF + STM and FoF
+ UL configurations. Although slower than FoF, they are much
faster than the flush-on-commit configurations. We conclude that
even if transactions are desired for concurrency control or error
recovery, it is still better to use them in-cache with a flush-on-
fail approach, than to combine transactions with persistence using
flush-on-commit.

5.2 Residual energy
To evaluate the feasibility of flush-on-fail, we measured the residual
energy window and the time to flush-on-fail (save transient state)
on both the high-end (Intel) and the low-end (AMD) testbed. We
first present the residual energy measurements and then the timing
measurements.

To measure the residual energy window, we used a sampling
oscilloscope to monitor the PWR OK signal as well as the voltage
levels on DC output lines from the ATX power supply, with a
sampling frequency of 100 kHz. When the power supply detects an
input power failure, it drops the PWR OK signal. We measured the
interval from this signal dropping to the first voltage drop seen on
any of the power supply’s output lines. Since the samples are noisy,
we define an output voltage drop as any 250µs interval where the
output voltage drops below 95% of its nominal value.

0

2

4

6

8

10

12

14

-0.02 0.00 0.02 0.04 0.06 0.08 0.10

M
e

as
u

re
d

 v
o

lt
ag

e
 (

V
)

Time (s)

DC 12V

PWR_OK

DC 5V

DC 3.3V

Window
(33 ms)

Figure 6. Residual energy window (Intel testbed)

346
392

22

71

10 10
33 33

0

100

200

300

400

500

Busy Idle Busy Idle Busy Idle Busy Idle

400W PSU 525W PSU 750W PSU 1050W PSU

AMD Intel

R
e

si
d

u
al

 e
n

e
rg

y
w

in
d

o
w

 (
m

s)

Each value is the worst (lowest) observed of 3 runs.

Figure 7. Residual energy windows across configurations

Figure 6 shows the voltage over time for the Intel platform,
before and after the power failure signal. A CPU-intensive prime
number calculator and a disk stress test were used on the high-
end testbed to keep all processors and block devices busy. To
ensure a worst-case configuration, all stress tests continue to run
even after the power failure notification, thus keeping the system
busier than with WSP. The residual energy window measured in
this experiment was 33 ms.

These results used a 1050 W power supply. We repeated the
experiment with a lower-rated 750 W power supply. We also tested
the lower-power AMD system with two power supplies rated at
400 W and 525 W. For each configuration we measured both a
worst case (all stress tests running) and a best case (idle). Figure 7
shows the residual energy window for each configuration. We see
residual energy windows from 10–400 ms, depending on the power
supply as well as the system being tested. This variation reflects the
variation in internal capacitance across different power supplies.

5.3 State save time
Figure 8 shows the time to save all processor contexts and flush all
caches on our two test platforms (Intel C5528 Nehalem and AMD
4180 Opteron) as well as two other Intel processors (Intel X5650
Xeon and D510 Atom). The cache invalidate/flush time dominates
the total save time; using a simple benchmark we varied the amount

Intel C5528
(8 MB L3 x 2)

Intel X5650
(12 MB L3)

AMD 4180
(6 MB L3)

Intel D510
(1 MB L2)

0

1

2

3

4

5

16M4M2M512k128k32k8k2k512128

St
at

e
 s

av
e

 t
im

e
 (

m
s)

Cache dirty bytes

Values shown are means of 32 runs; error bars show min-max
variation. Sizes in parentheses are those of the largest cache on each
chip.

Figure 8. Context save and cache flush times.

wbinvd clflush Theoretical best
2 x Intel C5528 2.8 ms 2.3 ms 0.79 ms
AMD 4180 1.3 ms 1.6 ms 0.65 ms

Table 2. Cache flush times using different instructions

of dirty data in the cache, up to the size of the largest cache on any
of the processors. We see that save times are consistently under
5 ms in all cases, and under 3 ms for our two testbed platforms.
Interestingly, there is little dependence on the number of dirty
cache lines. We believe this is an artifact of the implementation
of the wbinvd instruction. Flushing individual dirty lines (using
the clflush instruction) is more efficient when there are few
dirty cache lines; however it is not practical to track the location
of dirty cache lines in software. Table 2 shows the worst-case
(all cache lines dirty) flush times for wbinvd and clflush, as
well as the theoretical best achievable based on measured memory
bandwidths.

Thus the measured residual energy window on our two testbed
platforms is 2.5–80 times larger than the save time, even in the
worst case. This shows that it is feasible to use the residual energy
to save processor contexts and flush caches. Further, the worst-case
time to flush the caches is a function of processor cache size and
memory bandwidth, and is easily characterized and measured for a
given system. Similarly the residual energy window can be conser-
vatively estimated as a function of capacitance and the maximum
rated power draw of the system, and external capacitance added to
provide any desired safety margin.

Device state save time The timing measurements in Section 5.3
are from a system that saves only processor state and does not
save device state. We believe that the correct approach is to re-
initialize devices and restart I/Os on the recovery path, rather than
quiesce devices or save device state on the save path. However, it
is interesting to ask the question: what is the additional latency of
saving device state on the save path?

We measured the time taken by Windows to put all system
devices into the D3 sleep state for both our testbeds and in both the
busy and idle configurations. Figure 9 shows the results. We see that
state save times are large and variable: comparable to the residual
energy windows on the AMD testbed and much larger on the Intel
testbed. Additionally, the “idle” save times are substantial, showing

5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

Busy Idle Busy Idle

AMD Intel

D
ev

ic
e

 s
ta

te
 s

av
e

 t
im

e
 (

m
s)

Values shown are means of 5 runs; error bars show standard devia-
tions. Note the break in the y-axis.

Figure 9. Device state save time

that even when there are no outstanding I/Os, the state save process
is slow. We further investigated the high state save times for the
Intel testbed and found that they are dominated by three devices:
the GPU, the disk, and the network interface (NIC). The first is not
required for a server configuration: in fact the only crucial devices
for a server are the disk and the NIC. These device drivers could be
modified to eliminate unnecessary timeouts and delays, and speed
up the save process. However we believe that a better approach is to
avoid executing any device driver code on the save path, and to use
virtualization to transparently restart the device stack on restore.

5.4 Summary
We have shown that there are significant performance advantages
to a “flush-on-fail” approach compared to “flush-on-commit” ap-
proach to data stored in NVRAM. Unlike flush-on-commit, flush-
on-fail does not require STM or transactional logging; at the same
time transactional applications also benefit from improved perfor-
mance with flush-on-fail.

It is clear that processor contexts and cache contents can safely
be saved well within the residual energy windows of standard
PSUs. If desired, this residual energy can be explicitly provisioned
by using a supercapacitor. For example, the state save on our test
platform could be powered by a 0.5 F supercapacitor that costs less
than US$2.

However, device suspend paths are slow and potentially un-
bounded since they rely on draining outstanding I/Os. It is not clear
that we can rely on saving device state within a fixed time and en-
ergy budget. Instead, we must recover device state on the restore
path, for example by using virtualization and replaying outstanding
I/Os on the virtualized devices.

6. Discussion and Future Work
Our evaluation shows that flush-on-fail has better runtime perfor-
mance than a flush-on-commit approach, and that standard power
supplies provide a sufficient residual energy window to make this
feasible. We believe that overall our results show promise for the
use of main-memory NVRAM as the first resort recovery mecha-
nism after a power failure. However there are still many open ques-
tions and directions for future work; here we discuss the most rele-
vant ones.

Distributed applications Data center servers are often deployed
today as part of a scalable distributed system. These systems al-

ready tolerate server failures, e.g. by using replication and/or
failover techniques. On a failure, these systems must pay the cost of
reading in-memory state from a checkpoint in the storage tier, or re-
replicating the state from a live replica. For large memory servers,
the cost of this state refresh can be substantial. With NVRAM and
WSP, a server that suffers a short period of unavailability will have
state that is stale but still mostly relevant, allowing a more effi-
cient state refresh by only applying the recent updates that were
missed during the failure. Some distributed applications maintain
versioned state and/or update logs, allowing missed updates to be
efficiently recovered. For other applications that are constructed as
an “all or nothing” cache, this will require some added complexity.

Long outages So far we have assumed that power outages are rel-
atively short (seconds to tens of seconds), and hence there is benefit
in rapidly recovering state locally on the failed machine. However,
with longer outages, the system might be forced to instantiate a
new instance of the service on a different server, thus incurring the
penalty of recovering from the back end. Does NVRAM change
these tradeoffs, e.g., can we delay the re-instantiation of a server to
allow NVRAM-based recovery? This is particularly relevant when
using state machine replication [29]. If replication is done across
uncorrelated servers (e.g. with independent sources of power), then
the service can be kept available after a failure, with a new replica
brought online in the background. This can potentially be delayed,
to reduce the recovery costs in case the failed machine is able to
recover with most of the state, i.e., lacking only the most recent
updates.

SCM-based NVRAMs So far we have focused on DRAM-based,
rather than SCM-based, NVRAMs. SCMs (storage class memories)
such as phase-change memory and memristors have only recently
emerged, and it is difficult to predict exactly what their performance
will be, and whether/when they will become viable as server main
memory. Broadly, they are expected to have access times compa-
rable to, but slower than, DRAM. This will increase the overhead
of flush-on-commit, especially for asymmetric memories such as
phase-change memory, which is expected to be 10–100x slower
than DRAM for writes but only 2x slower for reads [12]. Hence
we expect that these slower memories will show an even larger per-
formance advantage for flush-on-fail. SCMs are also expected to
scale to much larger capacities than DRAM, potentially allowing
multi-terabyte main memories. Note that the energy costs of flush-
on-fail do not scale with main memory sizes, but only with the size
of processor caches.

One potential disadvantage of SCMs such as phase-change
memory is that they are expected to be more energy-intensive
to write than DRAM. This might require additional capacitance
in power supplies as a function of processor cache size, memory
bandwidth, and the power consumption of writing the memory.

Hybrid systems With SCMs, there is also the potential for hybrid
DRAM-SCM systems, with a small fast DRAM alongside a larger
slower SCM. WSP can be used with such systems by replacing the
DRAMs with NVDIMMs, with no impact on runtime performance.
Regardless of persistence, however, hybrid systems raise an inter-
esting performance challenge: automatically mapping objects and
pages to either DRAM or SCM to maximize overall performance.

NVRAM failures Flush-on-fail adds an additional failure mode
to the system, which is failure during the save process. A failed save
will be detected on boot-up and trigger a normal recovery from the
back end. However we believe such failures will be rare. The save
routine is implemented at a very low level of the OS and required
changing fewer than 200 lines of code. Thus software failures are
unlikely. The internal capacitance of the PSU might unexpectedly
fail to provide the required residual energy. It is straightforward and

cheap to provision the PSU with sufficient capacitance by using
supercapacitors [22].

Process persistence So far we have assumed a model where both
application and OS structures are restored after a power failure.
An alternative is to save only application state process state and
to restore it on a fresh instance of the OS. This still provides the
same abstraction to the application as whole-system persistence:
unlike the persistent heap model, thread contexts and stacks would
be restored. It could also use the same fast save path for NVRAM.
The recovery mechanism however would be different, since in
effect application state will have to be separated out from OS state.
Otherworld [11] is an implementation of process persistence for
Linux. In Windows, application processes have dependencies on a
variety of OS structures, making this approach complex. However,
recent work on Drawbridge [27] has shown that most of these
dependencies can be encapsulated into a “library OS” that can
be included in the application’s state, leaving a narrow and easily
restartable interface to the OS kernel.

Future work Our immediate goal is to extend our prototype into
a fully implemented and deployable system. This involves added
firmware support for saving and restoring NVDIMM state, and
hypervisor support for per-VM persistence. In the longer term, we
intend to investigate failure and recovery tradeoffs for different
scenarios: e.g., what are the costs/benefits of adding capacitance to
a system compared to more frequent recovery from the back end.

7. Related Work
Persistence models Whole-system persistence is very similar to
the orthogonal global persistence model of KeyKOS [20]. KeyKOS
implemented global persistence through periodic checkpoints to
disk and required extensive OS support. WSP is aimed at NVRAM-
based systems and is based on flushing transient state to NVRAM
on failure rather than during runtime, and operates with little or on
OS modification. The persistent heap model has also been widely
used in different language environments including PS-ALGOL [2],
Java [3], and SML [26]. Section 3.2 provides in more detail our
rationale for using whole-system or global persistence rather than
heap persistence.

SCM based architectures Recent developments in SCMs have
led to new designs for file systems and “on-disk” data structures op-
timized for these technologies. BPFS [8] is an in-kernel file system
that leverages the byte-addressability of SCMs to provide fast file
operations. Similarly the Rio buffer cache [6] preserves file buffer
cache contents after a “warm reboot”; when used with NVRAM it
means that file writes can be considered durable when they are writ-
ten to the buffer cache. Both BPFS and Rio leverage non-volatile
memory to speed up file writes. For an in-memory server, how-
ever, even such fast file operations cause significant runtime over-
heads as well as duplication of state. These overheads are reduced
significantly in the persistent heap approach and eliminated in the
WSP approach. CDDS B-Trees [31] are non-volatile B-Trees op-
timized for byte-addressable rather than block operation; they out-
perform traditional block-based B-Trees by 75–138%. NV-heaps
allow use of a wider range of data structures such as hash tables,
binary trees, and skip lists. WSP is transparent to applications and
any in-memory data structures can be used.

Flash-based NVRAMs eNVy [35] proposed the use of SRAM
backed by batteries and flash, to implement the abstraction of a
byte-addressable non-volatile store on the main memory bus, i.e., a
large NVRAM. The Agiga NVDIMMs are similar (with the use
of ultracapacitors and DRAM rather than batteries and SRAM).
A key difference is that in eNVy the SRAM was used to buffer

only a small subset of the flash contents: with a random-access
workload, the system would be bottlenecked on paging to and from
the flash. NVDIMMs by contrast leverage dropping DRAM prices
to store the entire contents in DRAM, with the flash layer being
written/read only on failure/recovery.

Device recovery Our WSP prototype takes a simple approach to
saving and recovering device state, which takes much longer than
flushing processor caches and contexts. Ohmura et al. [24] propose
an alternative approach: shadowing device registers in NVRAM
by logging register writes on each device operation. This removes
eliminates the “state save” at the cost of additional complexity in
the device driver. A more device-independent approach is to re-
initialize all device-related state, and replay device operations as
necessary. Otherworld [11] reboots the entire operating system,
transferring control to a new “crash kernel”. Application state is
maintained, and application threads that are in system calls have
those calls aborted with a failure code; they can then retry the
I/O. Although the aim of Otherworld is to recover from operat-
ing system crashes, this approach could also be used as a way to
re-initialize device state after a WSP save/restore. Similarly, Draw-
bridge [27] allows an entire application, together with its OS “per-
sonality”, to be serialized and restarted on a new kernel. This could
be used after a WSP save/restore to extract application state safely,
after which the OS can be restarted.

8. Conclusion
Main-memory servers are common in data centers today and will be
increasingly used, driven by the need to avoid I/O bottlenecks, the
availability of large-memory (up to 1 TB) DRAM systems, and the
potential for even larger byte-addressable storage-class memories
(SCMs). These servers introduce the problem of recovering a large
amount of in-memory state from back-end storage after a failure.
Non-volatile main memory (NVRAM) can alleviate this problem,
but current software models for using NVRAM have limitations. In
particular, user-level persistent heaps, while outperforming block-
based NVRAM, still have high overheads compared to in-memory
operation. They also require applications to be rewritten to a new
API and memory model.

In this paper we argued for, and showed the feasibility of, an
alternative approach: whole-system persistence. This allows legacy
applications to run unmodified and with no overheads, by flush-
ing transient state at failure time rather than during execution. We
showed through experiments that this “flush-on-fail” can be pow-
ered using the residual energy from the system power supply, and
that this gives a runtime performance benefit of 1.6–13x compared
to a user-level persistent heap.

References
[1] AgigaTech. AGIGRAM (TM) Non-Volatile System. http://www.

agigatech.com/agigaram.php, 2012.
[2] M. Atkinson, K. Chisholm, and P. Cockshott. PS-algol: an Algol with

a persistent heap. ACM SIGPLAN Notices, 17(7):24–31, July 1982.
[3] M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and S. Spence.

An orthogonally persistent Java. SIGMOD Record, 25(4):68–75, Dec.
1996.

[4] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Mi-
croreboot - A technique for cheap recovery. In Proceedings of the Sym-
posium on Operating Systems Design and Implementation (OSDI),
pages 31–44, San Francisco, CA, Dec. 2004.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. In Proceedings of the ACM Sympo-
sium on Operating Systems Design and Implementation (SOSP), Lake
George, NY, Nov. 2006.

[6] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and
D. Lowell. The Rio file cache: Surviving operating system crashes. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
74–83, Cambridge, MA, Oct. 1996.

[7] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson. NV-heaps: making persistent objects fast
and safe with next-generation, non-volatile memories. In Proceedings
of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 105–118,
Newport Beach, CA, Mar. 2011.

[8] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C. Lee, D. Burger,
and D. Coetzee. Better I/O through byte-addressable, persistent mem-
ory. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 133–146, Big Sky, MT, Oct. 2009.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), Oct. 2007.

[10] Dell. Dell poweredge r910 4u rack server. http:
//www.dell.com/us/enterprise/p/poweredge-r910/
pd?˜ck=anav, July 2011.

[11] A. Depoutovitch and M. Stumm. Otherworld: giving applications a
chance to survive OS kernel crashes. In Proceedings of the European
conference on Computer systems (EuroSys), pages 181–194, Paris,
France, Apr. 2010.

[12] E. Doller. Phase change memory and its impacts on memory hierarchy.
http://www.pdl.cmu.edu/SDI/2009/092309.html.

[13] Facebook engineering notes: More details on today’s outage.
http://www.facebook.com/note.php?note_id=
431441338919, Sept. 2010.

[14] Foresight. T2+2 (tm) market overview: Supercapacitors.
http://batteries.foresightst.com/resources/
MarketOverviews/NET0007IO.pdf, Dec. 2009.

[15] J. Hamilton. Open compute ups & power supply. http:
//perspectives.mvdirona.com/2011/05/04/
OpenComputeUPSPowerSupply.aspx.

[16] Intel. Atx specification (version 2.2). http://www.
formfactors.org/developer/specs/atx2_2.pdf, 2004.

[17] Intel. Intel C++ STM Compiler, Prototype Edition.
http://software.intel.com/en-us/articles/
intel-c-stm-compiler-prototype-edition/, Aug.
2010.

[18] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi. H-store: a high-performance, distributed main memory
transaction processing system. PVLDB, 1(2):1496–1499, 2008.

[19] A. Lakshman and P. Malik. Cassandra – a decentralized struc-
tured storage system. In Proceedings of the ACM SIGOPS Interna-
tional Workshop on Large Scale Distributed Systems and Middleware
(LADIS), Big Sky, MT, Oct. 2009.

[20] C. R. Landau. The checkpoint mechanism in KeyKOS. In Proceedings
of the International Workshop on Object Orientation in Operating
Systems, pages 86–91, Sept. 1992.

[21] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase
change memory as a scalable DRAM alternative. In Proceedings of the
International Symposium on Computer Architecture (ISCA), Austin,
TX, June 2009.

[22] Maxwell. Maxwell boostcap ultracapacitors. http://www.
maxwell.com/products/ultracapacitors, Dec. 2011.

[23] Microsoft. Phoenix technical overview. https://connect.
microsoft.com/Phoenix/content/content.aspx?
ContentID=4513, July 2011.

[24] R. Ohmura, N. Yamasaki, and Y. Anzai. Device state recovery in
non-volatile main memory systems. In COMPSAC. IEEE Computer
Society, 2003.

[25] Oracle. Oracle TimesTen in-memory database overview.
http://www.oracle.com/technetwork/database/
timesten/overview/timesten-imdb-086887.html,
July 2011.

[26] J. O’Toole, S. Nettles, and D. Gifford. Concurrent compacting garbage
collection of a persistent heap. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), pages 161–174, New York,
NYA, Dec. 1993.

[27] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
Rethinking the library OS from the top down. In Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 291–304, New-
port Beach, CA, Mar. 2011.

[28] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high perfor-
mance main memory system using phase-change memory technology.
In Proceedings of the International Symposium on Computer Archi-
tecture (ISCA), Austin, TX, June 2009.

[29] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Comput. Surv., 22:299–319, Dec.
1990.

[30] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland. The end of an architectural era (it’s time for a complete
rewrite). In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 1150–1160, Vienna, Austria, Sept.
2007.

[31] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell. Con-
sistent and durable data structures for non-volatile byte-addressable
memory. In Proceedings of the USENIX Conference on File and Stor-
age Technologies (FAST), pages 61–75, San Jose, CA, Feb. 2011.

[32] Viking Technology. ArxCis-NV (TM) Non-Volatile Memory Technol-
ogy. http://www.vikingtechnology.com/arxcis-nv,
Aug. 2012.

[33] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: lightweight
persistent memory. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 91–104, Newport Beach, CA, Mar. 2011.

[34] VoltDB. http://voltdb.com/, July 2011.
[35] M. Wu and W. Zwaenepoel. eNVy: A non-volatile main memory stor-

age system. In Proceedings of the Symposium on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
San Jose, CA, 1994.

