
Relative Debugging for a Highly Parallel Hybrid Computer
System

Luiz DeRose, Andrew Gontarek, Aaron Vose,
Robert Moench

David Abramson, Minh Ngoc Dinh,
Chao Jin

Cray Inc. University of Queensland
Cray Plaza, 380 Jackson St, Saint Paul, MN, United States Brisbane, Queensland, Australia

 +61-7-336 56131
{ldr, andrewg, avose, rwm}@cray.com {david.abramson, m.dinh1, c.jin}@uq.edu.au

ABSTRACT
Relative debugging traces software errors by comparing two
executions of a program concurrently - one code being a reference
version and the other faulty. Relative debugging is particularly
effective when code is migrated from one platform to another, and
this is of significant interest for hybrid computer architectures
containing CPUs accelerators or coprocessors. In this paper we
extend relative debugging to support porting stencil computation
on a hybrid computer. We describe a generic data model that
allows programmers to examine the global state across different
types of applications, including MPI/OpenMP, MPI/OpenACC,
and UPC programs. We present case studies using a hybrid
version of the ‘stellarator’ particle simulation DELTA5D, on
Titan at ORNL, and the UPC version of Shallow Water Equations
on Crystal, an internal supercomputer of Cray. These case studies
used up to 5,120 GPUs and 32,768 CPU cores to illustrate that the
debugger is effective and practical.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
debugging aids, testing tools.

General Terms
Design, Languages, Performance.

Keywords
Parallel debugging; Hybrid Programming; Scalability

1. INTRODUCTION
To take advantage of architectural innovation in current

supercomputers, existing scientific applications are often
translated into different programming models and languages.
However, guaranteeing the correctness of converted programs is
challenging, and finding errors can be difficult. A hybrid
supercomputer containing heterogeneous processors and a deep
memory hierarchy allows programmers to exploit multiple levels
of parallelism. A variety of programming techniques, such as MPI
[52], OpenMP [40], OpenACC [53], and PGAS (Partitioned
Global Address Space) [6] languages, can be used to achieve
increased performance at three different levels of parallelism:

message passing, shared memory threads, and vectorization.
Using multiple programming techniques within one program
significantly complicates software development and portability,
and correspondingly increases the chances of errors. It is critical
to provide an efficient way to validate the correctness of
computing results across different programming languages and to
detect the root cause of any errors during program conversion.

One simple but effective way of validating the correctness of
the conversion is to compare the results of a ported version
against those of the initial trusted version [43]. In order to achieve
this, programmers often resort to executing printf and diff
commands to detect the numerical errors. However, this ad-hoc
approach is impractical in large-scale programs that decompose
the data across a deep memory hierarchy for a number of reasons.
First, comparing data between two programs that have different
data partitioning schemes requires the programmer to fetch each
piece of distributed data and to reconstruct the global data
structure manually, as illustrated in Figure 1. This process is
labor-intensive and error-prone. Second, IO commands like printf
cannot handle the enormous parallelism and memory size of a
hybrid supercomputer. Especially when comparing two large data
sets, the ad-hoc method using printf and diff is extremely time-
consuming. Third, accessing data located on GPUs is difficult
[39] and this exacerbates the complexity of reasoning about data
that is decomposed on an accelerator-based cluster at runtime.
Similarly, most existing debugging tools only allow programmers
to select an individual thread, process or kernel before
investigating errors. However, validating the global state of a
hybrid program at runtime is rarely provided.

Relative Debugging [14] assists a programmer to locate errors
by observing a divergence in relevant data structures between two
versions of the same program as they are executing. It was
initially proposed to simplify parallelizing sequential codes
[14][15]. Specifically, relative debugging releases programmers
from managing the complicated control flow of a parallel
program, but instead it allows them to focus on the incremental
updates in key data structures.

In this paper, we extend relative debugging for porting stencil
computation on hybrid supercomputers. We argue that relative
debugging is an effective way of validating the global state of
large-scale hybrid programs. In addition, it helps programmers
find faulty sections by narrowing a suspicious region of a large
program to a manageable area using a divide and conquer
strategy. Further, relative debugging allows a programmer to
concentrate on where two related codes are producing different
results without concern for the complexity of reconstructing
decomposed data in scientific applications. It is effective for
locating errors such as those caused by changing the runtime
environment, for example, the number of processors in a large-
scale system, and switching between CPUs and GPUs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SC '15, November 15-20, 2015, Austin, TX, USA
© 2015 ACM. ISBN 978-1-4503-3723-6/15/11…$15.00
DOI: http://dx.doi.org/10.1145/2807591.2807605

This paper describes three significant innovations required for
hybrid computing:
• A generic data model for generalizing different partitioning

schemes used in stencil computations at different levels of
parallelism on hybrid machines;

• Support for data comparison across a mix of programming
models and languages: message passing, threading, and
vectorization; and

• A performance evaluation of data comparison methods and two
optimizations that improve the speed of data comparison on a
large-scale hybrid machine.

This paper presents a relative debugger, called the Cray
Comparative Debugger (CCDB), which allows a programmer to
inspect the global state between (and across) different
programming techniques, including hybrid MPI/OpenMP,
MPI/OpenACC, and UPC [55], with a uniform method. CCDB
allows programmers to compare a large amount of data, otherwise
distributed across hybrid processors, by constructing a global
view of data structures at runtime.

We demonstrate the effectiveness of relative debugging by
investigating bugs in some real world programs, such as a
hybridized version of DELTA5D [44] running on Titan, a
supercomputer at ORNL with 5,120 GPUs [54], and a UPC
version of Shallow Water Equations [13] running on Crystal, a
Cray internal supercomputer with 32,768 CPU cores. In addition,
we evaluated CCDB’s performance with two large-scale
experiments running on Titan and Crystal respectively to
demonstrate that the techniques scale up and are practical for real-
world large-scale applications. These case studies are the largest
we have ever attempted, and also represent the widest range of
programming systems, and illustrate the effectiveness of the new
work discussed in this paper.

The remainder of the paper is organized as follows. Section 2
presents our motivation. Section 3 discusses new features required
for hybrid computing. Section 4 presents an enhanced global data
model that generalizes different partitioning schemes. Section 5
discusses how to perform data comparison between programs
written in different languages. Section 6 presents two
optimizations to improve the efficiency of data comparison.
Section 7 describes case studies and the performance evaluation
of CCDB on Titan and Crystal. Section 8 discusses related work.
Finally Section 9 presents our conclusion and future work.

2. MOTIVATION
A large number of hybrid supercomputers already contain

accelerators such as NVIDIA’s GPGPU, and coprocessors such as
Intel’s Xeon Phi. In order to take advantage of these, applications
need to be ported to a new platform as quickly and cheaply as
possible. A variety of programming abstractions are provided to
address parallelism on a hybrid computer, with different trade-offs
between performance and programming complexity. Programmers
typically select one to meet different goals when porting code,
such as pursuing better performance or achieving easier
maintainability. However, verifying the correctness of the ported
program is still challenging.

For instance, S3D [30], a massively parallel DNS (Direct
Numerical Simulation) solver developed at Sandia National
Laboratories, was recently hybridized using MPI and OpenACC.
However, testing and debugging was difficult [31]. S3D was first
ported to OpenMP before it was translated to OpenACC, taking
advantage of the common regions shared by both OpenMP and
OpenACC. At each step, the revised code was verified with a
series of physics-based comprehensive examinations. Using these
physics-based tests, errors were found by observing how different

physical processes affected the solution [31]. This method of
detecting errors is so complicated that only experts who
understand the physical processes can use it.

To simplify validating the ported program, and to help a
programmer find the root cause of any errors, relative debugging
was proposed in the mid 1990s. Typically, the ported program and
the original version compute the same set of data. Relative
debugging assumes that both versions’ global state should be very
similar at runtime. Therefore, verifying this invariance at runtime
can assist programmers to locate errors efficiently [14][15].

Using declarative assertions, relative debugging automates
comparing the suspect program’s runtime states to the reference
program. An example of an assertion is illustrated as follows:

assert $ref::large@trusted.c:65 = $sus::super@ported.c:68
In the above example, $ref and $sus are the process set of the

reference version and suspect version respectively, while the
assertion compares the value of large variable in “trusted.c” at
line 65 with the value of super variable in “ported.c” at line 68.
During a debugging session, a programmer can define as many
assertions as necessary. In addition, the programmer can add new
assertions iteratively to refine a suspect code region until it is
small enough to inspect manually. Prior to this work, our
implementations [14][26] did not support hybrid computers.

In this paper, we investigate stencil computation to
demonstrate the effectiveness of relative debugging for hybrid
computing. Stencil computation represents a large fraction of
scientific simulation, and is used in solving PDE (Partial
Differential Equations), complex multigrid, and adaptive mesh
refinement methods. It is found in weather and atmospheric
simulations [32], fluid dynamics, simulations of chemical process
[2]. Hybrid computers equipped with GPGPUs have been shown
to execute stencil code efficiently [3][46].

3. RELATIVE DEBUGGING FOR HYBRID
PROGRAMS

The data of a hybrid application is typically partitioned across
two layers [51]: inter-process and intra-process. With the inter-
process partition, the global data is decomposed across a number
of processes residing on different compute nodes. With the intra-
process decomposition, each process’s data chunk is split between
CPUs and accelerators and is shared by a group of threads, which
are either CPU or GPU threads. Accordingly, a variety of data-
decomposition methods are used in a mixed manner with different
programming techniques for hybrid computing. For example,
using MPI, programmers manually partition data across processes,
while UPC decomposes the global data in a transparent manner.
OpenMP supports directive-based parallelization using a group of
shared-memory threads on the CPU, while OpenACC expects the
compiler to identify code that can be accelerated with programmer
specified directives and allows a programmer to move data
between CPU memory and accelerator memory using directives.
Figure 2 illustrates an example of a global matrix partitioned into
16 sub-arrays, which are processed by a set of specific processes,
such as OpenMP, OpenACC or UPC processes.

Figure 1. print+diff cannot compare distributed data sets.

!
!
!
!
!
!

Initial Program

Ported Program

1
2
3
4

a b c

1 2 3 4

!
!
a

!
!
b

!
!
c

diff ?

Row-based partition

Column-based partition

The Global Matrix (A) Data Decomposition at Runtime

!
!
d

!
!
d

Applying declarative assertions to hybrid applications must
address several challenges. First, comparing two sets of online
data should handle the different data partitioning schemes used at
different levels of parallelism. Second, data comparison across
different programming languages and models is required. Third,
although applying declarative assertions to the small-scale
execution of a suspect program can detect many errors, there are
still critical bugs that only occur with the large-scale runs [25].
Therefore, an efficient data comparison solution that can handle a
large amount of data is needed.

To bridge the variety of data partitioning schemes used in
practice at different levels of parallelism, we propose a generic
data model for general stencil computations on a hybrid computer.
Using this model, a global view of relevant data structures is
automatically reconstructed across different types of applications
at runtime. This enables a programmer to reason about a data set
that is decomposed on a hybrid cluster from a global point of view
without concern for the actual decomposition scheme.

To support relative debugging with different programing
techniques, we have extended our existing debug server
architecture to provide decomposition-independent comparison
across OpenACC, OpenMP, and UPC programs. Further, two
performance optimizations have been applied to improve the
efficiency of data comparison significantly.

CCDB’s architecture, interface, and debugging methodology
for hybrid computing are similar to our previous work [14][35],
which are summarized in the Appendix.

4. A GENERIC DATA MODEL
Stencil codes [33] typically compute a space and time discrete

simulation that is represented using a matrix. During the
simulation, each element updates its state according to its own
state and its neighbors’ states in previous time steps. To
parallelize the execution, the matrix is decomposed into a number
of smaller chunks using grids. Each piece of partitioned data can
then be processed using a thread or process. Computing the data
points at the borders of each chunk requires the values of elements
from its neighboring partitions, which are called halo cells [22].
This type of decomposition is typically a block-block based data
distribution scheme [33][51], although other regular patterns are
also possible.

4.1 Limitation of Previous Work
Our previous work [35]

composes partitioned data only
for MPI applications with simple
cases, as illustrated in the figure
on the right. Using a special
declarative command, blockmap
[35], a data structure partitioned
across MPI processes is collected
by a client and forms a global state which can be compared to
detect differences between two MPI programs (or an MPI
program and a sequential one). Using blockmap, a programmer
can express block and cyclic data distribution [28] across MPI
processes, while the debugger uses it to construct a global view of
the data at runtime. However, previous work did not handle halo
cells that are widely used in real world applications, and it could
not debug hybrid applications because it did not handle data
partitioning between threads in shared memory and accelerators.

4.2 Generalizing Different Partition Schemes
In this paper, we generalize our previous work for various

partition schemes adopted in different programming methods for
stencil computations. We define the generic data model as

follows. Let 𝑑𝑎𝑡𝑎[𝑑!,… ,𝑑!] denote the shape of an array, in
which k is the dimension count of the array and di is the size of the
array’s i-th dimension, in which 1 ≤ 𝑖 ≤ 𝑘 . Function
𝒃𝒍𝒐𝒄𝒌𝒎𝒂𝒑(𝐴,𝑚!,… ,𝑚!) represents the decomposition
geometry of a global array, denoted by A, in which mi is the
number of partitions on the i-th dimension. The partition function
decomposes the global array into blocks. Each block consists of a
number of contiguous elements computed by an independent
processing unit, such as a process, or a thread. In real world
applications, the actual data partition includes its halo cells, which
is denoted 𝒉𝒂𝒍𝒐(𝐴,𝑔!,… ,𝑔!) and gi is the halo’s depth on the i-th
dimension. For instance, given the 2D array 𝐴 = 𝑑𝑎𝑡𝑎[16,32]
shown in Figure 2, 𝒃𝒍𝒐𝒄𝒌𝒎𝒂𝒑(𝐴, 4,4) indicates that A is
partitioned into 16 sub-arrays of 𝑑𝑎𝑡𝑎[4,8] using a block-block
decomposition scheme, in which the halo cells for each sub-array
is h= 𝒉𝒂𝒍𝒐(𝐴, 1,1). This model represents data partitions applied
to different levels of parallelism, such as inter-process, inter-
thread or inter-device. Recursively applying it can represent
multiple-level data decomposition.

𝐶! = 𝑺𝒍𝒊𝒄𝒆𝑯𝒂𝒍𝒐𝑶𝒇𝒇 𝐶!!, ℎ , 1 ≤ 𝑗 ≤ 𝑛 (1)

𝐴 = 𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒆 𝑭𝒍𝒂𝒕𝒕𝒆𝒏 𝐶! , 1 ≤ 𝑗 ≤ 𝑛 (2)

𝑚𝑎𝑥_𝑐𝑜𝑛𝑡_𝑠𝑖𝑧𝑒 = 𝑚!
!!!!!!
!!! (3)

Reconstructing the original global data, we need to remove
the halo cells to generate the original partitioned chunk without
any halo boundaries and map each chunk into the global data
structure. These two steps are achieved using re-composing
algebra, as noted in Equation (1) ~ (3). Creating the global view
for a multi-dimensional array requires concatenating all of its sub-
arrays together in physical memory, which is always one-
dimensional. Given n sub-arrays with halo cells, denoted by
𝐶!! = 𝐴 𝑥!!

! ,… , 𝑥!!
! (1 ≤ 𝑗 ≤ 𝑛) , each of them is flattened to

form a one dimensional sub-array after removing its halo
boundary, in which 𝑥′!

! = 𝑙′!
!: ℎ′!

! and 𝑙′!
!and ℎ′!

! are the lowest and
highest rank of 𝐶′!

!on the i-th dimension respectively. Each sub-
array without halo boundaries is denoted by 𝐶! = 𝐴 𝑥!

! ,… , 𝑥!
! , as

illustrated in Equation (1), in which 𝑥!
! = 𝑙!

!: ℎ!
!. Using Equation

(2), they are mapped back to the original global data. The process
that flattens these sub-arrays and then concatenates them to form a
one-dimensional global array is illustrated in Figure 2. In order to
minimize the memory copy overhead of concatenating the
flattened sub-arrays, Equation (3) decides the maximum
continuous elements that can be copied each time. Finally, the
flatted global array will be morphed to form the original multi-

P0

MPI Processes

P1 P15

The global array A=data[16,32]

Figure 2. Constructing a 2D global matrix for hybrid programs.

P4

P15

CPU Threads CPU Copy GPU Copy

OpenMP Process OpenACC Process

32

16

4

8

Halo Cells

P6

UPC Process

CPU Threads

C
onstructing the global array

Block-block based data decomposition

Flattened global array

The global array A=data[16,32]

Flattened P4 Flattened P6 Flattened P15

max_cont_size = 8

The state of sub-array at runtime in different applications

dimensional matrix. In case that no halo cell is specified, only
Equation (2) and (3) are required to construct the global array.

4.3 Decomposition-independent Comparison
Large data sets are both too big to reassemble in a centralized

manner, and are too large to compare sequentially. Thus, the
generic data model described to date should facilitate data
comparison in parallel. In order to compare two data sets that are
decomposed using different partition schemes, we detect the
maximum continuous elements between them, which are called
basic comparison block (BCB), denoted as
𝐵𝐶𝐵 = 𝑑𝑎𝑡𝑎[𝑑!! ,… ,𝑑!!].

The partition schemes used in the reference program and
suspect program are denoted by 𝑅 = 𝒃𝒍𝒐𝒄𝒌𝒎𝒂𝒑 (𝐴,𝑚!

! ,… ,𝑚!
!)

and S = 𝒃𝒍𝒐𝒄𝒌𝒎𝒂𝒑 (𝐴,𝑚!
!,… ,𝑚!

!) respectively. An overlap
operation is applied to R and S to detect the maximal comparable
sub-blocks. Specifically, the overlap operation computes the size
of BCB’s every rank using Equation (4) for each dimension of the
two different data decompositions.

𝑑!! = 𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡_𝑐𝑜𝑚𝑚𝑜𝑛_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑚!
! ,𝑚!

! ,1 ≤ 𝑖 ≤ 𝑘 (4)

Figure 3 illustrates an example of conducting an overlap
operation to identify the sub-blocks that can be compared directly
across a row-major decomposition and a column-major partition.

4.4 The Interface of Data Model Construction
CCDB uses the size of the global data and its partitioning

scheme to construct the global view. To identify them, CCDB
provides two methods: automatic and semi-automatic. The
automatic way is used for programing languages, such as UPC, in
which data decomposition information can be detected. To
distribute shared array variables, UPC maps array elements across
different threads using affinity [57], which allows a programmer
to describe different domain decompositions such as block and
cyclic [28]. To reconstruct global data decomposed in UPC,
CCDB retrieves affinity metadata, and automatically detects the
partitioning scheme. Throughout the UPC debugging session, this
(automatically created) partition scheme is linked to its variable
symbol to reconstruct global-shared arrays for data comparison.

In contrast, the semi-automatic way applies to programming
techniques, such as MPI, that do not have the global data size and
partition information. A programmer defines them explicitly using
the blockmap construct. As we noted earlier, blockmap has been
extended to support the generic data model with halo cells.

Languages that manage the decomposition process make it
easier for the programmer both during data construction and
debugging. Whilst the semi-automatic method requires
programmer intervention, it is necessary because the
decomposition information is never represented declaratively, and
is effectively coded in the way the program is written.

5. DATA COMPARISON ACROSS
DIFFERENT PROGRAMMING MODELS

The generic data model and decomposition-independent
comparison can be realized in different ways. CCDB facilitates
this function across MPI/OpenMP, MPI/OpenACC, and UPC
programs by conducting comparison at the inter-process partition
level. This converts the various data decomposition at different
parallelism layers into a unified representation.

CCDB servers restore the data decomposed by different data
manipulation policies in a specific programming technique at
runtime and locate the partitioned chunks assigned to each
message passing process. For example, in OpenMP, the data
processed by multiple threads using shared memory should be
accessed only when its update is synchronized across all the
threads. In OpenACC, an offloaded variable is dynamically
copied between CPU and GPU during the execution of the code.
Therefore, constructing the global data view for OpenACC
processes must automatically detect where the targeted data
resides and retrieve it from either the GPU memory, or CPU
memory, without the user specifying the location for variables.
Similarly, an array in UPC that is allocated dynamically requires
to be tracked and located automatically for data comparison.

5.1 Limitation of Previous Work
Our previous work [35] only handled MPI applications, as

shown in Figure 4. CCDB has been extended substantially to
debug UPC programs, to provide multi-threaded debugging for
OpenMP, and to control hybrid OpenACC programs. With the
new extensions, shown in Figure 4, CCDB servers can cooperate
with the client to enable data comparison across different types of
hybrid applications.

5.2 OpenACC
OpenACC hides the details of CUDA [39], like threads and

blocks [50], from programmers by augmenting a sequential
program with user specified directives. Programmers can specify
the regions of an OpenACC program to be offloaded to the
accelerator device, called compute regions, while the rest of the
program is executed on the host CPU. The address spaces for the
CPU and GPU codes are separated, and programmers can move
an offloaded variable between the CPU and the GPU using
OpenACC directives at runtime. However, accessing data residing
on the GPU may incur a large overhead

The CCDB server, which can only execute on the CPU cores,
needs to retrieve offloaded data automatically from either the
GPU memory, or CPU memory, in an OpenACC process, without
users specifying the memory address. In addition, accessing the
variables residing on the device should be done efficiently. As an
extra complication, CPUs and GPUs may use different floating-
point representations. Therefore, the floating-point numbers
processed by both CPU and GPU cannot be bitwise compared due
to inconsistent precision.

Figure 3. Conducting an overlap operation to detect BCBs.

!
!
!
!
!
!

1
2
3
4

a b c

1
2
3
4

a b c

1 2 3 4

a b c

Basic Comparison Block (BCB)

R = blockmap(A, 4, 0) S = blockmap(A, 0, 4)

Overlap(R,S)!

The Global Matrix (A)

Comparing
BCBs
pair by pair

$reference

$suspect

 blockmap(A, 4, 4)

$reference $suspect

Data Decomposition at Runtime

!
!
d d

d

Figure 4. CCDB server for cross-model data comparison.

GPU Code

CUDA-GDB

CCDB Server

CPU Code

Original Data

Control Flow

Data Movement

AIF Data

GDB

UPC Code OpenMP Code MPI Code

Previous work New Contribution

Mul$%threaded,
debugging,

Tracking,
dynamic,data,

Accessing,data,from,both,GPU,
and,CPU,

In order to resolve the above issues, a CCDB server uses an
instance of CUDA-GDB to debug the OpenACC program as
illustrated in Figure 4. As part of this work, we have improved the
original version of NVIDIA CUDA-GDB to facilitate debugging
OpenACC on Cray systems. We modified CUDA-GDB to move
the data of a targeted GPU variable residing on the GPU device
into the memory space of CUDA-GDB automatically, which is in
the memory of the host. To enable comparing floating-point
numbers across GPU and CPU, CCDB allows the programmer to
set a tolerance threshold that is used to truncate the floating-point
numbers to the same precision before they are compared. Using
CUDA-GDB, the CCDB server can pause the execution of an
OpenACC program at any line of interest within a compute region
and subsequently access the data of a targeted variable residing on
the GPU memory. This enhancement aids the client to construct
the global view for data in both the CPU and GPU memories.

5.3 OpenMP
OpenMP processes contain both sequential and parallel

regions. To construct a global view of a given data structure, each
debug server identifies the section of data to be compared. In case
the data is located in a sequential region, it is straightforward,
because data is always updated coherently and consistently by one
thread. However, in a parallel region, a number of shared memory
parallel threads execute independently. Before copying the shared
data, CCDB needs to guarantee that each of the parallel threads
pauses at the same breakpoint specified in the assertion.

GDB provides multi-threaded debugging with two options:
non-stop mode and all-stop mode. The non-stop mode allows
other threads to continue running when one thread stops, while the
all-stop mode pauses all threads at the same time. Combing the
non-stop mode with GDB’s asynchronous command execution,
the CCDB server can control all of the parallel threads to stop at
the desired position before fetching the required data. This allows
declarative assertions to work correctly with OpenMP processes.

5.4 UPC
UPC requires the debugger to track the global data that is

dynamically allocated in large-scale UPC programs. Both the
global size and local size of each dynamic array are not provided
by the UPC runtime. Therefore, CCDB must detect these sizes in
an automatic manner, and retrieve the data in each UPC thread
correctly. To address this issue, CCDB infers the size of the
global array using the information provided by the UPC runtime,
such as the number of UPC threads and the affinity data. In
addition, CCDB expects the user to specify the type cast explicitly
when inspecting a pointer variable. The debugger finalizes the
global size of the (dynamically allocated) array by cross checking
the user-provided information against CCDB’s calculation. To
retrieve the local portion of a global shared array, CCDB detects
the start address of the allocated block from the UPC runtime, and
calculates the amount of data allocated to the corresponding UPC
thread. With such enhancement, CCDB can construct the global
data manipulated by UPC for comparison.

6. SCALABLE DATA COMPARISON
Our previous work [16][35] implemented a hash-based

method and a point-to-point (P2P) technique for comparing large
data sets in pure MPI applications. These two methods avoid
reassembling a global structure in the client, and distribute much
of the comparison to the back-end servers [16][35]. They are
inherently scalable because more resources are available to
parallelize data comparison as the machine size increases.
Specifically, the hashing scheme replaces each data structure with
a hashed signature, which is much smaller than the original data,

and can be transferred back to the head node. Alternatively, the
P2P technique allows debug servers to communicate data directly
using TCP sockets, and compare without reassembling the global
view on a single node. These two methods allow programmers to
compare large data structures on supercomputers, and have been
described elsewhere [16][35]. However, when they were modified
to handle large-scale stencil computations, we found a number of
assumptions in the implementation did not scale as well as
expected.

6.1 Scalability Bottleneck of Previous Work
Both the hash-based and P2P methods parallelize data

comparison and reduce data traffic between the client and servers.
To further improve scalability, we used the MRNet library [41] to
facilitate client-server communication, which provides a
hierarchical tree-based communication substrate. However,
previous work created significant aggregation overheads and
generated a large amount of unnecessary network traffic at scale.
In addition, servers used in P2P comparison distributed socket
information using Lustre, a distributed file system. On large-scale
systems, this generated a large amount of concurrent small disk
I/O operations that caused a significant overhead and slowed
down the startup time significantly.

6.2 Optimizations
Given two sets of partitioned data, CCDB first detects an

appropriate granularity of data to compare. CCDB computes an
overlap region using Equation (4) to detect BCB pairs that can be
compared directly. When data is partitioned with halo cells,
CCDB servers remove them from each data partition using
Equation (1). For hashing, CCDB passes data to a hash function in
parallel for each BCB in the back-end servers. The hash
signatures are then compared sequentially in the client. The P2P
technique, in contrast, communicates each BCB’s original data
directly between CCDB servers, and the BCB pairs are compared
in parallel as shown in Figure 13.
6.2.1 Scalable Collection of Comparison Results

 The hash signatures and the P2P comparison results are
transferred to the client using MRNet’s data aggregation filter
[41]. Each message processed by MRNet is either a hash signature
or P2P result, which is attached with the relevant MPI process or
thread group. Our previous work used a bitset to represent the
process/thread set. Each bitset has a fixed size and maintains all
processes/threads in the entire system (each local thread id is
mapped to a global id). As messages are transferred along the
MRNet communication tree, those with the same content merge
their bitsets, as shown in Figure 5.

However, these two comparison methods have different data
aggregation patterns. P2P results have only two possible
outcomes: either same or different, which generate close-to-
perfect aggregation in most cases. In contrast, the hash signatures
vary between the worst-case and best-case aggregation, depending
on the application. A fixed-size bitset is not efficient for collecting

Figure 5. Range-set for scalable data aggregation.

0"0"1"0"0"0" 0"0"0"1"0"0"

0"0"1"1"0"0"

Bitset Merging

Topology-aware Range-set Concatenation

0~63 64~127

0~127

0~4095

0" 0" 1" 1"

0" 1"

127" 127"

0" 127"

MRNet Tree (fanout=64)

MPI rank / thread id space

0" 63" 64" 127"

results for large-scale data comparison, because it contains many
unnecessary bits for both close-to-best and close-to-worst
aggregations. Also, the merging overhead is significant. To
address this issue, we implement range-set, which provides an
adaptive solution for different aggregation scenarios and
minimizes the aggregation overhead by taking advantage of the
MRNet tree’s topology.

A range-set consists of a series of ranges that are relevant to a
single message. A range is denoted as 𝑟𝑎𝑛𝑔𝑒 = 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑
(𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑛𝑑), consisting of a set of contiguous MPI ranks or
thread ids, which are relevant to an aggregated message, shown in
Figure 5. In case start=end, only one process or thread is
represented by a range. Each message is attached with a range-
set, instead of bitset. For perfect aggregation, all processes/threads
in the entire space are represented using one range instead of one
large bitset, all bits of which are ones. For the worst-case
aggregation, each message is only attached 2 integers: start and
end, instead of one large bitset, most bits of which are zeros.

Merging ranges takes advantage of the tree’s topology. We
utilize MRNet’s back-end attachment mode [8] to initialize a
communication tree, which guarantees the MPI ranks are ordered
sequentially across the leaf nodes. Therefore, the MPI rank /
thread id space owned by any sub-tree on the same level has no
intersection, as shown in Figure 5. When messages are transferred
upstream, ranges from sibling communication nodes are
concatenated in a sorted order. If two ranges are immediately
adjacent to each other, they merge into one, shown in Figure 5.
For the worst-case aggregation, no ranges are merged or
concatenated. The best-case aggregation will generate one range
at the root of the MRNet tree.

We validated the overhead of range-set and bitset for both
comparison methods on Crystal, the configuration of which is
shown in Table 1, using up to 32,768 parallel processes. For the
hashing method, each parallel process generated one signature and
the identical degree of all signatures varies between 0%, which
means all signatures are different, and 100%, which means all
signatures are identical. For P2P, each process randomly created
an outcome: true or false. Figure 6 illustrates the ratio of the result
collection time using range-set vs. using bitset. After the number
of comparison results is more than 2,048, range-set outperforms
bitset significantly for both comparison scenarios. For P2P, range-
set consumes only 10% of the time used by bitset with 32,768
processes. For the hashing comparison method, range-set
performs well as the identical degree varies. When less than 90%
signatures are identical, collecting results using range-set is up to
10X more efficient than using bitset.

6.2.2 Creating Socket Connections for P2P
 P2P comparison requires point-to-point direct communication

between debug servers attached to two separate programs. Our
previous implementation wrote the information required to create
socket connections to a Lustre file system. However, this method
did not scale well and it took more than 22 seconds to create 8,192
socket connections on Crystal. To improve the performance,

CCDB client takes the following steps: 1) it collects servers’
socket information, such as hostname and port number, using
MRNet; 2) the client swaps the information between two set of
servers using MRNet broadcasting; 3) the client distributes two
data decompositions, including the global data size and partition
schemes, to all of the servers. Computing Equation (4) on the two
decomposition schemes, each server identifies those BCBs that it
contains. Combining the broadcasted socket information with its
own BCBs, each server can detect its communication peers in the
opposite server set. Finally, all of the socket connections required
by P2P comparison are created in parallel. In comparison to our
previous work, this enhancement saves more than 96% of the
overhead to create socket connections for P2P. Specifically,
creating 8,192 socket connections on Crystal takes less than 1
second, while creating 32,768 connections takes around 4
seconds. This overhead is amortized by subsequent comparisons.

7. CASE STUDIES
In this section, we demonstrate CCDB with two case studies

using two supercomputers: Crystal and Titan [46], the
configurations of which are listed in Table 1. First, we debug an
implementation of the Shallow Water Equations (Shallow) when
ported from sequential C to UPC. Using shallow, the performance
of data comparison was evaluated on Crystal. This case study
demonstrates the efficiency of constructing the global data view,
the functionality of supporting comparison across different
programming paradigms, and the efficiency of data comparison.

Second, we locate errors in a large, real world, application
(DELTA5D) using CCDB as it was ported from an MPI
implementation to Titan with both MPI and OpenACC. The
overhead of assertions was evaluated using DELTA5D on Titan
with up to 5,120 GPUs. This case study demonstrates the
efficiency of relative debugging on a large-scale hybrid
supercomputer and its cross-model data comparison.
• The Shallow Water Equations [13] abstracts a simple

representation of the atmosphere, describing the motion of an
incompressible fluid with a free surface. Both gravity waves and
Rossby waves are covered. Shallow has been implemented in a
range of languages for a variety of machines [19]. It is a
simplified version of code found in weather prediction systems,
such as WRF [32], but contains physics that is sufficiently real
to demonstrate the debugging methodology used in CCDB.

• DELTA5D [44] is a Monte Carlo particle simulation tool
developed at Oak Ridge National Laboratory (ORNL).
DELTA5D simulates a variety of stellarator transport
phenomena by following groups of particles partitioned onto
different processors in parallel. It solves four-coupled
Hamiltonian guiding center equations for each particle,
advancing them in both poloidal and toroidal angles in Boozer
coordinates and the conjugate momenta.

Table 1. Configuration of Titan and Crystal

Config. Nodes# CPU GPU Memory

Titan 18,688 16-core AMD Interlagos
Processor

NVIDIA
K20X GPUs ~ 700 TB

Crystal 1,048 Intel SB16, IV20, HW24,
HW32 Processors

None ~ 140 TB

7.1 Shallow Water Equations
Shallow contains several key data structures such as p (i.e.

pressure), u (i.e. zonal wind), v (i.e. meridional wind), and psi (i.e.
velocity stream function) etc., each of which is a 2D array. In the
ported UPC code, these data structures become global-shared
arrays and their elements are accessed by parallel UPC threads.

Figure 6. Comparing overheads of range-set and bitset.

1,024 2,048 4,096 8,192 16,384 32,7680

0.2

0.4

0.6

0.8

1

1.2

1.4

The Number of Parallel Processes

R
an

ge
Se

t T
im

e
/ B

its
et

 T
im

e

 Hashing(100%)
Hashing(90%)
Hashing(50%)
Hashing(10%)
Hashing(0%)
P2P

Table 2. Outcomes Comparison of Shallow Water Equations
Outcomes Pot. Energy Kin. Energy Total Energy Pot. Enstrophy
Sequential 30706.844 46056.449 76763.297 3.367453e-16
2 Threads –nan –nan –nan –nan

Executing the ported UPC code with one thread produces
results identical to the sequential version of Shallow. However,
executing the same code with two or more threads generates
incorrect output. After 150 cycles, various diagnostic quantities
displayed by the diag function in the parallel execution were
NANs, as illustrated in Table 2. To investigate the error, we
compared the sequential execution with the parallel execution of
two threads using assertions listed in Figure 7.

The main function of Shallow and the dependency of
investigated variables are illustrated in Figure 8. For the first time
of re-execution, we executed assertions 1~5. Assertions 1~4
verify that the key data structures are initialized correctly, while
assertion 5 validates if pressure (p) is computed correctly for each
iteration. However, assertion 5 shows that p is incorrect after the
first time step. On the second execution we added assertion 6 to
verify p’s dependent variable dpdt. As expected, assertion 6
failed. On the third execution, we executed assertions 7 and 8 to
examine variables cv and cu, both of which form dpdt. Assertions
7 and 8 passed, demonstrating that both cu and cv are correct.
Using 3 re-executions and 8 assertions, we have narrowed down
the suspect area to the function timetend.

Both cu and cv are global-shared arrays and they are
computed (in function calcuvzh) before the time tendency
function call (timetend). Interestingly, the values that mismatched
changed in different runs, which suggested a synchronization
failure. When the C code was translated into UPC, the
programmer missed adding data dependencies between the
function calls. To fix it, we placed one upc_barrier instruction
after each function call (e.g. calcuvzh, timetend, and tstep). With
this fix, the ported UPC code works correctly with two or more

threads. In addition, re-running CCDB again passed all the
assertions.
7.1.1 Scalability of Data Comparison

We measured the performance of assertions for both hash-
based data comparison and P2P techniques when comparing two
executions of the UPC version of Shallow on Crystal with an
increasing number of parallel processes, as illustrated in Figure 9.
During the experiments, Shallow computed 1,048,576 x N grids,
in which N is the number of processes. Two debugging sessions of
the UPC Shallow were launched with the same number of
processes and an assertion was applied to compare the values of
pressure (p) between them. Each assertion was performed twice,
one with P2P and the other with hashing. The variable p contains
1M floating-points in each UPC process. With 32,768 processes,
the total amount of data to be compared in one UPC program is
128GB. This is constructed as a weak-scaling experiment to
examine the efficiency of data comparison techniques as the
number of processes increases.

The time of executing a comparison was measured 3 times for
each comparison method and the averaged values are presented.
For the hash-based comparison, the latency measured includes: 1)
retrieving the target data from GDB at servers, 2) applying a hash
function to them, 3) transferring the hash signatures to the client,
4) reconstructing the received signatures with the global view, and
5) comparing them at client. With the P2P comparison, the
examined time includes: 1) retrieving the target data at servers, 2)
communicating the original data between servers and comparing
them, and 3) collecting the compared results and mapping them
into the global structure.

The total time required by both hashing and P2P are almost
flat as the number of processes increases from 128 to 32,768. The
actual time for a debug server to hash the compared data or to
perform P2P comparison is around 9 seconds. This is mostly the
overhead for retrieving 1M floating-points using GDB/MI [24]
and converting them to architecture independent format (AIF)
[17]. Compared to the server time, the overhead at client and
collecting comparison results using MRNet can almost be
ignored. For hashing, the client consumes less than 0.1 seconds,
which was mainly for constructing the generic data model and
comparing signatures, as illustrated in Figure 9. The time
consumed by hashing is almost double that of the P2P technique.
This is because handling two program’s data at servers were
performed sequentially for hashing. In contrast, using P2P, data in
the two UPC programs were processed in parallel. To conclude,
both methods produce reasonable execution times for comparing
256GB data (128GB per program) with 65,536 processes (32,768
processes per program). To the best of our knowledge, no other
tools support validating global structures at such a scale.

7.2 DELTA5D
The MPI implementation of DELTA5D has 10 Fortran source

files, each of which contains several modules. After it was
hybridized using OpenACC on Titan, the module heating_orbits,
as illustrated in Figure 11, produced incorrect results.

Figure 7. Assertions for UPC Shallow Water Equations.

#start the ported UPC code of Shallow Water Equations
launch $a shallow
launch $b{2} shallow
#check initialization
assert $a::psi@"sw.upc":69=$b::psi@"sw.upc":69 (1)
assert $a::u@"sw.upc":69=$b::u@"sw.upc":69 (2)
assert $a::v@"sw.upc":69=$b::v@"sw.upc":69 (3)
assert $a::p@"sw.upc":69=$b::p@"sw.upc":69 (4)
#because all energy values are wrong, check p
assert $a::p@"sw.upc":88=$b::p@"sw.upc":88 (5)
p is wrong, check its dependent variable dpdt
assert $a::dpdt@"sw.upc":79=$b::dpdt@"sw.upc":79 (6)
found difference in the first column of dpdt, so check cu, cv
assert $a::cu@"sw.upc":78=$b::cu@"sw.upc":78 (7)
assert $a::cv@"sw.upc":78=$b::cv@"sw.upc":78 (8)

Figure 8. Debugging UPC Shallow Water Equations.

ini#alize(…)+

+for+(…)+{+//+loop+starts+

}+//loop+ends+

calcuvzh+(…)++

diag+(…)+

psi,+u,+v,++p+

cu,+++++++cv+

dpdt+

p+

main%func)on% verified%variables%

0metend+(…)++

tstep+(…)++

1+ 2+ 3+

Itera)on%of%Inspec)on%

Su
sp
ec
t+a

re
a+

(5)+

(1)~(4)+

(6)+

(7)~(8)+

Figure 9. The scalability of data comparison.

128 256 512 1,024 2,048 4,096 8,192 16,384 32,768
0

5

10

15

20

The Number of Parallel Processes
Ti

m
e

(s
ec

on
ds

)

Hashing−Total
P2P−Total
Hashing−Client (Model Construction+Comparison)

Table 3. Outcomes Comparison of DELTA5D

Key variable E_sum_Total num_left_Total
MPI/OpenACC 0.1596255E+02 1951

MPI 0.1560372E+02 1950
CCDB can be used to perform comparisons before entering an

OpenACC compute region, which guarantees that the GPU
memory has been initialized correctly, and after a compute region
completes, to examine if the code that has been offloaded
generates correct results. Below, we illustrate how we refined the
area of suspect code in heating_orbits, which is in the Fortran
source file energetic_mp.f.

With the simulation of 5,120x10,240 particles running on
5,120 GPU nodes, after 1,000 time steps, heating_orbits module
displayed incorrect results at the end of the module, as illustrated
in Table 3. To investigate the error, we compared the incorrect
execution to the original MPI execution launched with the same
number of parallel processes. We executed assert commands
listed in Figure 10, without using blockmap, because the data
partition across both versions of DELTA5D is identical.

The dependency of variables we investigated is shown in
Figure 11. The heating_orbits module calculates the energetic
particles lost on the outer surface of simulated orbits. Specifically,
num_left_Total records the total number of lost particles across all
MPI processes using a reduction operation applied to num_left,
which is a local variable to keep the number of lost particles in
each process. Similarly, E_sum_Total keeps the total energy for
all of the lost particles, which is a collection of E_sum.

We executed assert commands 1 and 2 to examine the values
of num_left_at_itime and E_sum_at_itime, which respectively
keep the local number of lost particles and energy for each time
step. Both comparisons failed. Therefore, the errors are introduced
before executing the MPI reduction operations.

Each of E_sum_at_itime and num_left_at_itime contains the
reduction result of an array within offloaded compute region 2 and
3 respectively, as shown in Figure 11. Both reductions rely on
index, an integer array. We examined the value of index using

assertion 3 at the beginning of compute region 2. It confirmed that
the value of index diverged after compute region 1. To examine
whether compute region 1 creates any errors, we compared the
values of index using assertion 4 before entering the region. It
concluded that compute region 1 is incorrect.

We realized that compute region 1 has race condition when
updating iloss, which determined the branch of execution in that
region and caused updating index incorrectly. This was confirmed
using assert command 5 after compute region 1 completes.

To locate the source of the race condition bug with this case
study, we conducted 5 assertions with 3 iterations of inspection.
Accordingly, the suspect area of heating_orbits codes was
narrowed from 1,602 lines down to just 38 lines. Without using
CCDB, we are unaware any other tool can provide a better
solution. A recently proposed OpenACC debugging tool [49]
allows comparing an OpenACC program with its sequential
version at the granularity of a GPU kernel. The comparison is
enabled through an enhanced compiler with adding extra source
code directives and environment variables. However, this tool
does not help DELTA5D case study because it cannot handle
hybrid MPI/OpenACC programs. In comparison to this tool, using
CCDB requires neither changes in the source code under debug
and nor enhancements in compilers and runtime environments.
7.2.1 Overhead of Assertions

We evaluated the overhead of performing an assertion across
both MPI and hybrid DELTA5D on Titan. Two assertions were
applied to two array variables respectively: phi_loss and num_left.
The details of these two variables are listed in Table 4. They were
compared rank-by-rank without using blockmap, because both
versions of DELTA5D have the same number of processes with
identical data partition. The amount of data maintained by these
two variables is comparatively small. Therefore, executing the
assert command to them reflects the overhead of performing an
assertion instead of the cost of processing a large amount of data.

Table 4. Compared variables

Variable Residence Comment MPI Hybrid

phi_loss CPU GPU An array of 10,240 integers uniformly
partitioned across the processes.

num_left CPU CPU An array of 1,000 integers per process.

An assertion is executed using a dataflow graph composed by
several debugging commands, including set breakpoint, continue,
and compare, as illustrated in Figure 14. Normally, the time of
executing a declarative assertion is dominated by waiting to catch
the specified breakpoint, which depends on specific applications.
Therefore, to evaluate the overhead of assertions, we measured
the time consumed by each debugging commands, the total of
which represents the overhead of executing an assertion. The
latency for each command was measured 3 times and the averaged
assertion time is illustrated in Figure 12.

For hybrid DELTA5D, each Titan node was assigned one
OpenACC process. For the MPI version, each MPI process used
one CPU core and each Titan node was assigned to hold up to 16
MPI processes. During the experiment, each version of
DELTA5D launched up to 5,120 parallel processes. The time of
executing an assertion for both variables is between 0.05~0.11
seconds during the number of processes increases from 10 to
5,120. As illustrated in Figure 12, the latency of comparing a
small amount of data for both variables increases slightly with the
number of processes. However, it is sensitive to the back-end
resource competition, which caused variations and even jitters
around 80 processes. CCDB places the debug servers and MRNet
communication processes on the same set of CPU cores allocated

Figure 10. Assertions for debugging DELTA5D.

#start the MPI and hybrid MPI/OpenACC code of DELTA5D
launch $a{5120} delta5d_res_acc --gpu --aprun-args="-N1"
launch $b{5120} delta5d_res_mpi
assert $a::E_sum_at_itime@"energetic_mp.f":1416

= $b::E_sum_at_itime@"energetic_mp.f":1416 (1)
assert $a::numleft_at_itime@"energetic_mp.f":1464

= $b::numleft_at_itime@"energetic_mp.f":1464 (2)
assert $a::index@"energetic_mp.f":1405

= $b::index@"energetic_mp.f":1405 (3)
assert $a::index@"energetic_mp.f":1349

= $b::index@"energetic_mp.f":1349 (4)
assert $a::iloss@"energetic_mp.f":1405

= $b::iloss@"energetic_mp.f":1405 (5)

Figure 11. Debugging the heating_orbits module

display(output(

index&

iloss&

E_sum_Total(((&num_le1_Total&

hea$ng_orbits. Variable.dependency.

compute®ion(2(

compute®ion(3(

MPI(reduc4on(
E_sum& num_le1&

E_sum_at_i6me&

num_le1_at_i6me&1,
60
2(
lin
es
(

compute®ion(1(

38
(li
ne

s(

1,
40
5(
lin
es
(1(2(3(

Itera$on.of.Inspec$on.

for the MPI application. Therefore, the execution of MPI
processes compete with CCDB at the back-end, which delays
transferring the response messages for the continue command.
Num_left is an array only residing on the CPU, the size of which
in each process is fixed. Phi_loss was validated while residing on
a GPU in the hybrid DELTA5D. It is a fixed size global data
structure uniformly partitioned across all of the processes.
Comparing phi_loss took less time than num_left on average for
two reasons: 1) the size of phi_loss is smaller and 2) the latency
of phi_loss’s continue command is lower because the execution of
the OpenACC process on the GPU has less resource competition
with the CCDB server on the CPU.

8. RELATED WORK
Many parallel debuggers do not provide an efficient way to

verify the global state for a distributed stencil computation. Using
TotalView [7] and Allinea DDT [5] to debug OpenMP and
OpenACC programs, a user needs to select the thread, process and
kernel of interest before exploring any suspect sub-structure.
Although UPC provides the global address space to programmers,
most UPC debugging tools, such as DDT [5], GDB-UPC [27] and
Berkeley UPC [19], only support regular debugging tasks in a
distributed view. Similarly, TotalView [7] can display UPC
shared objects with both the thread ID and the pointer to the data
segments that belong to that particular thread, while UPC-trace
[56] can generate trace files and local memory reports.

Verifying the global state to guarantee the correctness of
parallel and distributed programs has been studied by several
research projects. WiDS [1] and D3S [58] allow programmers to
verify the correctness of distributed protocols by specifying
predicates that are checked at runtime. When any mistake is
detected, D3S can reproduce the state changes that lead to the bug,
allowing the developer to investigate the root cause quickly.
However, these two technologies cannot validate the large amount
of numerical results produced by scientific computing at run time.
TASS (the Toolkit for Accurate Scientific Software) [47] allows
programmers to specify a collective assertion that is verified using
symbolic execution and explicit state-enumeration techniques
instead of realistic environment. Its effectiveness was
demonstrated with limited scalability using 16 MPI processes.

Model checking [21] has been applied to examine the non-
determinism problem in parallel computing. For instance, MPI-
Spin [48] verifies the correctness of MPI protocol and UPC-SPIN
[1] examines the inter-thread synchronization for UPC programs.
However, model-checking methods are restricted by limited
scalability and have limited support for realistic runtime
environments. SESA [42] provides symbolic race checking for
CUDA programs. Message checker [29] can automatically detect
errors that occur with incorrect message passing. These
verification tools are specific to guarantee the correctness of one
programming technique and are not designed for applications with
mixed multiple programming paradigms. In comparison to these
methods, CCDB verifies the runtime state for hybrid programs

from a global point of view by taking advantage of the correctness
of the same program’s different version.

STAT (Stack Trace Analysis Tool) [20] compares the stack
traces of identical parallel processes to detect errors. To assist
MRNet’s data aggregation, STAT implements a hierarchical
bitvector [25]. In contrast, CCDB has different aggregation
requirement from STAT, which aims to improve the efficiency of
aggregating identical content. CCDB’s range-set is adaptive for
handling different aggregation patterns. Additionally, aggregation
overhead is minimized by taking advantage of the tree topology

Since relative debugging [14] was proposed, comparison-
based methods have been available in a number of parallel
debuggers. However, p2d2 [45] and Wizard [23] only allow
comparing a serial code with a parallel code. TotalView [7]
provides limited comparison between two programs of the same
scale with the identical data partition schemes.

 Our previous work, Guard [26][35], investigated validating
the global state of MPI programs [35] and UPC programs [36]
respectively, but could not handle any hybrid applications and
data comparison across different types of applications. In this
paper relative debugging has been extended significantly to
facilitate data comparison across different programming
techniques, such as UPC, hybrid MPI/OpenACC, and
MPI/OpenMP programs, on hybrid machines. Specifically, we
propose a generic data model that can reconstruct the global state
for any stencil computations with halo cells and facilitate
validating the numerical results across different levels of
parallelism. In addition, the CCDB server can access data shared
across OpenMP threads in a consistent manner using GDB multi-
threaded debugging. It also allows the declarative assertion to
access the data in OpenACC processes regardless whether the
variable is residing on the GPU memory or the CPU memory.
With these significant enhancements, relative debugging is
effective at finding errors when stencil codes are ported on hybrid
supercomputers using these widely used programming methods.
We also demonstrate the efficiency of two advanced data
comparison schemes, which allows CCDB to detect bugs that only
occur with a large-scale execution.

9. CONCLUSION AND FUTURE WORK
High-end hybrid supercomputers pose a number of challenges

for debugging applications. In order to improve the productivity
of porting large-scale scientific applications to current high-end
hybrid supercomputers, we have developed CCDB to provide a
relative debugging strategy for stencil computation. In particular,
CCDB helps users to verify the global state of stencil
computations between a reference version and a suspect code
across different types of applications, including MPI, hybrid
MPI/OpenACC, MPI/OpenMP, and UPC programs. Two case
studies were investigated to illustrate the effectiveness of using
CCDB to detect real-world bugs and investigate their causes
accordingly. A synchronization bug was fixed using CCDB
during porting a sequential C code of the Shallow Water
Equations to a UPC version; and hybridizing DELTA5D on Titan
located a race condition bug within a compute region offloaded to
the GPU using CCDB. Specifically, the bug in DELTA5D was
investigated with an execution of more than 5,120 GPUs. The
overhead and efficiency of CCDB’s data comparison methods
have been examined on Titan and Crystal using large-scale real
world applications. These case studies and experiments show that
CCDB is scalable, incurs low overhead, and allows one to
efficiently verify the global state for porting a large-scale stencil
computation on hybrid supercomputers.

Figure 12. The overhead of assertions.

10 20 40 80 160 320 640 1,280 2,560 5,1200.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

The Number of Parallel Processes

Ti
m

e
(s

ec
on

d)

Assertion on phi_loss
Assertion on num_left

Presently, CCDB supports stencil computations with regular
data partitions. In the future, we will improve it to construct the
global view for irregular data partitions such as adaptive mesh
refinement. The iterative process of refining a faulty area requires
re-executing the application. Complementing CCDB with check-
pointing techniques will make each re-execution to start from a
verified state instead of the very beginning and accordingly
decrease the time of each re-execution. CCDB will also be
improved to handle the Intel Phi architecture. To improve the
performance of the CCDB server, we will optimize the efficiency
of fetching data from GDB and converting them into AIF.

10. ACKNOWLEDGMENTS
This project is funded by the Australian Research Council under
the Linkage grant scheme, and is supported by Cray Inc. This
research used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

Appendix
A. CCDB Architecture

The CCDB architecture consists of one front-end client
process running on the head-node, and multiple servers running
on the compute nodes at the back-end, illustrated in Figure 13.
CCDB has been implemented on Cray XE, XK, and XC
supercomputers [10][11][12]. However, the design of CCDB is
general and supports other type of supercomputers or hybrid
clusters with minor extensions.

At the front-end, the CCDB client exposes a relative
debugging interface that launches parallel applications onto the
back-end, controls the execution of the programs remotely, and
assists a programmer to compare relevant data structures across
different types of applications. At the back-end, the CCDB server
has a pluggable architecture that loads and deploys an appropriate
debug controller according to the target application. For example,
GDB [24] is used to control C, C++, Fortran, OpenMP, and UPC
programs, while CUDA-GDB [38] is used to handle OpenACC.

CCDB uses a MRNet communication tree [41] to connect the
front-end client and a large number of back-end servers.

Using the Architecture Independent Format (AIF) [17],
CCDB backend servers convert the native runtime data to a
“normalized” format before conducting comparisons. To support
hybrid machines and languages, AIF has been extended to
maintain C, C++, UPC, Fortran, and OpenACC data types.
B. CCDB Interface

CCDB allows a programmer to compare relevant data
structures between two programs using two methods: 1) the
compare command, and 2) the declarative assertion. The compare
command fetches the values for both variables to be compared
and display their difference to users. A user can place breakpoints,
control the execution of both reference code and suspect code
using commands like continue and step/next, and detect the
difference in the relevant data structures with the compare
command. An assertion automates the process of detecting
divergences. A declarative assertion is executed using a data-flow
graph, as illustrated in Figure 14, in which common tasks such as
setting breakpoints, controlling process sets, and performing
comparisons are managed automatically and conducted using a
data-flow engine [26]. Multiple assertions can be grouped into one
data-flow graph. A generic grammar for constructing assertions
and blockmap is described in [9].

It is straightforward to compare two local variables. However,
to compare a set of distributed data, blockmap is required to
reconstruct the global view. For data that is decomposed using
MPI, programmers can specify its blockmap function in the
compare command or assertion. For a variable in a UPC program,
programmers do not need to specify a blockmap.

The default data comparison scheme fetches the original data
for each variable and compares them at the CCDB client.
However, this works only for small amounts of data. For
comparing larger amounts of data, a user can select either hashing
or P2P scheme to use. To compare floating-point numbers, users
can set a tolerance threshold that allows CCDB to round them.
This treats two floating-point values with slight differences as the
same. Hashing is lightweight method to detect data divergence,
while P2P incurs extra network traffic at backend servers.
C. CCDB Debugging Methodology

A typical relative debugging cycle involves monitoring and
comparing the key variables in the reference and suspect codes,
and tracing them back to their points of definition to refine the
suspect area. Using CCDB to locate errors normally consists of
two stages. In the first stage, assertions are used to narrow a large
suspect region down to a manageable area. After that, in the
second stage, the compare command is adopted to interactively
refine the faulty area. In a real debugging session, these two
stages may be mixed with each other. The initial pass through of
relative debugging includes the following steps:

1. Locate entry point into code: a user locates which data
structure(s) need to be compared, and where to perform the

Figure 14. The data-flow graph of a declarative assertion.

ref

breakpoint$
<trusted.c:65>/

con.nue$

catch/breakpoint/

read_var$
<large>$$$

Blockmap$
(R)/

sus

breakpoint$
<ported.c:68>/

con.nue$

read_var$
<super>$$$

Blockmap$
(S)/

compare$

assert/R($ref::large)@trusted.c:65/=$S($sus::super)@ported.c:68/

Figure 13. The architecture of CCDB.
CPUGPU BCB$

ref sus

Ghost$Cells$

GDB$
CCDB$Server$

Compute$Node$
GDB$

CCDB$Server$

Compute$Node$Compute$Node$
CUDA8GDB$
CCDB$Server$

CUDA8GDB$
CCDB$Server$

Compute$Node$

CCDB$Client$

PureMPI MPI/OpenMP$ MPI/OpenACC$ UPC$

Candidate$ApplicaAons:$

Reference$ Suspect$

Hash$Signatures$

P2P$Comparison$Hash4based$Comparison$

MRNet$

Hash$Signature$

Comparecmd Dataflow$graph$

ComparaAve$asserAon$

comparisons. The source code location (including source file and
line number) should be identified in assertions. The initial location
in which data deviations are first produced is typically from
program output.

2. Define data decomposition schema: a user can specify
how a key data structure is decomposed using a blockmap
function when it is necessary.

3. Prepare and invoke executables: both the reference
and suspect codes are executed using the launch command.

4. Run programs and observe data divergence: this
step can be performed either with the compare command or
assertions.

Any data divergence found can be used to narrow down the
scope of the error and the process iterates from step one until the
error is located. Typically, diagnosing an error requires iterative
inspection of a suspect variable’s dependent variables until the
initial cause is found. Users add new assertions or compare
commands iteratively to refine a suspect code region. Using a
divide and conquer strategy, each iteration of inspection decreases
the suspect area around 50%.

REFERENCES
[1] A. Ebnenasir, “UPC-SPIN: A Framework for the Model

Checking of UPC Programs” the Fifth Conference on
Partitioned Global Address Space Programming Models,
Galveston Island, Texas, USA, 2011.

[2] A. Nakano, R.K. Kalia, K. i Nomura, A. Sharma, P.
Vashishta, F. Shimojo, et al., “A Divide-and-
Conquer/Cellular-Decomposition Framework for Million-to-
Billion Atom Simulations of Chemical Reactions”,
Computational Materials Science, vol. 38, pp. 642-652,
2007.

[3] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey,
“3.5-D Blocking Optimization for Stencil Computations on
Modern CPUs and GPUs”, in Proceeding of the Intl. Conf.
on High Performance Computing (SC 2011), 2011.

[4] A. Petitet, Block Cyclic Data Distribution,
http://www.netlib.org/ utk/papers/scalapack/node8.html,
1995.

[5] Allinea, Allinea DDT – A revolution in debugging, 2009.
[6] C. Coarf, Y. Dotsenko, J. Mellor-Crummey, and et al. “An

Evaluation of Global Address Space Languages: Co-Array
Fortran and Unified Parallel C”, in Proceedings of the 10th
ACM SIGPLAN symposium on Principles and practice of
parallel programming, Illinois, USA, 2005, pp. 36-47.

[7] C. Gottbrath, “Automation Assisted Debugging on the Cray
with TotalView”, in Proceedings of Cray User Group, 2011.

[8] C. Jin, D. Abramson, M. N. Dinh, A. Gontarek, B. Moench,
and L. DeRose, “A Scalable Parallel Debugging Library with
Pluggable Communication Protocols”, in Proceedings of
12th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing (CCGrid), Ottawa, 2012.

[9] Cray, Using the lgdb Comparative Debugging Feature. Cray
Whitepaper.

[10] Cray XC Systems,
http://www.cray.com/Products/Computing/XC/

[11] Cray XE Systems,
http://www.cray.com/Products/Computing/XE.aspx

[12] Cray XK7 System,
http://www.cray.com/Products/Computing/XK7.aspx

[13] D. A. Randall, “The Shallow Water Equations”, Department
of Atmospheric Science, Colorado State University, Fort
Collins 2006. Retrieved from
http://kiwi.atmos.colostate.edu/group/dave/pdf/ShallowWate
r.pdf

[14] D. Abramson, I. Foster, J. Michalakes, and R. Sosic,
“Relative Debugging and its Application to the Development
of Large Numerical Models”, in Proceedings of IEEE
SuperComputing, 1995.

[15] D. Abramson, I. Foster, J. Michalakes, and R. Sosic,
“Relative Debugging - A New Methodology for Debugging
Scientific Applications”, Comm. the ACM, vol. 39, pp. 69-
77, 1996.

[16] D. Abramson, M. N. Dinh, D. Kurniawan, B. Moench, and L.
DeRose, “Data Centric Highly Parallel Debugging”, in
Proceedings of ACM International Symposium on High
Performance Distributed Computing (HPDC) Chicago,
Illinois, 2010, pp. 119-129.

[17] D. Abramson, R. Sosic, and G. Watson, “Implementation
Techniques for a Parallel Relative Debugger”, in Proceedings
of Intl. Conference on Parallel Architectures and
Compilation Techniques (PACT), USA, 1996.

[18] D. Abramson, M. Dix, and P. Whiting, “A Study of the
Shallow Water Equations on Various Parallel Architectures”,
in Proceedings of 14th Australian Computer Science
Conference, Sydney, 1991, pp. 1-12.

[19] D. B. W. Chen, J. Duell, P. Husbands, C. Iancu, K. Yelick,
“A Performance Analysis of the Berkeley UPC Compiler”, in
Proceedings of the International Conference on
Supercomputing (ICS), San Francisico, CA, USA, 2003.

[20] D.C. Arnold, D.H. Ahn, B.R. de Supinski, G.L. Lee, B.P.
Miller, M.Schulz, “Stack Trace Analysis for Large Scale
Debugging”, Proc. of 20th IEEE Intl. Parallel and Distributed
Processing Symposium (IPDPS), 2007.

[21] E. Clarke, O. Grumberg and D. Long, “Verification tools for
finite-state concurrent systems”, A Decade of Concurrency -
Reflections and Perspectives. Lecture Notes in Computer
Science, 803, 1994.

[22] F. B. Kjolstad and M. Snir, “Ghost Cell Pattern”, in
Proceedings of the 2nd Annual Workshop on Parallel
Programming Patterns (ParaPLoP'10), Arizona, 2010.

[23] F. Manne and S. O. Andersen, “Automating the Debugging
of Large Numerical Codes”, in Modern software tools for
scientific computing, ed Cambridge, MA, USA: Birkhauser
Boston Inc, 1997, pp. 339-352.

[24] Free Software Foundation Inc. (2008, 15/01/2009). GDB:
The GNU Project Debugger. Available:
http://www.gnu.org/software/gdb/

[25] G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. de Supinski, M.
Legendre, B. P. Miller, M. Schulz, and B. Liblit, “Lessons
Learned at 208K: Towards Debugging Millions of Cores”,
Supercomputing 2008 (SC2008), Austin, TX, 2008.

[26] G. R. Watson, “The Design and Implementation of a Parallel
Relative Debugger”, Doctor of Philosophy Dotoral, Faculty
of Information Technology, Monash University, Melbourne,
2000.

[27] GNU UPC, Debugging with GDB UPC,
http://www.gccupc.org/gdb-upc/debugging-with-gdb-upc

[28] H. Richardson, “High Performance Fortran: history,
overview and current developments”, Thinking Machines
Corporation 1996.

[29] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov, S.
Zheltov, and S. Bratanov, “Automated, scalable debugging
of MPI programs with Intel Message Checker”, in
Proceedings of the 2nd international workshop on Software
engineering for high performance computing system
applications (SE-HPCS '05), 2005.

[30] J.H. Chen, A. Choudhary, B. de Supinski, and et al.,
“Terascale direct numerical simulations of turbulent
combustion using S3D”, Comput. Sci. Disc., vol. 2, 2009, p.
15001.

[31] J. M. Levesque, R. Sankaran and R. Grout, “Hybridizing
S3D into an exascale application using OpenACC: an
approach for moving to multi-petaflops and beyond”, in
Proceeding of the Intl. Conf. on High Performance
Computing, Networking, Storage and Analysis (SC 2012).

[32] J. Michalakes, J. Hacker, R. Loft, M.O. McCracken, A.
Snavely, and N.-l.J. Wright, “WRF Nature Run”, in
Proceedings of High Performance Networking and
Computing, 2007.

[33] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L.
Oliker, D. Patterson, J. Shalf, and K. Yelick, “Stencil
Computation Optimization and Auto-tuning on State-of-the-
Art Multicore Architectures”, in Proceeding of the Intl.
Conference on High Performance Computing, Networking,
Storage and Analysis (SC 2008), 2008.

[34] M. N. Dinh, D. Abramson, D. Kurniawan, C. Jin, B.
Moench, and L. DeRose, “Assertion based parallel
debugging”, in Proceedings of 11th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing
(CCGrid), Newport Beach, California, 2011, pp. 63-72.

[35] M. N. Dinh, D. Abramson, C. Jin, “Scalable Relative
Debugging”, IEEE Transactions on Parallel and Distributed
Systems (TPDS), Pages 740-749, Vol. 25 Issue 3, 2014.

[36] M. N. Dinh, D. Abramson, C. Jin, L. DeRose, B. Moench,
and A. Gontarek, “Supporting relative debugging for large-
scale UPC programs”, Proceedings of the 14th Annual
International Conference on Computational Science (ICCS
2014), Pages 740-749, March 2014.

[37] NASA Advanced Supercomputing Division, NAS Parallel
Bench- marks,
http://www.nas.nasa.gov/Resources/Software/npb.html,
2009.

[38] NVIDIA Corporation. (2013, 10/03/2013). CUDA-GDB.
Available: https://developer.nvidia.com/cuda-gdb

[39] NVIDIA, CUDA, https://developer.nvidia.com/cuda-zone.

[40] OpenMP Application Program Interface, Version 4.0, July
2013, http://openmp.org

[41] P. C. Roth, D. C. Arnold, and B. P. Miller, “MRNet: A
Software-Based, Multicast/Reduction Network for Scalable
Tools”, in Proceeding of the Intl. Conf. on High Performance
Computing (SC 2003), Phoenix, Arizona, November 2003.

[42] P. Li, G. Li, and G. Gopalakrishnan, “Practical Symbolic
Race Checking of GPU Programs”, in Proceedings of SC14:

International Conference for High Performance Computing,
Networking, Storage and Analysis, 2014.

[43] R. Jauregui and F. Silva, “Numerical Validation Methods”,
Chapter 8 in Numerical Analysis - Theory and Application,
ISBN 978-953-307-389-7, 2011.

[44] R.H. Fowler, J.A. Rome, J.F. Lyon, Phys. Fluids 28, 338
(1985).

[45] R. Hood and G. Jost, “Support for Debugging Automatically
Parallelized Programs”, in Proceedings of 4th International
Workshop of Automated Debugging, Munich, 2000.

[46] A. Schäfer and D. Fey, “High Performance Stencil Code
Algorithms for GPGPUs”, in Proceedings of the International
Conference on Computational Science (ICCS 2011), 2011.

[47] Stephen F. Siegel and Timothy K. Zirkel, “Collective
assertions”, in Proceedings of the 12th International
conference on Verification, model checking, and abstract
interpretation (VMCAI'11), 2011.

[48] Stephen F. Siegel, “Verifying Parallel Programs with MPI-
Spin”, Recent Advances in Parallel Virtual Machine and
Message Passing Interface, Lecture Notes in Computer
Science Volume 4757, 2007, pp 13-14.

[49] S. Lee, D. Li, J. S. Vetter, “Interactive Program Debugging
and Optimization for Directive-Based, Efficient GPU
Computing”, in Proceedings of 28th IEEE International
Parallel & Distributed Processing Symposium (IPDPS),
Phoenix, 2014.

[50] S. Lee, J. S. Vetter, “Early evaluation of directive-based
GPU programming models for productive exascale
computing”, in Proceeding of the Intl. Conference on High
Performance Computing, Networking, Storage and Analysis
(SC 2012), Utah, 2012.

[51] T. Shimokawabe, Takayuki Aoki, and N. Onodera,“High-
productivity framework on GPU-rich supercomputers for
operational weather prediction code ASUCA”, in Proceeding
of the Intl. Conference on High Performance Computing,
Networking, Storage and Analysis (SC 2014), 2014.

[52] The Message Passing Interface (MPI) standard,
http://www.mcs.anl.gov/research/projects/mpi/

[53] The OpenACC™ Application Programming Interface,
Version 2.0, Jun. 2013, http://www.openacc-standard.org/

[54] Titan, http://www.olcf.ornl.gov/titan/
[55] Unified Parallel C, http://upc.gwu.edu/
[56] UPC Trace, Manual Reference Pages - UPC_TRACE,

http://upc.lbl.gov/docs/user/upc_trace.html.
[57] W. W. Carlson, J. M. Draper, D. E. Culler, K. and et al.,

Introduction to UPC and Language Specification, Center for
Computing Sciences, Bowie, MD1999.

[58] X. Liu, Z. Guo, X. Wang X, et al. D3S: debugging deployed
distributed systems, in Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI’08), 2008.

[59] X. Liu, W, Lin, A. Pan, et al. WiDS checker: combating bugs
in distributed systems, in Proceedings of the 4th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI’07), 2007.

