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ABSTRACT 
Relative debugging traces software errors by comparing two 
executions of a program concurrently - one code being a reference 
version and the other faulty. Relative debugging is particularly 
effective when code is migrated from one platform to another, and 
this is of significant interest for hybrid computer architectures 
containing CPUs accelerators or coprocessors. In this paper we 
extend relative debugging to support porting stencil computation 
on a hybrid computer. We describe a generic data model that 
allows programmers to examine the global state across different 
types of applications, including MPI/OpenMP, MPI/OpenACC, 
and UPC programs. We present case studies using a hybrid 
version of the ‘stellarator’ particle simulation DELTA5D, on 
Titan at ORNL, and the UPC version of Shallow Water Equations 
on Crystal, an internal supercomputer of Cray. These case studies 
used up to 5,120 GPUs and 32,768 CPU cores to illustrate that the 
debugger is effective and practical. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – 
debugging aids, testing tools.  

General Terms 
Design, Languages, Performance. 

Keywords 
Parallel debugging; Hybrid Programming; Scalability 

1. INTRODUCTION 
To take advantage of architectural innovation in current 

supercomputers, existing scientific applications are often 
translated into different programming models and languages. 
However, guaranteeing the correctness of converted programs is 
challenging, and finding errors can be difficult. A hybrid 
supercomputer containing heterogeneous processors and a deep 
memory hierarchy allows programmers to exploit multiple levels 
of parallelism. A variety of programming techniques, such as MPI 
[52], OpenMP [40], OpenACC [53], and PGAS (Partitioned 
Global Address Space) [6] languages, can be used to achieve 
increased performance at three different levels of parallelism: 

message passing, shared memory threads, and vectorization. 
Using multiple programming techniques within one program 
significantly complicates software development and portability, 
and correspondingly increases the chances of errors. It is critical 
to provide an efficient way to validate the correctness of 
computing results across different programming languages and to 
detect the root cause of any errors during program conversion.  

One simple but effective way of validating the correctness of 
the conversion is to compare the results of a ported version 
against those of the initial trusted version [43]. In order to achieve 
this, programmers often resort to executing printf and diff 
commands to detect the numerical errors. However, this ad-hoc 
approach is impractical in large-scale programs that decompose 
the data across a deep memory hierarchy for a number of reasons. 
First, comparing data between two programs that have different 
data partitioning schemes requires the programmer to fetch each 
piece of distributed data and to reconstruct the global data 
structure manually, as illustrated in Figure 1. This process is 
labor-intensive and error-prone. Second, IO commands like printf 
cannot handle the enormous parallelism and memory size of a 
hybrid supercomputer. Especially when comparing two large data 
sets, the ad-hoc method using printf and diff is extremely time-
consuming. Third, accessing data located on GPUs is difficult 
[39] and this exacerbates the complexity of reasoning about data 
that is decomposed on an accelerator-based cluster at runtime. 
Similarly, most existing debugging tools only allow programmers 
to select an individual thread, process or kernel before 
investigating errors. However, validating the global state of a 
hybrid program at runtime is rarely provided. 

Relative Debugging [14] assists a programmer to locate errors 
by observing a divergence in relevant data structures between two 
versions of the same program as they are executing. It was 
initially proposed to simplify parallelizing sequential codes 
[14][15]. Specifically, relative debugging releases programmers 
from managing the complicated control flow of a parallel 
program, but instead it allows them to focus on the incremental 
updates in key data structures.  

In this paper, we extend relative debugging for porting stencil 
computation on hybrid supercomputers. We argue that relative 
debugging is an effective way of validating the global state of 
large-scale hybrid programs. In addition, it helps programmers 
find faulty sections by narrowing a suspicious region of a large 
program to a manageable area using a divide and conquer 
strategy. Further, relative debugging allows a programmer to 
concentrate on where two related codes are producing different 
results without concern for the complexity of reconstructing 
decomposed data in scientific applications. It is effective for 
locating errors such as those caused by changing the runtime 
environment, for example, the number of processors in a large-
scale system, and switching between CPUs and GPUs.  
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This paper describes three significant innovations required for 
hybrid computing: 
• A generic data model for generalizing different partitioning 

schemes used in stencil computations at different levels of 
parallelism on hybrid machines; 

• Support for data comparison across a mix of programming 
models and languages: message passing, threading, and 
vectorization; and 

• A performance evaluation of data comparison methods and two 
optimizations that improve the speed of data comparison on a 
large-scale hybrid machine. 

This paper presents a relative debugger, called the Cray 
Comparative Debugger (CCDB), which allows a programmer to 
inspect the global state between (and across) different 
programming techniques, including hybrid MPI/OpenMP, 
MPI/OpenACC, and UPC [55], with a uniform method. CCDB 
allows programmers to compare a large amount of data, otherwise 
distributed across hybrid processors, by constructing a global 
view of data structures at runtime.  

We demonstrate the effectiveness of relative debugging by 
investigating bugs in some real world programs, such as a 
hybridized version of DELTA5D [44] running on Titan, a 
supercomputer at ORNL with 5,120 GPUs [54], and a UPC 
version of Shallow Water Equations [13] running on Crystal, a 
Cray internal supercomputer with 32,768 CPU cores. In addition, 
we evaluated CCDB’s performance with two large-scale 
experiments running on Titan and Crystal respectively to 
demonstrate that the techniques scale up and are practical for real-
world large-scale applications. These case studies are the largest 
we have ever attempted, and also represent the widest range of 
programming systems, and illustrate the effectiveness of the new 
work discussed in this paper. 

The remainder of the paper is organized as follows. Section 2 
presents our motivation. Section 3 discusses new features required 
for hybrid computing. Section 4 presents an enhanced global data 
model that generalizes different partitioning schemes. Section 5 
discusses how to perform data comparison between programs 
written in different languages. Section 6 presents two 
optimizations to improve the efficiency of data comparison. 
Section 7 describes case studies and the performance evaluation 
of CCDB on Titan and Crystal. Section 8 discusses related work. 
Finally Section 9 presents our conclusion and future work. 

2. MOTIVATION 
A large number of hybrid supercomputers already contain 

accelerators such as NVIDIA’s GPGPU, and coprocessors such as 
Intel’s Xeon Phi. In order to take advantage of these, applications 
need to be ported to a new platform as quickly and cheaply as 
possible. A variety of programming abstractions are provided to 
address parallelism on a hybrid computer, with different trade-offs 
between performance and programming complexity. Programmers 
typically select one to meet different goals when porting code, 
such as pursuing better performance or achieving easier 
maintainability. However, verifying the correctness of the ported 
program is still challenging. 

For instance, S3D [30], a massively parallel DNS (Direct 
Numerical Simulation) solver developed at Sandia National 
Laboratories, was recently hybridized using MPI and OpenACC. 
However, testing and debugging was difficult [31]. S3D was first 
ported to OpenMP before it was translated to OpenACC, taking 
advantage of the common regions shared by both OpenMP and 
OpenACC. At each step, the revised code was verified with a 
series of physics-based comprehensive examinations. Using these 
physics-based tests, errors were found by observing how different 

physical processes affected the solution [31]. This method of 
detecting errors is so complicated that only experts who 
understand the physical processes can use it. 

To simplify validating the ported program, and to help a 
programmer find the root cause of any errors, relative debugging 
was proposed in the mid 1990s. Typically, the ported program and 
the original version compute the same set of data. Relative 
debugging assumes that both versions’ global state should be very 
similar at runtime. Therefore, verifying this invariance at runtime 
can assist programmers to locate errors efficiently [14][15].  

Using declarative assertions, relative debugging automates 
comparing the suspect program’s runtime states to the reference 
program. An example of an assertion is illustrated as follows:  

assert $ref::large@trusted.c:65 = $sus::super@ported.c:68 
In the above example, $ref and $sus are the process set of the 

reference version and suspect version respectively, while the 
assertion compares the value of large variable in “trusted.c” at 
line 65 with the value of super variable in “ported.c” at line 68. 
During a debugging session, a programmer can define as many 
assertions as necessary. In addition, the programmer can add new 
assertions iteratively to refine a suspect code region until it is 
small enough to inspect manually. Prior to this work, our 
implementations [14][26] did not support hybrid computers.  

In this paper, we investigate stencil computation to 
demonstrate the effectiveness of relative debugging for hybrid 
computing. Stencil computation represents a large fraction of 
scientific simulation, and is used in solving PDE (Partial 
Differential Equations), complex multigrid, and adaptive mesh 
refinement methods. It is found in weather and atmospheric 
simulations [32], fluid dynamics, simulations of chemical process 
[2]. Hybrid computers equipped with GPGPUs have been shown 
to execute stencil code efficiently [3][46]. 

3. RELATIVE DEBUGGING FOR HYBRID 
PROGRAMS 

The data of a hybrid application is typically partitioned across 
two layers [51]: inter-process and intra-process. With the inter-
process partition, the global data is decomposed across a number 
of processes residing on different compute nodes. With the intra-
process decomposition, each process’s data chunk is split between 
CPUs and accelerators and is shared by a group of threads, which 
are either CPU or GPU threads. Accordingly, a variety of data-
decomposition methods are used in a mixed manner with different 
programming techniques for hybrid computing. For example, 
using MPI, programmers manually partition data across processes, 
while UPC decomposes the global data in a transparent manner. 
OpenMP supports directive-based parallelization using a group of 
shared-memory threads on the CPU, while OpenACC expects the 
compiler to identify code that can be accelerated with programmer 
specified directives and allows a programmer to move data 
between CPU memory and accelerator memory using directives. 
Figure 2 illustrates an example of a global matrix partitioned into 
16 sub-arrays, which are processed by a set of specific processes, 
such as OpenMP, OpenACC or UPC processes. 

Figure 1. print+diff cannot compare distributed data sets.  
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Applying declarative assertions to hybrid applications must 
address several challenges. First, comparing two sets of online 
data should handle the different data partitioning schemes used at 
different levels of parallelism. Second, data comparison across 
different programming languages and models is required. Third, 
although applying declarative assertions to the small-scale 
execution of a suspect program can detect many errors, there are 
still critical bugs that only occur with the large-scale runs [25]. 
Therefore, an efficient data comparison solution that can handle a 
large amount of data is needed.  

To bridge the variety of data partitioning schemes used in 
practice at different levels of parallelism, we propose a generic 
data model for general stencil computations on a hybrid computer. 
Using this model, a global view of relevant data structures is 
automatically reconstructed across different types of applications 
at runtime. This enables a programmer to reason about a data set 
that is decomposed on a hybrid cluster from a global point of view 
without concern for the actual decomposition scheme. 

To support relative debugging with different programing 
techniques, we have extended our existing debug server 
architecture to provide decomposition-independent comparison 
across OpenACC, OpenMP, and UPC programs. Further, two 
performance optimizations have been applied to improve the 
efficiency of data comparison significantly. 

CCDB’s architecture, interface, and debugging methodology 
for hybrid computing are similar to our previous work [14][35], 
which are summarized in the Appendix.  

4. A GENERIC DATA MODEL 
Stencil codes [33] typically compute a space and time discrete 

simulation that is represented using a matrix. During the 
simulation, each element updates its state according to its own 
state and its neighbors’ states in previous time steps. To 
parallelize the execution, the matrix is decomposed into a number 
of smaller chunks using grids. Each piece of partitioned data can 
then be processed using a thread or process. Computing the data 
points at the borders of each chunk requires the values of elements 
from its neighboring partitions, which are called halo cells [22]. 
This type of decomposition is typically a block-block based data 
distribution scheme [33][51], although other regular patterns are 
also possible.  

4.1 Limitation of Previous Work  
Our previous work [35] 

composes partitioned data only 
for MPI applications with simple 
cases, as illustrated in the figure 
on the right. Using a special 
declarative command, blockmap 
[35], a data structure partitioned 
across MPI processes is collected 
by a client and forms a global state which can be compared to 
detect differences between two MPI programs (or an MPI 
program and a sequential one). Using blockmap, a programmer 
can express block and cyclic data distribution [28] across MPI 
processes, while the debugger uses it to construct a global view of 
the data at runtime. However, previous work did not handle halo 
cells that are widely used in real world applications, and it could 
not debug hybrid applications because it did not handle data 
partitioning between threads in shared memory and accelerators. 

4.2 Generalizing Different Partition Schemes  
In this paper, we generalize our previous work for various 

partition schemes adopted in different programming methods for 
stencil computations. We define the generic data model as 

follows. Let 𝑑𝑎𝑡𝑎[𝑑!,… ,𝑑!] denote the shape of an array, in 
which k is the dimension count of the array and di is the size of the 
array’s i-th dimension, in which 1 ≤ 𝑖 ≤ 𝑘 . Function 
𝒃𝒍𝒐𝒄𝒌𝒎𝒂𝒑(𝐴,𝑚!,… ,𝑚!)  represents the decomposition 
geometry of a global array, denoted by A, in which mi is the 
number of partitions on the i-th dimension. The partition function 
decomposes the global array into blocks. Each block consists of a 
number of contiguous elements computed by an independent 
processing unit, such as a process, or a thread. In real world 
applications, the actual data partition includes its halo cells, which 
is denoted 𝒉𝒂𝒍𝒐(𝐴,𝑔!,… ,𝑔!) and gi is the halo’s depth on the i-th 
dimension. For instance, given the 2D array 𝐴 = 𝑑𝑎𝑡𝑎[16,32] 
shown in Figure 2, 𝒃𝒍𝒐𝒄𝒌𝒎𝒂𝒑(𝐴, 4,4)  indicates that A is 
partitioned into 16 sub-arrays of 𝑑𝑎𝑡𝑎[4,8] using a block-block 
decomposition scheme, in which the halo cells for each sub-array 
is h=  𝒉𝒂𝒍𝒐(𝐴, 1,1). This model represents data partitions applied 
to different levels of parallelism, such as inter-process, inter-
thread or inter-device. Recursively applying it can represent 
multiple-level data decomposition. 

𝐶! =   𝑺𝒍𝒊𝒄𝒆𝑯𝒂𝒍𝒐𝑶𝒇𝒇 𝐶!!, ℎ , 1 ≤ 𝑗 ≤ 𝑛   (1) 

𝐴 =   𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒆 𝑭𝒍𝒂𝒕𝒕𝒆𝒏 𝐶! , 1 ≤ 𝑗 ≤ 𝑛   (2) 

𝑚𝑎𝑥_𝑐𝑜𝑛𝑡_𝑠𝑖𝑧𝑒 =    𝑚!
!!!!!!
!!!    (3) 

Reconstructing the original global data, we need to remove 
the halo cells to generate the original partitioned chunk without 
any halo boundaries and map each chunk into the global data 
structure. These two steps are achieved using re-composing 
algebra, as noted in Equation (1) ~ (3). Creating the global view 
for a multi-dimensional array requires concatenating all of its sub-
arrays together in physical memory, which is always one-
dimensional. Given n sub-arrays with halo cells, denoted by 
𝐶!! = 𝐴 𝑥!!

! ,… , 𝑥!!
! (1 ≤ 𝑗 ≤ 𝑛) , each of them is flattened to 

form a one dimensional sub-array after removing its halo 
boundary, in which  𝑥′!

! = 𝑙′!
!: ℎ′!

! and  𝑙′!
!and ℎ′!

! are the lowest and 
highest rank of 𝐶′!

!on the i-th dimension respectively. Each sub-
array without halo boundaries is denoted by 𝐶! = 𝐴 𝑥!

! ,… , 𝑥!
! , as 

illustrated in Equation (1), in which 𝑥!
! = 𝑙!

!: ℎ!
!. Using Equation 

(2), they are mapped back to the original global data. The process 
that flattens these sub-arrays and then concatenates them to form a 
one-dimensional global array is illustrated in Figure 2. In order to 
minimize the memory copy overhead of concatenating the 
flattened sub-arrays, Equation (3) decides the maximum 
continuous elements that can be copied each time. Finally, the 
flatted global array will be morphed to form the original multi-
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Figure 2. Constructing a 2D global matrix for hybrid programs. 
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dimensional matrix.  In case that no halo cell is specified, only 
Equation (2) and (3) are required to construct the global array. 

4.3 Decomposition-independent Comparison 
Large data sets are both too big to reassemble in a centralized 

manner, and are too large to compare sequentially. Thus, the 
generic data model described to date should facilitate data 
comparison in parallel. In order to compare two data sets that are 
decomposed using different partition schemes, we detect the 
maximum continuous elements between them, which are called 
basic comparison block (BCB), denoted as 
𝐵𝐶𝐵 = 𝑑𝑎𝑡𝑎[𝑑!! ,… ,𝑑!!].  

The partition schemes used in the reference program and 
suspect program are denoted by 𝑅 = 𝒃𝒍𝒐𝒄𝒌𝒎𝒂𝒑  (𝐴,𝑚!

! ,… ,𝑚!
!) 

and S = 𝒃𝒍𝒐𝒄𝒌𝒎𝒂𝒑  (𝐴,𝑚!
!,… ,𝑚!

!)  respectively. An overlap 
operation is applied to R and S to detect the maximal comparable 
sub-blocks. Specifically, the overlap operation computes the size 
of BCB’s every rank using Equation (4) for each dimension of the 
two different data decompositions.  

𝑑!! = 𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡_𝑐𝑜𝑚𝑚𝑜𝑛_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑚!
! ,𝑚!

!   ,1 ≤ 𝑖 ≤ 𝑘           (4) 

Figure 3 illustrates an example of conducting an overlap 
operation to identify the sub-blocks that can be compared directly 
across a row-major decomposition and a column-major partition. 

4.4 The Interface of Data Model Construction 
CCDB uses the size of the global data and its partitioning 

scheme to construct the global view. To identify them, CCDB 
provides two methods: automatic and semi-automatic. The 
automatic way is used for programing languages, such as UPC, in 
which data decomposition information can be detected. To 
distribute shared array variables, UPC maps array elements across 
different threads using affinity [57], which allows a programmer 
to describe different domain decompositions such as block and 
cyclic [28]. To reconstruct global data decomposed in UPC, 
CCDB retrieves affinity metadata, and automatically detects the 
partitioning scheme. Throughout the UPC debugging session, this 
(automatically created) partition scheme is linked to its variable 
symbol to reconstruct global-shared arrays for data comparison. 

In contrast, the semi-automatic way applies to programming 
techniques, such as MPI, that do not have the global data size and 
partition information. A programmer defines them explicitly using 
the blockmap construct. As we noted earlier, blockmap has been 
extended to support the generic data model with halo cells. 

Languages that manage the decomposition process make it 
easier for the programmer both during data construction and 
debugging. Whilst the semi-automatic method requires 
programmer intervention, it is necessary because the 
decomposition information is never represented declaratively, and 
is effectively coded in the way the program is written. 

5. DATA COMPARISON ACROSS 
DIFFERENT PROGRAMMING MODELS 

The generic data model and decomposition-independent 
comparison can be realized in different ways. CCDB facilitates 
this function across MPI/OpenMP, MPI/OpenACC, and UPC 
programs by conducting comparison at the inter-process partition 
level. This converts the various data decomposition at different 
parallelism layers into a unified representation. 

CCDB servers restore the data decomposed by different data 
manipulation policies in a specific programming technique at 
runtime and locate the partitioned chunks assigned to each 
message passing process. For example, in OpenMP, the data 
processed by multiple threads using shared memory should be 
accessed only when its update is synchronized across all the 
threads. In OpenACC, an offloaded variable is dynamically 
copied between CPU and GPU during the execution of the code. 
Therefore, constructing the global data view for OpenACC 
processes must automatically detect where the targeted data 
resides and retrieve it from either the GPU memory, or CPU 
memory, without the user specifying the location for variables. 
Similarly, an array in UPC that is allocated dynamically requires 
to be tracked and located automatically for data comparison. 

5.1 Limitation of Previous Work 
Our previous work [35] only handled MPI applications, as 

shown in Figure 4. CCDB has been extended substantially to 
debug UPC programs, to provide multi-threaded debugging for 
OpenMP, and to control hybrid OpenACC programs. With the 
new extensions, shown in Figure 4, CCDB servers can cooperate 
with the client to enable data comparison across different types of 
hybrid applications.  

5.2 OpenACC  
OpenACC hides the details of CUDA [39], like threads and 

blocks [50], from programmers by augmenting a sequential 
program with user specified directives. Programmers can specify 
the regions of an OpenACC program to be offloaded to the 
accelerator device, called compute regions, while the rest of the 
program is executed on the host CPU. The address spaces for the 
CPU and GPU codes are separated, and programmers can move 
an offloaded variable between the CPU and the GPU using 
OpenACC directives at runtime. However, accessing data residing 
on the GPU may incur a large overhead   

The CCDB server, which can only execute on the CPU cores, 
needs to retrieve offloaded data automatically from either the 
GPU memory, or CPU memory, in an OpenACC process, without 
users specifying the memory address. In addition, accessing the 
variables residing on the device should be done efficiently. As an 
extra complication, CPUs and GPUs may use different floating-
point representations. Therefore, the floating-point numbers 
processed by both CPU and GPU cannot be bitwise compared due 
to inconsistent precision. 

Figure 3. Conducting an overlap operation to detect BCBs. 
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In order to resolve the above issues, a CCDB server uses an 
instance of CUDA-GDB to debug the OpenACC program as 
illustrated in Figure 4. As part of this work, we have improved the 
original version of NVIDIA CUDA-GDB to facilitate debugging 
OpenACC on Cray systems. We modified CUDA-GDB to move 
the data of a targeted GPU variable residing on the GPU device 
into the memory space of CUDA-GDB automatically, which is in 
the memory of the host. To enable comparing floating-point 
numbers across GPU and CPU, CCDB allows the programmer to 
set a tolerance threshold that is used to truncate the floating-point 
numbers to the same precision before they are compared. Using 
CUDA-GDB, the CCDB server can pause the execution of an 
OpenACC program at any line of interest within a compute region 
and subsequently access the data of a targeted variable residing on 
the GPU memory. This enhancement aids the client to construct 
the global view for data in both the CPU and GPU memories. 

5.3 OpenMP  
OpenMP processes contain both sequential and parallel 

regions. To construct a global view of a given data structure, each 
debug server identifies the section of data to be compared. In case 
the data is located in a sequential region, it is straightforward, 
because data is always updated coherently and consistently by one 
thread. However, in a parallel region, a number of shared memory 
parallel threads execute independently. Before copying the shared 
data, CCDB needs to guarantee that each of the parallel threads 
pauses at the same breakpoint specified in the assertion. 

GDB provides multi-threaded debugging with two options: 
non-stop mode and all-stop mode. The non-stop mode allows 
other threads to continue running when one thread stops, while the 
all-stop mode pauses all threads at the same time. Combing the 
non-stop mode with GDB’s asynchronous command execution, 
the CCDB server can control all of the parallel threads to stop at 
the desired position before fetching the required data. This allows 
declarative assertions to work correctly with OpenMP processes.  

5.4 UPC  
UPC requires the debugger to track the global data that is 

dynamically allocated in large-scale UPC programs.  Both the 
global size and local size of each dynamic array are not provided 
by the UPC runtime. Therefore, CCDB must detect these sizes in 
an automatic manner, and retrieve the data in each UPC thread 
correctly. To address this issue, CCDB infers the size of the 
global array using the information provided by the UPC runtime, 
such as the number of UPC threads and the affinity data. In 
addition, CCDB expects the user to specify the type cast explicitly 
when inspecting a pointer variable. The debugger finalizes the 
global size of the (dynamically allocated) array by cross checking 
the user-provided information against CCDB’s calculation. To 
retrieve the local portion of a global shared array, CCDB detects 
the start address of the allocated block from the UPC runtime, and 
calculates the amount of data allocated to the corresponding UPC 
thread. With such enhancement, CCDB can construct the global 
data manipulated by UPC for comparison. 

6. SCALABLE DATA COMPARISON 
Our previous work [16][35] implemented a hash-based 

method and a point-to-point (P2P) technique for comparing large 
data sets in pure MPI applications. These two methods avoid 
reassembling a global structure in the client, and distribute much 
of the comparison to the back-end servers [16][35]. They are 
inherently scalable because more resources are available to 
parallelize data comparison as the machine size increases. 
Specifically, the hashing scheme replaces each data structure with 
a hashed signature, which is much smaller than the original data, 

and can be transferred back to the head node. Alternatively, the 
P2P technique allows debug servers to communicate data directly 
using TCP sockets, and compare without reassembling the global 
view on a single node. These two methods allow programmers to 
compare large data structures on supercomputers, and have been 
described elsewhere [16][35]. However, when they were modified 
to handle large-scale stencil computations, we found a number of 
assumptions in the implementation did not scale as well as 
expected.  

6.1 Scalability Bottleneck of Previous Work 
Both the hash-based and P2P methods parallelize data 

comparison and reduce data traffic between the client and servers. 
To further improve scalability, we used the MRNet library [41] to 
facilitate client-server communication, which provides a 
hierarchical tree-based communication substrate. However, 
previous work created significant aggregation overheads and 
generated a large amount of unnecessary network traffic at scale. 
In addition, servers used in P2P comparison distributed socket 
information using Lustre, a distributed file system. On large-scale 
systems, this generated a large amount of concurrent small disk 
I/O operations that caused a significant overhead and slowed 
down the startup time significantly. 

6.2 Optimizations 
Given two sets of partitioned data, CCDB first detects an 

appropriate granularity of data to compare. CCDB computes an 
overlap region using Equation (4) to detect BCB pairs that can be 
compared directly. When data is partitioned with halo cells, 
CCDB servers remove them from each data partition using 
Equation (1). For hashing, CCDB passes data to a hash function in 
parallel for each BCB in the back-end servers. The hash 
signatures are then compared sequentially in the client. The P2P 
technique, in contrast, communicates each BCB’s original data 
directly between CCDB servers, and the BCB pairs are compared 
in parallel as shown in Figure 13.  
6.2.1 Scalable Collection of Comparison Results 

 The hash signatures and the P2P comparison results are 
transferred to the client using MRNet’s data aggregation filter 
[41]. Each message processed by MRNet is either a hash signature 
or P2P result, which is attached with the relevant MPI process or 
thread group. Our previous work used a bitset to represent the 
process/thread set. Each bitset has a fixed size and maintains all 
processes/threads in the entire system (each local thread id is 
mapped to a global id). As messages are transferred along the 
MRNet communication tree, those with the same content merge 
their bitsets, as shown in Figure 5. 

However, these two comparison methods have different data 
aggregation patterns. P2P results have only two possible 
outcomes: either same or different, which generate close-to-
perfect aggregation in most cases. In contrast, the hash signatures 
vary between the worst-case and best-case aggregation, depending 
on the application. A fixed-size bitset is not efficient for collecting 

Figure 5. Range-set for scalable data aggregation. 
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results for large-scale data comparison, because it contains many 
unnecessary bits for both close-to-best and close-to-worst 
aggregations. Also, the merging overhead is significant. To 
address this issue, we implement range-set, which provides an 
adaptive solution for different aggregation scenarios and 
minimizes the aggregation overhead by taking advantage of the 
MRNet tree’s topology. 

A range-set consists of a series of ranges that are relevant to a 
single message. A range is denoted as 𝑟𝑎𝑛𝑔𝑒 = 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑  
(𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑛𝑑), consisting of a set of contiguous MPI ranks or 
thread ids, which are relevant to an aggregated message, shown in 
Figure 5. In case start=end, only one process or thread is 
represented by a range. Each message is attached with a range-
set, instead of bitset. For perfect aggregation, all processes/threads 
in the entire space are represented using one range instead of one 
large bitset, all bits of which are ones. For the worst-case 
aggregation, each message is only attached 2 integers: start and 
end, instead of one large bitset, most bits of which are zeros. 

Merging ranges takes advantage of the tree’s topology. We 
utilize MRNet’s back-end attachment mode [8] to initialize a 
communication tree, which guarantees the MPI ranks are ordered 
sequentially across the leaf nodes. Therefore, the MPI rank / 
thread id space owned by any sub-tree on the same level has no 
intersection, as shown in Figure 5. When messages are transferred 
upstream, ranges from sibling communication nodes are 
concatenated in a sorted order. If two ranges are immediately 
adjacent to each other, they merge into one, shown in Figure 5. 
For the worst-case aggregation, no ranges are merged or 
concatenated. The best-case aggregation will generate one range 
at the root of the MRNet tree. 

We validated the overhead of range-set and bitset for both 
comparison methods on Crystal, the configuration of which is 
shown in Table 1, using up to 32,768 parallel processes. For the 
hashing method, each parallel process generated one signature and 
the identical degree of all signatures varies between 0%, which 
means all signatures are different, and 100%, which means all 
signatures are identical. For P2P, each process randomly created 
an outcome: true or false. Figure 6 illustrates the ratio of the result 
collection time using range-set vs. using bitset. After the number 
of comparison results is more than 2,048, range-set outperforms 
bitset significantly for both comparison scenarios. For P2P, range-
set consumes only 10% of the time used by bitset with 32,768 
processes. For the hashing comparison method, range-set 
performs well as the identical degree varies. When less than 90% 
signatures are identical, collecting results using range-set is up to 
10X more efficient than using bitset. 

6.2.2 Creating Socket Connections for P2P 
 P2P comparison requires point-to-point direct communication 

between debug servers attached to two separate programs. Our 
previous implementation wrote the information required to create 
socket connections to a Lustre file system. However, this method 
did not scale well and it took more than 22 seconds to create 8,192 
socket connections on Crystal. To improve the performance, 

CCDB client takes the following steps: 1) it collects servers’ 
socket information, such as hostname and port number, using 
MRNet; 2) the client swaps the information between two set of 
servers using MRNet broadcasting; 3) the client distributes two 
data decompositions, including the global data size and partition 
schemes, to all of the servers. Computing Equation (4) on the two 
decomposition schemes, each server identifies those BCBs that it 
contains. Combining the broadcasted socket information with its 
own BCBs, each server can detect its communication peers in the 
opposite server set. Finally, all of the socket connections required 
by P2P comparison are created in parallel. In comparison to our 
previous work, this enhancement saves more than 96% of the 
overhead to create socket connections for P2P. Specifically, 
creating 8,192 socket connections on Crystal takes less than 1 
second, while creating 32,768 connections takes around 4 
seconds. This overhead is amortized by subsequent comparisons. 

7. CASE STUDIES  
In this section, we demonstrate CCDB with two case studies 

using two supercomputers: Crystal and Titan [46], the 
configurations of which are listed in Table 1. First, we debug an 
implementation of the Shallow Water Equations (Shallow) when 
ported from sequential C to UPC. Using shallow, the performance 
of data comparison was evaluated on Crystal. This case study 
demonstrates the efficiency of constructing the global data view, 
the functionality of supporting comparison across different 
programming paradigms, and the efficiency of data comparison. 

Second, we locate errors in a large, real world, application 
(DELTA5D) using CCDB as it was ported from an MPI 
implementation to Titan with both MPI and OpenACC. The 
overhead of assertions was evaluated using DELTA5D on Titan 
with up to 5,120 GPUs. This case study demonstrates the 
efficiency of relative debugging on a large-scale hybrid 
supercomputer and its cross-model data comparison.  
• The Shallow Water Equations [13] abstracts a simple 

representation of the atmosphere, describing the motion of an 
incompressible fluid with a free surface. Both gravity waves and 
Rossby waves are covered. Shallow has been implemented in a 
range of languages for a variety of machines [19]. It is a 
simplified version of code found in weather prediction systems, 
such as WRF [32], but contains physics that is sufficiently real 
to demonstrate the debugging methodology used in CCDB. 

• DELTA5D [44] is a Monte Carlo particle simulation tool 
developed at Oak Ridge National Laboratory (ORNL). 
DELTA5D simulates a variety of stellarator transport 
phenomena by following groups of particles partitioned onto 
different processors in parallel. It solves four-coupled 
Hamiltonian guiding center equations for each particle, 
advancing them in both poloidal and toroidal angles in Boozer 
coordinates and the conjugate momenta. 

Table 1.  Configuration of Titan and Crystal 

Config. Nodes#  CPU GPU Memory 

Titan 18,688 16-core AMD Interlagos 
Processor 

NVIDIA 
K20X GPUs ~ 700 TB 

Crystal 1,048 Intel SB16, IV20, HW24, 
HW32 Processors 

None ~ 140 TB  

7.1 Shallow Water Equations 
Shallow contains several key data structures such as p (i.e. 

pressure), u (i.e. zonal wind), v (i.e. meridional wind), and psi (i.e. 
velocity stream function) etc., each of which is a 2D array. In the 
ported UPC code, these data structures become global-shared 
arrays and their elements are accessed by parallel UPC threads. 

Figure 6. Comparing overheads of range-set and bitset. 
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Table 2.  Outcomes Comparison of Shallow Water Equations 
Outcomes Pot. Energy Kin. Energy Total Energy Pot. Enstrophy    
Sequential 30706.844 46056.449 76763.297 3.367453e-16 
2 Threads –nan –nan –nan –nan 

Executing the ported UPC code with one thread produces 
results identical to the sequential version of Shallow. However, 
executing the same code with two or more threads generates 
incorrect output. After 150 cycles, various diagnostic quantities 
displayed by the diag function in the parallel execution were 
NANs, as illustrated in Table 2.  To investigate the error, we 
compared the sequential execution with the parallel execution of 
two threads using assertions listed in Figure 7. 

The main function of Shallow and the dependency of 
investigated variables are illustrated in Figure 8. For the first time 
of re-execution, we executed assertions 1~5. Assertions 1~4 
verify that the key data structures are initialized correctly, while 
assertion 5 validates if pressure (p) is computed correctly for each 
iteration. However, assertion 5 shows that p is incorrect after the 
first time step. On the second execution we added assertion 6 to 
verify p’s dependent variable dpdt. As expected, assertion 6 
failed. On the third execution, we executed assertions 7 and 8 to 
examine variables cv and cu, both of which form dpdt. Assertions 
7 and 8 passed, demonstrating that both cu and cv are correct. 
Using 3 re-executions and 8 assertions, we have narrowed down 
the suspect area to the function timetend.   

Both cu and cv are global-shared arrays and they are 
computed (in function calcuvzh) before the time tendency 
function call (timetend). Interestingly, the values that mismatched 
changed in different runs, which suggested a synchronization 
failure. When the C code was translated into UPC, the 
programmer missed adding data dependencies between the 
function calls. To fix it, we placed one upc_barrier instruction 
after each function call (e.g. calcuvzh, timetend, and tstep). With 
this fix, the ported UPC code works correctly with two or more 

threads. In addition, re-running CCDB again passed all the 
assertions.  
7.1.1 Scalability of Data Comparison  

We measured the performance of assertions for both hash-
based data comparison and P2P techniques when comparing two 
executions of the UPC version of Shallow on Crystal with an 
increasing number of parallel processes, as illustrated in Figure 9. 
During the experiments, Shallow computed 1,048,576 x N grids, 
in which N is the number of processes. Two debugging sessions of 
the UPC Shallow were launched with the same number of 
processes and an assertion was applied to compare the values of 
pressure (p) between them. Each assertion was performed twice, 
one with P2P and the other with hashing. The variable p contains 
1M floating-points in each UPC process. With 32,768 processes, 
the total amount of data to be compared in one UPC program is 
128GB. This is constructed as a weak-scaling experiment to 
examine the efficiency of data comparison techniques as the 
number of processes increases.  

The time of executing a comparison was measured 3 times for 
each comparison method and the averaged values are presented. 
For the hash-based comparison, the latency measured includes: 1) 
retrieving the target data from GDB at servers, 2) applying a hash 
function to them, 3) transferring the hash signatures to the client, 
4) reconstructing the received signatures with the global view, and 
5) comparing them at client. With the P2P comparison, the 
examined time includes: 1) retrieving the target data at servers, 2) 
communicating the original data between servers and comparing 
them, and 3) collecting the compared results and mapping them 
into the global structure.  

The total time required by both hashing and P2P are almost 
flat as the number of processes increases from 128 to 32,768. The 
actual time for a debug server to hash the compared data or to 
perform P2P comparison is around 9 seconds. This is mostly the 
overhead for retrieving 1M floating-points using GDB/MI [24] 
and converting them to architecture independent format (AIF) 
[17]. Compared to the server time, the overhead at client and 
collecting comparison results using MRNet can almost be 
ignored. For hashing, the client consumes less than 0.1 seconds, 
which was mainly for constructing the generic data model and 
comparing signatures, as illustrated in Figure 9. The time 
consumed by hashing is almost double that of the P2P technique. 
This is because handling two program’s data at servers were 
performed sequentially for hashing. In contrast, using P2P, data in 
the two UPC programs were processed in parallel. To conclude, 
both methods produce reasonable execution times for comparing 
256GB data (128GB per program) with 65,536 processes (32,768 
processes per program). To the best of our knowledge, no other 
tools support validating global structures at such a scale. 

7.2 DELTA5D 
The MPI implementation of DELTA5D has 10 Fortran source 

files, each of which contains several modules. After it was 
hybridized using OpenACC on Titan, the module heating_orbits, 
as illustrated in Figure 11, produced incorrect results. 

Figure 7. Assertions for UPC Shallow Water Equations. 
 

#start the ported UPC code of Shallow Water Equations 
launch $a shallow 
launch $b{2} shallow 
#check initialization 
assert $a::psi@"sw.upc":69=$b::psi@"sw.upc":69   (1) 
assert $a::u@"sw.upc":69=$b::u@"sw.upc":69                  (2) 
assert $a::v@"sw.upc":69=$b::v@"sw.upc":69                  (3) 
assert $a::p@"sw.upc":69=$b::p@"sw.upc":69                 (4) 
#because all energy values are wrong, check p 
assert $a::p@"sw.upc":88=$b::p@"sw.upc":88                 (5) 
# p is wrong, check its dependent variable dpdt 
assert $a::dpdt@"sw.upc":79=$b::dpdt@"sw.upc":79       (6) 
# found difference in the first column of dpdt, so check cu, cv 
assert $a::cu@"sw.upc":78=$b::cu@"sw.upc":78             (7) 
assert $a::cv@"sw.upc":78=$b::cv@"sw.upc":78      (8) 

Figure 8. Debugging UPC Shallow Water Equations. 
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Table 3.  Outcomes Comparison of DELTA5D 

Key variable E_sum_Total num_left_Total 
MPI/OpenACC 0.1596255E+02 1951 

MPI 0.1560372E+02 1950 
CCDB can be used to perform comparisons before entering an 

OpenACC compute region, which guarantees that the GPU 
memory has been initialized correctly, and after a compute region 
completes, to examine if the code that has been offloaded 
generates correct results. Below, we illustrate how we refined the 
area of suspect code in heating_orbits, which is in the Fortran 
source file energetic_mp.f. 

With the simulation of 5,120x10,240 particles running on 
5,120 GPU nodes, after 1,000 time steps, heating_orbits module 
displayed incorrect results at the end of the module, as illustrated 
in Table 3. To investigate the error, we compared the incorrect 
execution to the original MPI execution launched with the same 
number of parallel processes. We executed assert commands 
listed in Figure 10, without using blockmap, because the data 
partition across both versions of DELTA5D is identical. 

The dependency of variables we investigated is shown in 
Figure 11. The heating_orbits module calculates the energetic 
particles lost on the outer surface of simulated orbits. Specifically, 
num_left_Total records the total number of lost particles across all 
MPI processes using a reduction operation applied to num_left, 
which is a local variable to keep the number of lost particles in 
each process. Similarly, E_sum_Total keeps the total energy for 
all of the lost particles, which is a collection of E_sum.  

We executed assert commands 1 and 2 to examine the values 
of num_left_at_itime and E_sum_at_itime, which respectively 
keep the local number of lost particles and energy for each time 
step. Both comparisons failed. Therefore, the errors are introduced 
before executing the MPI reduction operations.  

Each of E_sum_at_itime and num_left_at_itime contains the 
reduction result of an array within offloaded compute region 2 and 
3 respectively, as shown in Figure 11. Both reductions rely on 
index, an integer array. We examined the value of index using 

assertion 3 at the beginning of compute region 2. It confirmed that 
the value of index diverged after compute region 1. To examine 
whether compute region 1 creates any errors, we compared the 
values of index using assertion 4 before entering the region. It 
concluded that compute region 1 is incorrect.  

We realized that compute region 1 has race condition when 
updating iloss, which determined the branch of execution in that 
region and caused updating index incorrectly. This was confirmed 
using assert command 5 after compute region 1 completes.  

To locate the source of the race condition bug with this case 
study, we conducted 5 assertions with 3 iterations of inspection. 
Accordingly, the suspect area of heating_orbits codes was 
narrowed from 1,602 lines down to just 38 lines. Without using 
CCDB, we are unaware any other tool can provide a better 
solution. A recently proposed OpenACC debugging tool [49] 
allows comparing an OpenACC program with its sequential 
version at the granularity of a GPU kernel. The comparison is 
enabled through an enhanced compiler with adding extra source 
code directives and environment variables. However, this tool 
does not help DELTA5D case study because it cannot handle 
hybrid MPI/OpenACC programs. In comparison to this tool, using 
CCDB requires neither changes in the source code under debug 
and nor enhancements in compilers and runtime environments.  
7.2.1 Overhead of Assertions 

We evaluated the overhead of performing an assertion across 
both MPI and hybrid DELTA5D on Titan. Two assertions were 
applied to two array variables respectively: phi_loss and num_left. 
The details of these two variables are listed in Table 4. They were 
compared rank-by-rank without using blockmap, because both 
versions of DELTA5D have the same number of processes with 
identical data partition. The amount of data maintained by these 
two variables is comparatively small. Therefore, executing the 
assert command to them reflects the overhead of performing an 
assertion instead of the cost of processing a large amount of data.   

Table 4.  Compared variables 

Variable Residence Comment MPI Hybrid 

phi_loss CPU GPU An  array of 10,240 integers uniformly 
partitioned across the processes. 

num_left CPU CPU An array of 1,000 integers per process. 

An assertion is executed using a dataflow graph composed by 
several debugging commands, including set breakpoint, continue, 
and compare, as illustrated in Figure 14. Normally, the time of 
executing a declarative assertion is dominated by waiting to catch 
the specified breakpoint, which depends on specific applications. 
Therefore, to evaluate the overhead of assertions, we measured 
the time consumed by each debugging commands, the total of 
which represents the overhead of executing an assertion. The 
latency for each command was measured 3 times and the averaged 
assertion time is illustrated in Figure 12.  

For hybrid DELTA5D, each Titan node was assigned one 
OpenACC process. For the MPI version, each MPI process used 
one CPU core and each Titan node was assigned to hold up to 16 
MPI processes. During the experiment, each version of 
DELTA5D launched up to 5,120 parallel processes. The time of 
executing an assertion for both variables is between 0.05~0.11 
seconds during the number of processes increases from 10 to 
5,120. As illustrated in Figure 12, the latency of comparing a 
small amount of data for both variables increases slightly with the 
number of processes. However, it is sensitive to the back-end 
resource competition, which caused variations and even jitters 
around 80 processes. CCDB places the debug servers and MRNet 
communication processes on the same set of CPU cores allocated 

Figure 10. Assertions for debugging DELTA5D. 
 

#start the MPI and hybrid MPI/OpenACC code of DELTA5D 
launch $a{5120} delta5d_res_acc --gpu --aprun-args="-N1" 
launch $b{5120} delta5d_res_mpi 
assert $a::E_sum_at_itime@"energetic_mp.f":1416 

= $b::E_sum_at_itime@"energetic_mp.f":1416             (1) 
assert $a::numleft_at_itime@"energetic_mp.f":1464 

= $b::numleft_at_itime@"energetic_mp.f":1464          (2) 
assert $a::index@"energetic_mp.f":1405  

= $b::index@"energetic_mp.f":1405              (3) 
assert $a::index@"energetic_mp.f":1349  

= $b::index@"energetic_mp.f":1349        (4) 
assert $a::iloss@"energetic_mp.f":1405  

= $b::iloss@"energetic_mp.f":1405       (5) 
 

Figure 11. Debugging the heating_orbits module 
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for the MPI application. Therefore, the execution of MPI 
processes compete with CCDB at the back-end, which delays 
transferring the response messages for the continue command.  
Num_left is an array only residing on the CPU, the size of which 
in each process is fixed. Phi_loss was validated while residing on 
a GPU in the hybrid DELTA5D. It is a fixed size global data 
structure uniformly partitioned across all of the processes. 
Comparing phi_loss took less time than num_left on average for 
two reasons:  1) the size of phi_loss is smaller and 2) the latency 
of phi_loss’s continue command is lower because the execution of 
the OpenACC process on the GPU has less resource competition 
with the CCDB server on the CPU. 

8. RELATED WORK 
Many parallel debuggers do not provide an efficient way to 

verify the global state for a distributed stencil computation. Using 
TotalView [7] and Allinea DDT [5] to debug OpenMP and 
OpenACC programs, a user needs to select the thread, process and 
kernel of interest before exploring any suspect sub-structure. 
Although UPC provides the global address space to programmers, 
most UPC debugging tools, such as DDT [5], GDB-UPC [27] and 
Berkeley UPC [19], only support regular debugging tasks in a 
distributed view. Similarly, TotalView [7] can display UPC 
shared objects with both the thread ID and the pointer to the data 
segments that belong to that particular thread, while UPC-trace 
[56] can generate trace files and local memory reports. 

Verifying the global state to guarantee the correctness of 
parallel and distributed programs has been studied by several 
research projects. WiDS [1] and D3S [58] allow programmers to 
verify the correctness of distributed protocols by specifying 
predicates that are checked at runtime. When any mistake is 
detected, D3S can reproduce the state changes that lead to the bug, 
allowing the developer to investigate the root cause quickly. 
However, these two technologies cannot validate the large amount 
of numerical results produced by scientific computing at run time. 
TASS (the Toolkit for Accurate Scientific Software) [47] allows 
programmers to specify a collective assertion that is verified using 
symbolic execution and explicit state-enumeration techniques 
instead of realistic environment. Its effectiveness was 
demonstrated with limited scalability using 16 MPI processes. 

Model checking [21] has been applied to examine the non-
determinism problem in parallel computing. For instance, MPI-
Spin [48] verifies the correctness of MPI protocol and UPC-SPIN 
[1] examines the inter-thread synchronization for UPC programs. 
However, model-checking methods are restricted by limited 
scalability and have limited support for realistic runtime 
environments. SESA [42] provides symbolic race checking for 
CUDA programs. Message checker [29] can automatically detect 
errors that occur with incorrect message passing. These 
verification tools are specific to guarantee the correctness of one 
programming technique and are not designed for applications with 
mixed multiple programming paradigms. In comparison to these 
methods, CCDB verifies the runtime state for hybrid programs 

from a global point of view by taking advantage of the correctness 
of the same program’s different version. 

STAT (Stack Trace Analysis Tool) [20] compares the stack 
traces of identical parallel processes to detect errors. To assist 
MRNet’s data aggregation, STAT implements a hierarchical 
bitvector [25]. In contrast, CCDB has different aggregation 
requirement from STAT, which aims to improve the efficiency of 
aggregating identical content. CCDB’s range-set is adaptive for 
handling different aggregation patterns. Additionally, aggregation 
overhead is minimized by taking advantage of the tree topology  

Since relative debugging [14] was proposed, comparison-
based methods have been available in a number of parallel 
debuggers. However, p2d2 [45] and Wizard [23] only allow 
comparing a serial code with a parallel code. TotalView [7] 
provides limited comparison between two programs of the same 
scale with the identical data partition schemes.  

 Our previous work, Guard [26][35], investigated validating 
the global state of MPI programs [35] and UPC programs [36] 
respectively, but could not handle any hybrid applications and 
data comparison across different types of applications. In this 
paper relative debugging has been extended significantly to 
facilitate data comparison across different programming 
techniques, such as UPC, hybrid MPI/OpenACC, and 
MPI/OpenMP programs, on hybrid machines. Specifically, we 
propose a generic data model that can reconstruct the global state 
for any stencil computations with halo cells and facilitate 
validating the numerical results across different levels of 
parallelism. In addition, the CCDB server can access data shared 
across OpenMP threads in a consistent manner using GDB multi-
threaded debugging. It also allows the declarative assertion to 
access the data in OpenACC processes regardless whether the 
variable is residing on the GPU memory or the CPU memory. 
With these significant enhancements, relative debugging is 
effective at finding errors when stencil codes are ported on hybrid 
supercomputers using these widely used programming methods. 
We also demonstrate the efficiency of two advanced data 
comparison schemes, which allows CCDB to detect bugs that only 
occur with a large-scale execution.  

9. CONCLUSION AND FUTURE WORK 
High-end hybrid supercomputers pose a number of challenges 

for debugging applications. In order to improve the productivity 
of porting large-scale scientific applications to current high-end 
hybrid supercomputers, we have developed CCDB to provide a 
relative debugging strategy for stencil computation. In particular, 
CCDB helps users to verify the global state of stencil 
computations between a reference version and a suspect code 
across different types of applications, including MPI, hybrid 
MPI/OpenACC, MPI/OpenMP, and UPC programs. Two case 
studies were investigated to illustrate the effectiveness of using 
CCDB to detect real-world bugs and investigate their causes 
accordingly. A synchronization bug was fixed using CCDB 
during porting a sequential C code of the Shallow Water 
Equations to a UPC version; and hybridizing DELTA5D on Titan 
located a race condition bug within a compute region offloaded to 
the GPU using CCDB. Specifically, the bug in DELTA5D was 
investigated with an execution of more than 5,120 GPUs. The 
overhead and efficiency of CCDB’s data comparison methods 
have been examined on Titan and Crystal using large-scale real 
world applications. These case studies and experiments show that 
CCDB is scalable, incurs low overhead, and allows one to 
efficiently verify the global state for porting a large-scale stencil 
computation on hybrid supercomputers. 

Figure 12. The overhead of assertions. 
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Presently, CCDB supports stencil computations with regular 
data partitions. In the future, we will improve it to construct the 
global view for irregular data partitions such as adaptive mesh 
refinement. The iterative process of refining a faulty area requires 
re-executing the application. Complementing CCDB with check-
pointing techniques will make each re-execution to start from a 
verified state instead of the very beginning and accordingly 
decrease the time of each re-execution. CCDB will also be 
improved to handle the Intel Phi architecture. To improve the 
performance of the CCDB server, we will optimize the efficiency 
of fetching data from GDB and converting them into AIF. 
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Appendix 
A. CCDB Architecture  

The CCDB architecture consists of one front-end client 
process running on the head-node, and multiple servers running 
on the compute nodes at the back-end, illustrated in Figure 13. 
CCDB has been implemented on Cray XE, XK, and XC 
supercomputers [10][11][12]. However, the design of CCDB is 
general and supports other type of supercomputers or hybrid 
clusters with minor extensions.  

At the front-end, the CCDB client exposes a relative 
debugging interface that launches parallel applications onto the 
back-end, controls the execution of the programs remotely, and 
assists a programmer to compare relevant data structures across 
different types of applications. At the back-end, the CCDB server 
has a pluggable architecture that loads and deploys an appropriate 
debug controller according to the target application. For example, 
GDB [24] is used to control C, C++, Fortran, OpenMP, and UPC 
programs, while CUDA-GDB [38] is used to handle OpenACC. 

CCDB uses a MRNet communication tree [41] to connect the 
front-end client and a large number of back-end servers. 

Using the Architecture Independent Format (AIF) [17], 
CCDB backend servers convert the native runtime data to a 
“normalized” format before conducting comparisons. To support 
hybrid machines and languages, AIF has been extended to 
maintain C, C++, UPC, Fortran, and OpenACC data types. 
B. CCDB Interface 

CCDB allows a programmer to compare relevant data 
structures between two programs using two methods: 1) the 
compare command, and 2) the declarative assertion. The compare 
command fetches the values for both variables to be compared 
and display their difference to users. A user can place breakpoints, 
control the execution of both reference code and suspect code 
using commands like continue and step/next, and detect the 
difference in the relevant data structures with the compare 
command. An assertion automates the process of detecting 
divergences. A declarative assertion is executed using a data-flow 
graph, as illustrated in Figure 14, in which common tasks such as 
setting breakpoints, controlling process sets, and performing 
comparisons are managed automatically and conducted using a 
data-flow engine [26]. Multiple assertions can be grouped into one 
data-flow graph. A generic grammar for constructing assertions 
and blockmap is described in [9]. 

It is straightforward to compare two local variables. However, 
to compare a set of distributed data, blockmap is required to 
reconstruct the global view. For data that is decomposed using 
MPI, programmers can specify its blockmap function in the 
compare command or assertion. For a variable in a UPC program, 
programmers do not need to specify a blockmap.  

The default data comparison scheme fetches the original data 
for each variable and compares them at the CCDB client. 
However, this works only for small amounts of data. For 
comparing larger amounts of data, a user can select either hashing 
or P2P scheme to use. To compare floating-point numbers, users 
can set a tolerance threshold that allows CCDB to round them. 
This treats two floating-point values with slight differences as the 
same. Hashing is lightweight method to detect data divergence, 
while P2P incurs extra network traffic at backend servers. 
C. CCDB Debugging Methodology 

A typical relative debugging cycle involves monitoring and 
comparing the key variables in the reference and suspect codes, 
and tracing them back to their points of definition to refine the 
suspect area. Using CCDB to locate errors normally consists of 
two stages. In the first stage, assertions are used to narrow a large 
suspect region down to a manageable area. After that, in the 
second stage, the compare command is adopted to interactively 
refine the faulty area. In a real debugging session, these two 
stages may be mixed with each other. The initial pass through of 
relative debugging includes the following steps:  

1. Locate entry point into code: a user locates which data 
structure(s) need to be compared, and where to perform the 

Figure 14. The data-flow graph of a declarative assertion. 
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comparisons. The source code location (including source file and 
line number) should be identified in assertions. The initial location 
in which data deviations are first produced is typically from 
program output. 

2. Define data decomposition schema: a user can specify 
how a key data structure is decomposed using a blockmap 
function when it is necessary.  

3. Prepare and invoke executables:  both the reference 
and suspect codes are executed using the launch command. 

4. Run programs and observe data divergence:  this 
step can be performed either with the compare command or 
assertions.  

Any data divergence found can be used to narrow down the 
scope of the error and the process iterates from step one until the 
error is located. Typically, diagnosing an error requires iterative 
inspection of a suspect variable’s dependent variables until the 
initial cause is found. Users add new assertions or compare 
commands iteratively to refine a suspect code region. Using a 
divide and conquer strategy, each iteration of inspection decreases 
the suspect area around 50%.  
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